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Abstract 

Background: In recent years, the number of studies concerning microbiota of the intramammary environment 
has increased rapidly due to the development of high-throughput sequencing technologies that allow mapping of 
microbiota without culturing. This has revealed that an environment previously thought to be sterile in fact harbours 
a microbial community. Since this discovery, many studies have investigated the microbiota of different parts of the 
udder in various conditions. However, few studies have followed the changes that occur in the udder microbiota over 
time. In this study, the temporal dynamics of the udder microbiota of 10 cows, five with a low somatic cell count (SCC, 
SCC < 100,000 cells/mL) and five with a high SCC (SCC > 100,000 cells/mL), were followed over 5 months to gather 
insights into this knowledge gap.

Results: Analysis of the temporal changes in the microbial composition of milk from udders with a low SCC revealed 
a dynamic and diverse microbiota. When an imbalance due to one dominating genus was recorded, the dominant 
genus quickly vanished, and the high diversity was restored. The genera dominating in the samples with a high SCC 
remained the dominant genera throughout the whole sampling period. These cows generally displayed a heightened 
SCC or an intramammary infection in at least one quarter though-out the sampling period.

Conclusion: Our results show that the bovine udder has a diverse microbiota, and that the composition and diversity 
of this community affects udder health with regards to SCC. Understanding what influences the composition and 
stability of this community has important implications for the understanding, control, and treatment of mastitis.
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Background
The microbiota of the bovine udder is receiving renewed 
interest due to the use of sequencing methods which 
appear to give more detailed information than culture-
based methods about the microorganisms which colo-
nize intramammary tissues. Many reports of udder 
microbiota are compromised by challenges of avoiding 
contamination from the teat apex and cisterns during 
sampling [1, 2]. Since the bacterial load in the healthy 

udder is low, contamination will always be a potential 
problem with samples collected by expressing milk from 
the teat orifice. Only when an intramammary infection 
is present is the bacterial population large and is there-
fore easy to detect. This has led to the supposition that 
the healthy udder is sterile, and that bacteria are only 
present during an infection [3]. However, increasing 
knowledge of the importance of the microbiota of all 
organs has shown that organs previously thought to be 
sterile do in fact have their own microbiota [2, 4–6]. The 
composition of the commensal udder microbiota can be 
confounded by sampling technique and is influenced by 
a number of factors, e.g. housing, management practices 
and type of bedding material, which make comparisons 
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between studies difficult [7, 8]. The microbiota of bovine 
milk is highly diverse and typically includes taxa from 
the phyla Firmicutes, Proteobacteria, Actinobacteria, 
and Bacteroidetes, with the most common genera being 
Staphylococcus, Streptococcus, Ruminococcaceae, Lach-
nospiraceae, Propionibacterium, Stenotrophomonas, 
Corynebacterium, Pseudomonas, Fusobacterium, Lacto-
bacillus, Enterococcus, Comamonas, and Bacteroides [1]. 
The commensal species found on the external teat skin, 
in the teat canal and in the udder lumen might function 
as important protective elements against pathogens, as 
is shown for commensal species of other body sites [1, 
9, 10]. Studies show that certain species of non-aureus 
Staphylococci and Corynebacterium produce bacteriocins 
that prevent growth of potential pathogens and are con-
sequently hypothesized to be involved in protecting the 
bovine udder against mastitis [11, 12].

Despite this, pathogens are able to breach the udder 
defences causing intramammary infections (IMI) that 
can result in mastitis [13]. When comparing the micro-
bial composition of healthy and mastitic milk samples, 
a shift in the population is typically detected where the 
infectious genus becomes dominating. This leads to the 
reduced diversity often seen in mastitic milk samples [14, 
15]. An open question is whether this imbalance causes 
mastitis, or vice versa. Moreover, some studies have 
revealed that genera considered to cause mastitis can be 
part of the commensal udder microbiota [2, 15]. An event 
that would grant this subpopulation an advantage over 
the other commensal species would allow rapid growth 
of the pathogen, causing imbalance in the population 
[1]. On the other hand, when a pathogenic bacterium is 
cleared from the udder by the immune system, the imbal-
ance caused by this species would likely persist until the 
commensal bacteria that were repressed by the pathogen 
are able to grow back to the original population size [16, 
17]. Whether the commensal species are repressed when 
a pathogen is present, or if the pathogen is so dominat-
ing that the commensal species are not detected during 
sequencing is unknown.

