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Abstract 

Background Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast 
inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study 
investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut 
microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and 
Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-
drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding 
experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other 
diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling 
of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut 
microbiota were determined using genome-scale metabolic models.

Results The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed 
FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, 
which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclu-
sion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut 
microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin 
O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated 
by the family Bacillaceae.

Conclusions The present study showed that dietary inclusion of FM and SBM differentially modulate the composi-
tion and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the 
modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin 
O-glycan degradation pathway compared with the other diets.
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Background
Plant protein sources are increasingly being used in 
commercial aquafeeds [1, 2]. Among the plant-based 
ingredients, the use of soybean meal (SBM) in diets of 
Atlantic salmon is restricted due to the presence of anti-
nutritional factors (such as trypsin inhibitors, protease 
inhibitors and saponin) that compromise the growth 
performance, nutrient digestibility, and health of fish [3, 
4]. A number of studies [5–10] have reported that die-
tary inclusion of SBM induce inflammation in the distal 
intestine of Atlantic salmon; a condition widely known as 
SBM-induced enteritis (SBMIE), which is characterized 
by loss of enterocyte vacuolization, reduction in mucosal 
fold height, and infiltration of inflammatory cells in the 
lamina propria and epithelial submucosa. Considering 
these limitations, a refined soy-product known as soy-
protein concentrate (SPC) with low level of anti-nutri-
tional factors, is currently used in commercial salmon 
diets. The use of plant ingredients such as SPC in aqua-
feeds also raises ethical and environmental concerns as 
continuous use of SPC in aquafeeds may increase pres-
sure on cultivable land, water and energy use, as well as 
decrease their availability for direct human consumption 
[11, 12]. Therefore, there is emerging need for sustainable 
novel ingredients for aquaculture, which can be used to 
improve the utilization and/or as alternatives to conven-
tional plant-based ingredients in fish feeds.

Microbial ingredients such as yeasts are gaining atten-
tion as potential novel ingredient in aquaculture due to 
their ability to convert low-value by-products into high-
value resources [13], high nutritional values [14–16], low 
environmental footprint [17] and functional effects in 
fish [18, 19]. Studies have shown that dietary inclusion 
of yeasts could alleviate adverse effects of SBM in Atlan-
tic salmon [18, 19], but little is known of their effects on 
intestinal microbiota of fish. The gut microbiota plays 
important roles in host physiology and metabolic pro-
cesses, such as digestive function, growth performance, 
immune function, and health [20–22]. A number of 
studies [23–26] have documented the effects of SBM 
inclusion on intestinal microbiota of Atlantic salmon. 
Identifying microbiota modulated by inclusion of yeasts 
in the diets may be crucial for improving nutrient uti-
lization, growth performance, and health of Atlantic 
salmon fed plant-based diets. Therefore, the objective of 
the present study was to examine the effect of yeast spe-
cies and processing on richness, diversity and predicted 
metabolic profile of gut microbiota of Atlantic salmon 

fed SBM-based diet in seawater. Two yeasts, Cyberlind-
nera jadinii (CJ) and Wickerhamomyces anomalus (WA) 
produced from wood sugars using in-house bioreactors, 
were used in the current study.

Methods
Yeasts, experimental diets, and fish feeding trial
The CJ and WA yeast biomass were produced in a 30 
L bioreactor using a growth medium composed of a 
blend of enzymatic hydrolysates of pre-treated Norwe-
gian spruce wood (Picea abies) and chicken by-products 
as described by Lapeña et  al. [13]. After harvesting, the 
yeasts were processed following the protocol described 
by Agboola et  al. [18]. Briefly, the yeast biomass was 
washed, centrifuged and the resulting paste was divided 
into two equal parts. One part of the yeast paste was 
directly inactivated with a spray-dryer (SPX 150 MS, 
SPX Flow Technology, Denmark) set at 180 °C and 80 °C 
for inlet and outlet temperature, respectively. The other 
half of the yeast paste was autolyzed at 50 °C for 16 h in 
a stirred 30 L reactor (Einar, Belach Bioteknik, Sweden), 
followed by spray-drying using the same conditions as 
above. The resulting processed yeast products were: 
inactivated CJ (ICJ), autolyzed CJ (ACJ), inactivated WA 
(IWA), and autolyzed WA (AWA). The nutritional and 
cell wall compositions of the four yeast products are pre-
sented in Additional file 1: Table S1.

Six experimental diets were formulated to meet or 
exceed [27, 28] the nutritional requirements of Atlan-
tic salmon smolts; a fishmeal-based (FM) control diet, 
a challenging diet containing 30% soybean meal (SBM) 
and four diets containing 30% SBM with 10% inclusion of 
the different processed yeasts (ICJ, ACJ, IWA and AWA). 
Table 1 shows the ingredient and analyzed compositions 
of the six experimental diets. The diets were cold-pel-
leted using a P35A pasta extruder (Italgi, Carasco, Italy) 
and dried at 60 °C in small experimental driers until the 
pellets reached a moisture content of less than 10%. The 
production of the experimental diets is fully described in 
Agboola et al. [29].

A 42-day seawater feeding trial with Atlantic salmon 
smolts (initial body weight = 136 ± 0.25 g) was conducted 
at the research facility of the Norwegian Institute of 
Water Resources (NIVA, Solbergstrand, Norway). A total 
of 450 vaccinated salmon smolts were randomly allocated 
into 18 fiber tanks (300 L) and fed one of the six experi-
mental diets (n = 3 tanks per diet) for 6 h per day using 
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automatic feeders delivering feed every 12 min. The fish 
were reared under a 24 h light regime in a flow-through 
system with an average water temperature of 11.5 °C and 
average oxygen saturation of 84%. The water flow was 
kept at an average of 5.5 L  min−1 during the experimental 
period. Water salinity was gradually increased from 5 ppt 
at the start, until it reached full salinity (33 ppt) during 
the first 12 days of the experiment.

Sample collection
Six fish were randomly selected from each tank, anaes-
thetized with metacaine (MS-222, 50 mg  L−1 water), and 
killed with a sharp blow to the head for digesta sampling. 
After dissection, the distal intestine was opened longi-
tudinally and the digesta was carefully removed using 

sterile plastic spatulas. The digesta was placed in cryo-
tubes, snap-frozen in liquid nitrogen and stored at -80 °C. 
To obtain sterile conditions, tools were cleaned and 
decontaminated using 70% ethanol and flaming between 
each fish. Additionally, feed and water samples were col-
lected into sterile plastic containers and stored at -80 °C. 
Water samples were collected from both the source tank 
and the fish rearing tanks.

DNA extraction
Total DNA was extracted from ~ 200  mg of digesta (18 
samples per dietary group) and 100  mg of ground feed 
(3 replicates per diet) using QIAamp® Fast DNA Stool 
Mini Kit (Qiagen, Hilden, Germany, Cat. No. 51604) 
following the manufacturer’s specifications with some 