A common practice to characterize the health sta-
tus of cows is measuring the number of somatic cells in 
the milk. The SCC in the lumen of an infected quarter 
increase due to migration of white blood cells to the site 
of infection and increased shedding of the epithelial cells 
from the lumen wall [18]. In milk from a healthy udder, 
SCC levels are from 10–50,000 cells/mL and in cases of 
clinical mastitis, the levels are likely to be over 1 mil-
lion cells/mL. Subclinical mastitis shows a broad range, 
between 100,000 and several million cells/mL. The allow-
able levels in milk for delivery to the dairy vary in dif-
ferent countries, but under 400,000 cells/mL as a rolling 
mean over three months is often used [19]. Using this 

level, it is likely that a number of individual cows in the 
herd have subclinical mastitis. In addition, if the best 
relationship between SCC and IMI is seen at the quarter 
level, then pooled milk from one cow may not show very 
high levels if only one quarter is infected [20].

Most published studies regarding the microbiota in 
bovine milk samples represent a small part of the actual 
picture as they often analyze samples taken at a sin-
gle timepoint [4, 15, 21]. Only a few publications have 
addressed potential temporal changes of the udder 
microbiota [2, 16, 22]. In this study, we aimed to increase 
knowledge regarding these temporal dynamics. We col-
lected quarter samples from 10 cows every three to four 
weeks over five months. The cows were chosen based on 
their SCC in the days leading up to the first sampling. 
Five cows were included in the study due to their low 
SCC indicating a healthy udder, while the remaining five 
were included for their high SCC, which would be con-
sistent with an imbalance of the microbiota of the udder 
and possibly subclinical mastitis. Amplicon sequencing 
of the 16S rRNA gene was used to analyze the samples. 
This revealed that the healthy quarter contains a dynamic 
bacterial population that changes with time, while the 
imbalanced quarter has a lower diversity bacterial popu-
lation dominated by a single genus.

Results
General characteristics of the cows and quarter samples 
included in the study
This study aimed to investigate the temporal dynam-
ics of the microbiota in the bovine udder. The ten cows 
used for this purpose were divided in two groups based 
on the level of SCC before the first sampling. Five of the 
cows (L1–L5) had a stable low SCC (< 100,000 SCC/mL) 
on the three days leading up to the first sampling, while 
the remaining five cows (H1–H5) had a higher SCC 
(> 100,000 SCC/mL) in the same period. Quarter milk 
samples were collected from all ten cows at six sam-
plings during a period of five months (January to May). 
Of the 240 quarter samples that were collected, six 
were missing during collection and were not included 
in the analysis. To study the microbial composition of 
the 234 remaining samples, amplicon sequencing of the 
16S rRNA genes were performed for all the samples. 
The average depth of sequencing was 49,093 sequences 
per sample before filtering and 18,880 sequences per 
sample after filtering. In total 9132 high quality SVs 
were obtained from 234 samples. 14 samples were fil-
tered out of the analysis because they did not pass the 
quality filtering of the Dada2 pipeline used to analyse 
the 16S data after sequencing. Of the 9,132 high qual-
ity SVs, 6962 SVs were used for taxonomy search, and 
553 SVs were successfully assigned to family level. 61 
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quarter samples were classified as having an IMI based 
on definition “A” from Dohoo et al. [23]. This definition 
states that a quarter sample where > 10 colonies are cul-
tured per 0.1  mL is defined as having an IMI. Eighty-
nine percent of these were from group H and 11% were 
from group L. A limit of 100,000 SCC/mL was selected 
to classify the quarter samples as high or low SCC dur-
ing samplings. 30 quarter samples had high SCC, 204 
low SCC, and 6 samples had no recorded SCC. Of the 
30 samples with a recorded high SCC, 93% were from 
group H and 7% from group L. Other additional data 
about the health, parturition, and recorded masti-
tis were retrieved from the Norwegian Cattle Health 
Recording System (Additional file  1). No cows were 
recorded to have mastitis during the sampling period, 
while two cows (L1 and H2) were treated for mastitis 
caused by Streptococcus dysgalactiae and Streptococ-
cus uberis, respectively, after this period. The samplings 
occurred between 19 and 193  days in milk for the 10 
cows (Additional file  2). This period encompasses the 
early and mid-lactation stages. Five of the cows (H4, 
H5, L3, L4, L5) were in their first parturition, while the 
remaining five (H1, H2, H3, L1, L2) were in their sec-
ond parturition.