Table 1 Diet formulation and nutritional composition of the experimental diets*

a LT fishmeal, Norsildmel, Egersund, Norway; bSoybean meal, Denofa AS, Fredrikstad, Norway; cWheat gluten, Amilina AB, Panevezys, Lithuania; dLygel F 60, Lyckeby 
Culinar, Fjälkinge, Sweden; eNorSalmOil, Norsildmel, Egersund, Norway; fRousselot 250 PS, Rousselot SAS, Courbevoie, France; gMonocalcium phosphate, Bolifor 
MCP-F, Oslo, Norway Yara; hPremix fish, Norsk Mineralnæring AS, Hønefoss, Norway. Per kg feed; Retinol 3150.0 IU, Cholecalciferol 1890.0 IU, α-tocopherol SD 250 mg, 
Menadione 12.6 mg, Thiamin 18.9 mg, Riboflavin 31.5 mg, d-Ca-Pantothenate 37.8 mg, Niacin 94.5 mg, Biotin 0.315 mg, Cyanocobalamin 0.025 mg, Folic acid 6.3 mg, 
Pyridoxine 37.8 mg, Ascorbate monophosphate 157.5 g, Cu: CuSulfate  5H2O 6.3 mg, Zn: ZnSulfate 151.2 mg, Mn: Mn(II)Sulfate 18.9 mg, I: K-Iodide 3.78 mg, Ca 1.4 g; 
iL-Lysine CJ Biotech CO., Shenyang, China; jRhodimet NP99, Adisseo ASA, Antony, France; kCholine chloride, 70% Vegetable, Indukern SA., Spain; lY2O3. Metal Rare Earth 
Limited, Shenzhen, China
m ICJ—inactivated Cyberlindnera jadinii; ACJ—autolyzed C. jadinii; IWA—inactivated Wickerhamomyces anomalus; AWA—autolyzed W. anomalus
o DP:DE = Digestible protein to digestible energy ratio. Calculated using internal digestibility values of various ingredients
* The diets are: FM—fishmeal-based; SBM—soybean meal-based; 4 other diets containing 300 g/kg SBM and 100 g/kg of ICJ, ACJ, IWA and AWA yeasts

FM ICJ ACJ IWA AWA SBM

Diet formulation (g/kg)

Fish  meala 433.4 208.4 208.4 208.4 208.4 261.4

Soybean  mealb 0 300 300 300 300 300

Wheat gluten  mealc 170 111 111 111 111 136

Potato  starchd 120 68 68 68 68 90

Cellulose 80 0 0 0 0 0

Yeastm 0 100 100 100 100 0

Fish  oile 130 130 130 130 130 130

Gelatinf 60 60 60 60 60 60

Monocalcium  phosphateg 0 10 10 10 10 10

Premixh 5 5 5 5 5 5

L-lysinei 0 3 3 3 3 3

DL-Methioninej 0 3 3 3 3 3

Choline  chloridek 1.5 1.5 1.5 1.5 1.5 1.5

Yttriuml 0.1 0.1 0.1 0.1 0.1 0.1

Analyzed diet composition (g/kg dry matter (DM) unless otherwise stated)

Dry matter (g/kg) 926.6 889.9 889.2 924.5 913.9 897.3

Crude protein 531.8 518.3 530.3 519.5 521.4 542.6

Starch 131.9 92.6 93.3 89.3 87.6 103.6

Ash 78.3 74.7 74.8 73.7 73.5 77.2

Carbon 509.1 502.5 517.8 513.1 511.0 509.7

Sulphur 6.0 6.2 6.0 6.1 6.0 6.3

Energy (MJ/kg DM) 23.3 23.3 23.3 23.1 23.1 23.1

DP:DEo 23.1 22.8 22.8 22.5 22.5 23.3
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modifications as described elsewhere [30]. In addition to 
the digesta and feed samples, total DNA was extracted 
from the water samples. 500 mL each of source water (2 
samples) and rearing tank water (4 samples) were filtered 
through a MF-Millipore membrane filter with 0.22  µm 
pore size (Sigma-Aldrich, Cat. No GSWP04700) and total 
DNA was extracted using the same protocol described 
above. The rearing water (500 mL from each tank) sam-
ples were mixed, and four sub-samples (500  mL each) 
were taken and used for the DNA extraction. Total DNA 
was also extracted from blank filter paper used for the fil-
tration of water samples. For quality control of the pre-
sent workflow, a microbial community standard (mock), 
which consists of eight bacteria and two yeasts (Zymo-
BIOMICS™, Zymo Research, California, USA; Cat. No. 
D6300) was included for DNA extraction as positive 
control. In addition, a blank negative control was added 
to each batch of DNA extraction by omitting the input 
material. Total DNA were extracted from blank control, 
mock positive control and blank filter paper following 
the method used for digesta, feed and water samples. The 
DNA concentration of all the samples were measured in 
duplicates using Invitrogen™ Quant-iT™ Qubit™ dsDNA 
HS (High Sensitivity) assay kit (Thermo Fisher Scien-
tific, California, USA, Cat. No. Q32854) with the Qubit 
4 Fluorometer (Invitrogen™). The extracted DNA were 
stored at -20 °C until further analysis.

PCR amplification
The V3-V4 hypervariable regions of the bacterial 16S 
rRNA gene were amplified in a 25 µL reaction volume 
containing 2 × KAPA HiFi HotStart Ready Mix (12.5 µL) 
(Roche Sequencing Solutions, Mat. No. 7958935001), 
DNA template (5 µL), and 1.33 µM primers (3.75 µL of 
each primer). The primers used for the amplicon PCR 
were 341F (5’-CCT ACG GGN GGC WGC AG-3’) and 
785R (5’-GAC TAC HVG GGT ATC TAA TCC-3’). The 
amplification was set at initial denaturation of 95  °C for 
3 min; 25 cycles of denaturation at 95 °C for 30 s; anneal-
ing at 55 °C for 30 s; extension at 72 °C for 30 s; followed 
by a final extension at 72  °C for 5 min. After the ampli-
fication process, duplicate PCR products were pooled 
and purified using Agentcourt AMPure XP beads (Beck-
man Coulter, Indiana, USA, Cat. No. A63881), and the 
cleaned PCR products were examined by 1% agarose gel 
electrophoresis.

Library preparation and sequencing
The sequencing was carried out on a Miseq platform fol-
lowing the Illumina 16S metagenomic sequencing library 
preparation protocol [31]. The cleaned PCR amplicons 
were multiplexed by dual indexing using the Nextera 
Index Kit v2 Set A (Illumina, California, USA, Cat. No. 

FC-131-2001). The index PCR products were cleaned 
using the AMPure beads and quantified using the Invitro-
gen™ Quant-iT™ Qubit™ dsDNA BR (Broad range) assay 
kit (Thermo Fisher Scientific, California, USA, Cat. No. 
Q32853) with the Qubit 4 Fluorometer (Invitrogen™). To 
determine the library size representative, cleaned librar-
ies were selected and analyzed using the Agilent DNA 
1000 Kit (Agilent Technologies, California, USA, Cat. 
No. 067-1505). The libraries were diluted to 4  nM in 
10 mM Tris (pH 8.5) and pooled in an equal volume. The 
blank control samples with library concentrations lower 
than 4 nM were pooled directly without further dilution. 
The pooled library was denatured using 0.2 N NaOH. 
Due to low diversity of the amplicon library, 5% Illumina 
generated PhiX control (Illumina, San Diego, Waltham, 
MA, USA, Cat No: FC-110-3001) was spiked in by com-
bining 570 μL amplicon library with 30 μL PhiX control. 
The library was then loaded at 8 pM and sequenced on 
the Miseq System (Illumina, San Diego, California, USA) 
using the Miseq Reagent Kit v3 (600-cycle) (Illumina; 
catalog no., MS-102–3003). The sequencing was done 
in two runs. To prevent potential batch effects between 
sequencing runs, the digesta and the feed samples were 
distributed between the runs with consideration that 
each dietary treatment and each experimental tank were 
equally represented. Also, water and control samples 
were evenly distributed between the two runs.