Diversity analysis of the quarter samples
Investigation of the alpha diversity shows that the cows 
with a low SCC before sampling, hereafter referred to 
as L-cows, displayed a stable and more diverse microbi-
ota in the udder compared to the cows with a high SCC 
before sampling (H-cows). The SCC was plotted for each 
individual cow and shown for all six samplings in Fig. 1A. 
The diversity was measured both as species relative abun-
dance with a focus on evenness and dominance (Shannon 
diversity, Fig. 1B) and species richness estimation (Chao1 
index, Fig. 1C), with an average Shannon diversity of 3.08 
and Chao1 index of 62.42 for the L-cows. The H-cows had 
an average Shannon diversity of 1.88 and Chao1 index of 
46.25. Statistical testing with Kruskal–Wallis rank sum 
test confirmed that the observed difference between the 
two groups was significant (p < 0.05). The quarter samples 
characterized as having an IMI and the samples charac-
terized as having a high SCC during sampling also had a 
species abundance estimate and species richness estimate 
that were significantly different from the samples without 
IMI and with a low SCC, respectively (p < 0.05). The gen-
erally larger spread of multivariate dispersion recorded 
for the H cows (Fig. 1D) indicates a less stable microbiota 
in the udder of these cows.
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Fig. 1 (A) SCC, (B) Shannon diversity, (C) Chao1 index, and (D) Multivariate homogeneity of group dispersions. A, B, C, and D are plotted per 
individual cow (blue represents L-cows, yellow represents H-cows) and shown for all six samplings
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Beta diversity analyses confirmed the observed differ-
ence between the two groups of cows and between the 
samplings. The permutational multivariate analysis of 
variance using distance matrices showed significantly dif-
ferent microbial composition (Adonis p < 0.001) between 
the H-cows and L-cows and between samplings. The 
interactions between the two factors (H/L-cows and the 
samplings) also obtain a p value < 0.001. Principal coor-
dinates analysis (PCoA) based on the Bray–Curtis dis-
similarity matrix as input was employed to investigate 
diversity between the samples. The scatterplot in Fig. 2A 
displays a clear difference between the H- and L-cows. 
The L-cows grouped similarly to each other (on the left 
side of the plot), while the H-cows were less similar to 
each other and to the L-cows. One exception is H4 which 
is found grouped with the L-cows. This is also reflected in 
Fig. 1A (Shannon diversity), where H4 displays a higher 
diversity compared to the rest of the H-group. A distinct 
difference between the clustering of groups can also be 
seen when grouping the samples based on SCC during 
samplings (Fig. 2B).

Differential abundance analysis of significant taxa
Identification of genera significantly more abundant in 
quarters within the different groups was performed with 
Analysis of Compositions of Microbiomes with Bias Cor-
rection (ANCOM-BC). The three conditions “H-cows”, 
IMI positive and SCC > 100,000/mL (Fig. 3A–C, respec-
tively) were associated with Gram-positive genera such 
as Staphylococcus and the family Streptococcaceae. This 
is in accordance with the PCoA plot in Fig.  2B where 

Staphylococcus associates with the samples with a raised 
SCC. On the contrary, the microbiota of the healthy con-
ditions “L-cows”, IMI negative and SCC < 100,000/mL 
had a balanced composition of Gram-positive and Gram-
negative genera.

Analysis of the most abundant taxa present in the quarter 
samples
A total of 553 sequence variants were successfully 
assigned to the family level and kept for further analysis. 
The relative abundance of the 30 most abundant genera is 
displayed by quarter sample in Fig. 4. Fifty-seven percent 
of these belong to the phylum Firmicutes, 20% to Actino-
bacteria, 20% to Proteobacteria, and the remaining three 
percentages belong to the Bacteroidetes. The most abun-
dant genera were Staphylococcus and Corynebacterium 
with 26.1% and 15.6% of the total sequences assigned to 
family level in this study, respectively. Figure 4 shows that 
the L-cows presented a diverse microbiota composition 
in all quarters. As opposed to the H-cows that typically 
displayed one or more quarters where one genus was 
dominating, the L-cows had a richer diversity with sev-
eral genera present simultaneously. We also observed 
large differences between quarter samples from the same 
cow at the same sampling. As earlier mentioned, and as 
evident by the bar plots in Fig.  4, the H-cows typically 
had one or two quarters with low diversity where one 
genus dominated. Interestingly, the dominant genera 
causing the reduced diversity were Staphylococcus and 
Corynebacterium. These were also present in the L-cows 
but did not seem to be able to dominate the microbiota 
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in these quarters. The quarter samples recorded to 
have IMI, SCC > 100,000/mL, or both are labelled with 
an asterisk in Fig.  4 (red, blue or black, respectively). 
The two conditions recurred mainly in the H-cows. As 
observed when investigating the alpha- and beta-diver-
sities, cow H4 was more similar to the L-cows regarding 
microbial composition.