Sequence data processing
The sequence data were processed in R (version 4.0.5) 
[32]. For each sequencing run, DADA2 was used to 
process the raw sequence data and generate amplicon 
sequence variants (ASVs) [33]. Briefly, the demultiplexed 
pair-ended reads were trimmed off the primer sequences 
(first 17 bps of forward reads and first 21 bps of reverse 
reads), truncated at the position where the median Phred 
quality score crashed (forward reads at position 300  bp 
and reverse reads at position 230 bp for both runs) and 
filtered off low quality reads. After the trimming and fil-
tering, a model of error rates was developed to remove 
error sequences. The forward and reverse reads were 
merged, and the ASV table for each run was constructed. 
The ASV table for each sequencing  run were merged, 
and assigned with taxonomy using the reference data-
base, SILVA version 138.1 [34, 35]. A phyloseq object 
was constructed from the generated ASV table, the tax-
onomy table and the sample metadata using the phyloseq 
R package (version 1.34.0) [36]. Taxa identified as chlo-
roplasts or mitochondria were removed from the ASV 
table. The ASVs that had no phylum-level taxonomic 
assignments or appeared in less than three biological 
samples were conservatively filtered from the ASV table. 
The contaminating ASVs due to reagent contamination 
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and cross contamination were identified and removed 
from ASV table as described elsewhere [37]. The ASVs 
were then clustered using VSEARCH algorithm and 
subsequently curated with LULU [38]. The post-cluster-
ing ASV table and representative sequences were used 
for the downstream data analysis. The core ASVs and 
alpha-diversity indices (observed ASVs, Pielou’s even-
ness, Shannon’s index and Faith’s phylogenetic diversity 
(PD)) were computed according to Li et al. [37]. Similarly, 
the beta-diversity indices (Jaccard distance, unweighted 
UniFrac distance, Aitchison distance and PhILR trans-
formed Euclidean distance) were computed following 
Li et al. [37]. The Jaccard distance and unweighted Uni-
Frac distance were calculated by rarefying the ASV table 
into minimum sequence size i.e., 1,604 reads per sample 
(Additional file 1: Fig. S1). Conversely, Aitchison distance 
and PhILR transformed Euclidean distance were com-
puted using the unrarefied ASV table.

Metabolic reaction analysis of gut microbiota
The metabolic reaction analysis of gut microbiota 
was performed according to the method described by 
Yilmaz et al. [39]. The ASVs for the digesta samples were 
mapped to metabolic reactions using an available collec-
tion of genome-scale metabolic models (GSMMs) of gut 
microbes [40]. Only ASVs that could be mapped to family 
or lower taxonomic rank and to at least one GSMM were 
included in the reaction level analysis. For each sample, 
we calculated the normalized abundance of each reaction 
i:

where aASV(j) is the abundance of ASV j in the sample, 
n is the total number of ASVs, and E(i, j) is the expected 
probability (frequency of occurrences) of reaction i in the 
GSMMs mapped to ASV j.

Statistical analysis
The statistical difference among the dietary groups for 
the microbial compositions at genus or lowest taxon-
omy ranks (top 15 most abundant taxa) were evaluated 
using Kruskal–Wallis test, followed by multiple compari-
son using Wilcox pair-wise comparison test. Similarly, 
the alpha-diversity measurements were evaluated using 
Kruskal–Wallis test and statistical differences among 
the dietary groups were detected using Wilcox pair-wise 
comparison test. The statistical difference among the 
dietary groups for the beta-diversity indices were com-
puted using permutation multivariate analysis of variance 
(PERMANOVA) [41] with 999 permutations using the 

ar(i) =

n
j=1 aASV j E(i, j)

n
j=1 aASV j

R package vegan 2.5.7 [42], followed by a pair-wise com-
parison. Principal coordinates analysis (PCoA) was used 
to visualize the beta-diversity indices. The homogeneity 
of multivariate dispersions among the dietary groups was 
computed by permutation test, PERMDISP [43], using 
the R package vegan [42] and visually assessed with box-
plots. Significant differences with adjusted p < 0.05 among 
dietary groups were detected using the Benjamini–Hoch-
berg procedure [44]. For the metabolic reaction analy-
sis, mean abundance of each reaction was tested using a 
two-sample t-test for each pair of diets. Multiple testing 
was corrected using the Benjamini–Hochberg procedure 
[44] and reactions with adjusted p ≤ 0.05 were consid-
ered to be significantly different between diets. For each 
pair of diets, the enriched pathways among the signifi-
cantly different reactions were computed using Fisher’s 
exact test. The pathways with adjusted p ≤ 0.05 based 
on Benjamini–Hochberg procedure were considered to 
be enriched. Additionally, principal component analy-
sis (PCA) was performed separately on standardized 
ASVs (Additional file 1: Fig. S2) and reaction abundances 
(z-scores) (Additional file 1: Fig. S3).