Temporal changes of the microbial community 
in the bovine udder
Temporal changes in relative abundance of the main 
genera present in the udder microbiota were detected 
for all the cows (Fig. 4). We saw a flare of Novosphingo-
bium in both cows L2 and L5 during the first and sec-
ond sampling that were not present in the subsequent 
months. Lactococcus, barely present in cow L3 during 
the early samplings, appears during the fifth sampling. 
This argues for a highly dynamic udder microbiota. On 
the other hand, Staphylococcus got a foothold in one 
quarter in cow H3 and remained thought-out the whole 
sampling period, suggesting that once this bacterium 
has established dominance in the quarter, it is difficult 
for the cow to get rid of again. This was also the case for 
the rest of the H-cows: once Staphylococcus (H2, H3, H5) 

or Corynebacterium (H1) had taken over in the udder, 
they remained the dominant genera over time, implying 
that re-establishment of a diverse community, as seen in 
healthy cows, is difficult. The difference in development 
of IMI in cows H2 and H3 is also worth mentioning. Both 
cows started the sampling period with two infected quar-
ters but cow H2 developed infection in all quarters as 
time went by, while cow H3 mainly had one, at times two, 
infected quarters. Considering the infection status of the 
H-cows, it is interesting that when one quarter of cow L4 
was overtaken by Corynebacterium and Novosphingo-
bium in the fourth and fifth samplings, the diverse micro-
biota typical for L-cows had been reestablished by the 
sixth sampling. This flare of Corynebacterium and Novo-
sphingobium lead to an IMI (labeled with red asterisk in 
Fig. 4) as seen in the H-cows when a genus takes over a 
quarter. The difference is that in the imbalanced quarter 
of cow L4, the issue was resolved spontaneously, while in 
the H-cows, the imbalance persists.

Discussion
Increased knowledge of the udder microbiota is an 
important step in understanding mastitis dynamics, a 
disease affecting herd health and milk production yields 
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world-wide [1]. To date, however, only a few studies have 
used HTS technologies to determine longitudinal shifts 
in the bacterial community of milk samples collected 
from healthy quarters [16, 22]. In the present study, we 
aimed to investigate the temporal changes in the udder 
microbiota of Norwegian Red cows over 5 months, which 
encompassed both the early and mid-lactation stages. 
The bacteria present were identified through amplicon 
sequencing of the V3-V4 region of the 16S rRNA genes. 
During library preparation, amplification in the negative 
controls were not detected in the qPCR system and it is 
hence unlikely that the samples suffer from contamina-
tion. For that reason, the controls were not included in 
the data analysis. In an attempt to acquire bacteria from 
deep within the udder, samples were collected after regu-
lar milking. This practice was used to avoid contamina-
tion of bacteria from the environment that had entered 
the teat apex [2, 3, 21]. Without invasive methods it is 
not possible to rid the samples of all contaminants, but 
Porcellato et al. [2] employed this type of sampling tech-
nique, and despite finding evidence of some environmen-
tal genera in the samples, their relative abundance was 

lower compared to milk taken from bulk milk tanks. This 
suggests that employing this sampling technique rids the 
samples of some of the environmental bacteria that are 
present in the teat apex. Three to four weeks were chosen 
as an interval between sample collection. This means that 
a transient subclinical intramammary infection could be 
missed as the pathogen could be cleared from the udder 
before the next sampling. However, no case of mastitis or 
mastitis treatment was recorded in the Norwegian Cat-
tle Health Recording System through the duration of the 
experiment for the cows in the study.

The detection of Staphylococcus or Corynebacterium 
in all quarter samples were consistent with other stud-
ies [2, 14, 15, 22]. The udder microbiota of the L-cows 
turned out to be highly dynamic and diverse with fluctua-
tions between the relative abundance of genera from one 
sampling to the next. In the one case where an IMI was 
detected and accompanied by an increase in the relative 
abundance of Corynebacterium and Novosphingobium, a 
diverse microbiota composition had been reestablished 
by the next sampling. A different tendency was recorded 
for the H-cows. In quarters with an established IMI or 
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a raised SCC due to dominance of one genus (Staphy-
lococcus or Corynebacterium), returning to a diverse 
microbiota composition turned out to be difficult, and 
the dominant genus was found to linger throughout the 
whole sampling period. Some quarters appear to be dom-
inated by Corynebacterium or Staphylococcus, yet they 
were culture negative under both aerobic and anaerobic 
conditions and have therefore not been labeled as having 
an IMI. This inconsistency between the 16S data and the 
culturing results is likely due to the inability of laboratory 
culturing methods to cultivate all bacteria in a sample. 
The criteria used to define a quarter sample as IMI posi-
tive in this study was chosen to identify as many IMIs as 
possible. Whilst definition “A” from Dohoo et al. [23] cer-
tainly achieves this, it can also introduce false positives 
to the dataset. To make up for this it would have been 
prudent to include species identification after plating on 
blood agar as an additional screening method for quar-
ters with IMI.

Several factors might be responsible for the develop-
ment of different microbiota between the H- and L-cows. 
It is possible that Corynebacterium or Staphylococcus 
were able to settle deep inside the udder of certain quar-
ters of the H-cows. If that is the case, they could persist 
here until conditions were favorable for proliferation. As 
described elsewhere, some mastitis pathogens can colo-
nize distinct anatomical niches of the udder for long peri-
ods by expressing virulence factors impairing the total 
or partial reestablishment of the resident microbiota [1, 
24]. Indeed, it has been observed that this feature might 
be strain-specific as has been observed for naturally or 
experimentally infected quarters with E. coli where a nor-
mal udder microbiome was promptly restored following 
pathogen clearance within the mammary gland [16, 17]. 
Isaac et  al. [25] found that non-pathogenic coagulase-
negative Staphylococcus chromogenes from bovine milk 
samples produced an anti-biofilm compound that hinders 
the establishment of pathogenic bacteria in the udder. Al-
Qumber et  al. [26] published similar results regarding 
Bacillus isolated from healthy quarters. These protective 
commensal species may explain why Corynebacterium 
and Novosphingobium could not establish a foothold in 
cow L4. The interplay between the commensal micro-
biota and potential pathogens can also explain how cow 
H3 was able to contain an IMI in one quarter, while H2 
developed IMI in several quarters during the sampling 
period. It is possible that the uninfected quarters harbor 
species as part of their microbiota that are able to repress 
growth of the opportunists, while these species might 
be lacking or present in too few numbers in the quarters 
that are more susceptible to developing an IMI. Another 
known factor that increases the occurrence of mastitis is 

an increasing number of parturitions, and the likelihood 
of mastitis is also higher in the periparturient period 
[21, 27, 28]. Due to the number of cows included in this 
study, we do not have sufficient data to conclude any-
thing regarding this claim. Another factor contributing to 
mastitis susceptibility might be the genetic composition 
of the cow, particularly the genes encoding the bovine 
leukocyte antigens, and factors influencing general host 
resistance, such as stress and nutrition. [29]. These fac-
tors have not been evaluated in this study.

Milk samples collected from cows with SCC < 100,000/
mL and without IMI showed a stable eubiotic bacte-
rial community throughout samplings as evidenced by 
higher species abundance and species richness estimates, 
which is commonly observed for milk samples obtained 
from healthy udders [4, 15, 17]. Interestingly, it is pos-
sible to observe that samples classified as “H”, IMI posi-
tive, and SCC > 100,000/mL are remarkably enriched by 
Gram-positive genera (i.e., Staphylococcus, Clostridium, 
Corynebacterium, Jeotgalicoccus, and Streptococcus), 
whereas milk samples from healthy quarters display 
a balance between Gram-positive and Gram-negative 
taxa. It is worth mentioning that Gram-negative genera 
such as Pseudomonas and Acinetobacter occur mainly 
in milk samples collected during the pasture season [1]. 
Although it is difficult to establish whether the low diver-
sity found in milk samples from H-cows is a cause or a 
consequence of ongoing subclinical mastitis, our results 
reinforce the association of mastitis with an imbalanced 
udder microbiota [2].