Results
To aid the readers understanding of the data reported 
in this study, results on growth performance, nutrient 
digestibility, intestinal histopathology, immunological 
and transcriptomic changes of fish fed the experimen-
tal diets have been reported with more detail elsewhere 
[29]. In brief, fish grew from 136 ± 0.25 g initial average 
weight to 179 ± 7.06 g average final weight after 42 days 
of feeding the experimental diets. The inclusion of yeasts 
did not compromise growth performance of fish. Histo-
logical and immunohistochemistry examination showed 
that the inclusion of CJ yeast reduced loss of supranu-
clear vacuolization and decreased population of CD8α 
positive cells in the distal intestine of fish fed SBM-based 
diets. Inclusion of both yeasts (CJ and WA) induced tran-
scriptomic changes associated with wound healing and 
immune response pathways in fish fed SBM-based diets.

Characteristics of sequence data
After the sequence denoising, ASV filtering and cluster-
ing, a total number of 6.6 million reads were retained for 
the downstream data analysis. The median of reads per 
sample used for downstream analysis was 23,087, with 
the minimum and maximum values being 1,604 and 
180,844, respectively. The reads for the downstream anal-
ysis generated a total of 906 unique ASVs, of which 76.4% 
were assigned at the genus level and 13.5% annotated at 
the species level.
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Microbiota composition of mock and negative controls
All the eight bacterial species expected in the mock were 
successfully identified at genus level, with only Staphylo-
coccus aureus being identified at species level (Additional 
file  1: Fig. S4). The relative abundance of S. aureus was 
correctly estimated, whereas the abundance of Salmo-
nella, Pseudomonas and Escherichia-Shigella were over-
estimated. Contrary, the relative abundance of Listeria, 
Lactobacillus, Enterococcus and Bacillus were under-
estimated. The average Pearson correlation coefficient 
(Pearson’s r) between the expected and the observed 
taxonomic profile of the mock was 0.30, whereas the 
Pearson’s r between the observed mock was 0.99. The 
dominant taxa identified as contaminants in the negative 
controls and the blank filter papers were Actinobacteria 
(47%), Bacilli (18%), and Gammaproteobacteria (15%) 
(Additional file 2: Table S2).

Microbiota associated with feed and water
At phylum level, the feed-associated microbiota was 
dominated by Firmicutes and Proteobacteria (Fig.  1A). 
The ACJ (89%) and AWA (94%) feeds had higher abun-
dance of Firmicutes compared with the remaining feeds 
(72–80%). The relative abundance of Proteobacteria 
was lower in ACJ (9%) and AWA (5.3%) feeds compared 
with the remaining diets (16–24%) (Fig.  1A). At genus 
or lowest taxonomic rank, the ACJ and AWA feeds were 
dominated by Pediococcus (62%) and Bacillaceae (68%), 
respectively (Fig. 1B). The microbiota composition in FM, 
ICJ, IWA and SBM feeds were dominated by Lactobacil-
lus (21–25%), Limosilactobacillus (22–25%), Photobacte-
rium (15–22%), HT002 (10–11%) and Ligilactobacillus 
(6.7–7.7%) (Fig. 1B).

The microbiota in the source water was dominated by 
phyla Proteobacteria (55%), Actinobacteriota (14%) and 

Fig. 1 Microbiota composition in the feed samples. Relative abundance of the top 10 most abundant taxa at phylum level (A) and top 15 most 
abundant taxa at genus or lowest taxonomic rank (B). The mean relative abundance of each taxon within the same diet is displayed on the right 
side. The samples are grouped by diets; FM—fishmeal-based; SBM—soybean meal-based; 4 experimental diets containing 300 g/kg SBM and 
100 g/kg of ICJ—inactivated Cyberlindnera jadinii; ACJ—utolyzed C. jadinii; IWA—inactivated Wickerhamomyces anomalus; AWA—autolyzed W. 
anomalus diets