Regarding the temporal changes in the relative abun-
dance of the main bacterial genera present in the udder 
microbiota of H- and L-cows, Pseudomonas are over-
represented in the microbiota of healthy quarters [14], 
whereas Acinetobacter, Aerococcus, and Corynebacte-
rium are among the most frequently identified genera 
on the skin of teat apices [1, 30]. According to Falentin 
et al. [27], Jeotgalicoccus and Corynebacterium were more 
abundant in foremilk samples of quarters with a his-
tory of mastitis, an important bacterial source involved 
in udder’s colonization and IMI. Indeed, in a study con-
ducted with milk and teat skin samples from 1142 quar-
ters (300 cows with somatic cell count > 200,000 cells/
mL), Svennesen et  al. [31] indicate that S. aureus and 
S. agalactiae present on teat skin can be considered a 
risk factor for IMI caused by these species. The fam-
ily Staphylococcaceae include Gram-positive spherical 
bacterial species of veterinary interest such as S. aureus 
and non-aureus staphylococci (NAS). These are some 
of the most common mastitis related pathogens, and an 
intramammary infection caused by S. aureus before peak 
lactation can lead to a milk loss of up to 7.1% [32]. NAS 
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species and Corynebacterium bovis, a minor mastitis 
causing pathogen, also leads to loss in milk production, 
7.4% and 5.7%, respectively. Together, our results and the 
aforementioned studies demonstrate the importance of a 
routine of monitoring and identification of animals with 
intramammary infection within the mastitis control pro-
gram, i.e., monitoring of SCC and bacterial counts. Lastly, 
the gut-associated families Clostridiaceae and Lachno-
spiraceae are frequently reported as members of the teat 
canal microbiota when cows were housed in free or tie-
stall arrangements [1], although Andrews et al. [22] have 
identified a prevalence of both families in teat samples of 
lactating organic dairy cows (hay and pasture-based sys-
tem) regardless of infection status, which evidences the 
factor “environment” in shaping the udder microbiota.

Conclusion
This study contributes new knowledge about temporal 
changes of the udder microbiota and is important for 
understanding udder health and the development of mas-
titis. The results indicate that it could be possible to iden-
tify the risk of developing IMI in a quarter based on the 
composition of the microbial community present, such as 
diversity and balance between Gram-positive and Gram-
negative species. We showed that different udder micro-
biomes behave differently depending on udder health. 
A highly diverse microbiota was more stable over time, 
subject to less disturbance and associated with healthier 
udders. This highly diverse microbiota displayed a bal-
ance between Gram-positive and Gram-negative species 
not detected in udder microbiotas with lower diversity. 
The low diversity microbiota was subjected to temporal 
shift in composition and was correlated to infected quar-
ters and the presence of mastitis pathogen genera. The 
latter microbiota was generally dominated by Gram-pos-
itive species.

Materials and methods
Study animals
Ten Norwegian Red cows were selected from the “Cen-
tre for livestock production” at the Norwegian University 
of Life Sciences. The farm operates under the regulations 
of the Norwegian Food Safety Authority regarding food 
production and animal care. Permission for sample col-
lection and use of information regarding the samples 
was given by the farm owners. No invasive procedures 
were used in this study. The cattle enrolled in the study 
were housed in freestalls with cubicles containing bed-
ding materials of rubber mats with raw wood chips. 
Their diet consisted of silage, continuously available, and 
supplemented with pelleted feed based on milk produc-
tion of the individual cow. The ten cows included in the 

study were chosen based on SCC recorded by the auto-
matic milking system (Delaval Online Cellcounter) in 
the three days leading up to the first sampling. Five cows 
with a constant low SCC (< 100,000/mL, L1–L5) and five 
cows with a constant high SCC (> 100,000/mL, H1–H5) 
were selected for the study. The Norwegian Cattle Health 
Recording System provided additional metadata for each 
of the cows [33] (Additional file 1).

Sample collection
Milk samples were collected from each quarter on 
six occasions over 5  months with  3–4  weeks intervals 
between samplings (January–May 2020). Milk was col-
lected at the end of the regular milking routine, as pre-
viously described by Porcellato et  al. [2]. Briefly, after 
removal of the milking apparatus, the teats were washed 
with iodine and then alcohol, and 200 ml milk was col-
lected manually. The “Procedure for Collecting Milk 
Samples” of the National Mastitis Council (NMC, www. 
nmcon line. org) was followed. 240 samples were collected 
for the study. After sample collection, the milk was stored 
on ice until arrival in the laboratory (no more than 2  h 
after the last sample was taken) where the samples were 
immediately prepared for analysis. 100  µl of raw milk 
were plated on TSA blood agar plates (ThermoFischer 
Scientific, Massachusetts, United States). The agar plates 
were incubated at 37 °C under both aerobic and anaero-
bic conditions for 24 h. Airtight containers and Anaero-
Gen 3.5L sachets (ThermoFischer Scientific) were used to 
create anaerobic conditions. In order to identify quarters 
with IMIs, we utilized the definition “A” from Dohoo et al. 
[23]. Quarters were labelled with an IMI if they had > 10 
colonies per 0.1 mL (pure or mixed culture) in one of the 
two conditions used for TSA blood agar (aerobic, anaero-
bic). Milk from all quarter samples were also sent to the 
Tine Laboratory in Heimdal and analyzed with Bentley 
FTS (Bentley Instrument Inc, Chaska, MN, USA) for 
somatic cells, fat, protein, lactose, urea, and FFA content 
(Additional file 1).

DNA extraction and amplicon sequencing
For the analysis of the microbiota, the bacterial pellet was 
obtained from 40 mL of each quarter milk sample, as pre-
viously described [2]. Briefly, 40 mL of milk was centri-
fuged at 8000× g for 10 min, the fat layer removed with 
a sterile cotton swab, and the supernatant removed. The 
pellet was then washed twice with 2% citrate water, and 
DNA was extracted from each pellet using the DNeasy 
PowerFood Microbial Kit (Qiagen, Düsseldorf, Germany) 
starting from step 3 in the detailed protocol of DNeasy 
Powerfood Microbial Kit Handbook. For increased effi-
ciency of lysis of difficult species additional 5 min of vor-
tex time were added to step 6, bringing the total vortex 

http://www.nmconline.org
http://www.nmconline.org
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time to 15 min. DNA was finally eluted in 50 µl elution 
buffer before storage at − 20  °C. Library preparation for 
amplicon sequencing using the Illumina Miseq platform 
was performed as described previously [2]. The V3 and 
V4 region of the 16S rRNA was amplified using the prim-
ers Uni340F (CCT ACG GGRBGCASCAG) and Bac806R 
(GGA CTA CYVGGG TAT CTAAT). PCR reagents and 
conditions were identical to the one described by Porcel-
lato et al. [2]. Negative controls were included to moni-
tor for contamination during DNA extraction and during 
library preparation. The final library concentration was 
then measured using Qubit 2 with the dsDNA HS kit 
(ThermoFischer Scientific) and quantitated using the 
KAPA Library Quantification kit (Illumina) before being 
sequenced on an Illumina MiSeq platform (Illumina) 
using the 2 × 300 bp V3 kit (Illumina).

Sequence data analysis and statistical testing
Reads were quality filtered and trimmed using the 
Dada2 package using truncating of forward reads set 
to 260 bases and truncating of reverse reads set to 240 
bases [34]. The error model in Dada2 was created using 
1 million random filtered reads. Sequence variants (SV) 
was inferred using the Dada2 algorithm and removal of 
chimeras was performed using the function “removeBi-
meraDenovo” in the Dada2 R package. Sequence vari-
ants shorter than 375 base pairs were removed from the 
final table. Taxonomy was assigned using the Decipher R 
package [35] against the SILVA SSU database [36]. Sam-
ples with less than 1000 reads and SVs with less than 10 
sequences were removed from the table.

All statistical analyses were performed using the R soft-
ware [37]. Chao1 estimate and Shannon diversity were 
chosen to evaluate the alpha diversity and were calcu-
lated using the R package Vegan [38]. Pairwise compari-
son of the alpha diversity indexes between group levels 
was performed using the Kruskal–Wallis rank sum test. 
Multivariate homogeneity of group dispersions was cal-
culated using the function “betadisper” available in the R 
package Vegan. Permutational analysis using dissimilarity 
matrix (“adonis” function from the R package Vegan) was 
used to test differences in the composition of the com-
munity between groups of samples (n. of permutation 
999). Bray–Curtis dissimilarity matrixes were selected as 
input for ordination analysis using principal coordinate 
analysis (PCoA). ANCOM-BC was used to identify fami-
lies that were significantly more abundant among groups 
of samples [39].
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