Page 7 of 19Agboola et al. Animal Microbiome            (2023) 5:21  

SAR324 clade (Marine group B) (14%), whereas the taxo-
nomic compositions of the rearing tank water were dom-
inated by phyla Proteobacteria (55%) and Bacteroidota 
(31%) (Additional file 1: Fig. S5A). At the genus or lowest 
taxonomy level, SUP05 cluster (13%), Candidatus Acti-
nomarina (10%) and Clade II (9%) dominated the micro-
biota in the source water (Additional file 1: Fig. S5B). The 
microbiota in the rearing tank water were dominated by 
the taxa Sulfitobacter (11%), Colwellia (7%), Hellea (7%), 
Lacinutrix (5%) and Maribacter (5%) (Additional file  1: 
Fig. S5B). Bacillaceae (0.01–0.2%) and Pediococcus (0.02–
2%) were detected in both source water and tank water.

Digesta‑associated microbiota
Regardless of the diets, the taxonomic compositions 
of the digesta samples at phylum level were dominated 
by Firmicutes, Proteobacteria and Actinobacteriota 
(Fig.  2A). Fish fed ACJ (97%), and AWA (97%) had 
higher abundance of Firmicutes compared with those 

fed the other diets (76–81%) (Fig.  2A). Fish fed ACJ 
(2.5%) and AWA (2.2%) diets had lower composition of 
Proteobacteria compared with fish fed the other diets 
(12–19%) (Fig.  2A). Actinobacteriota composition in 
the digesta of fish fed ACJ (0.2%) and AWA (0.4%) diets 
was lower compared with fish fed the remaining diets 
(3.3–4.1%) (Fig. 2A).

The taxonomic composition of digesta samples at the 
genus or lowest taxonomy rank was influenced by the 
dietary group (Figs.  2B & 3). Fish fed ACJ (92%) diet 
were significantly dominated by Pediococcus compared 
with the other diets (Figs.  2B & 3). Similarly, fish fed 
AWA (88%) diet were significantly dominated by Bacil-
laceae compared with fish fed the other diets (Figs. 2B 
& 3). Lactobacillus (12%) and Limosilactobacillus (21%) 
were significantly higher in fish fed FM compared with 
fish fed the other diets (Figs.  2B & 3). Fish fed ICJ, 
IWA and SBM diets (5.4–6.3%) had significantly higher 
abundant of Enterococcus compared with the other 
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diets (Figs.  2B & 3). Streptococcus, Peptostreptococ-
cus, HT002, RsaHf231, Weissella and Photobacterium 
were significantly higher in fish fed FM, ICJ, IWA and 
SBM diets compared with fish fed ACJ and AWA diets 
(Figs. 2B & 3).

When comparing the ASVs of the gut, water and feed, 
the composition of the gut microbiota was similar to 
that of the feed, but different from the water microbiota 
(Fig. 4). The ASVs overlap between the gut and the feed 
was higher than between the gut and water.

Core microbiota
In total, 94 ASVs were identified as core microbiota (pre-
sent in 80% of the digesta samples) in fish fed the experi-
mental diets (Additional file  1: Fig. S6A-B; Table  S3). 
Fifteen ASVs classified as Peptostreptococcus, Limosi-
lactobacillus, Weissella, Ligilactobacillus, Streptococcus 
and Lachnospiraceae were identified to be present in all 
the dietary groups. Fish fed FM and SBM diets shared 
37 primary core ASVs, belonging to members of Pep-
tostreptococcus, Photobacterium, RsaHf231, and lactic 
acid bacteria (LAB) including Streptococcus, Lactobacil-
lus, Limosilactobacillus, Weissella, Ligilactobacillus and 
HT002.

Alpha‑diversity
Based on the four indices, the microbial diversity of fish 
fed ACJ and AWA diets was significantly lower com-
pared with fish fed the other diets (Fig.  5; Additional 
file  1: Table  S4). The observed ASVs and Faith’s PD 
showed that fish fed FM diet had significantly higher 
microbial diversity compared with fish fed ICJ, IWA and 
SBM diets (Fig.  5A, D). Contrarily, based on Shannon’s 
index, the microbial diversity of fish fed FM diet was sig-
nificantly lower compared with those fed ICJ, IWA and 
SBM diets (Fig.  5C). Excluding fish fed ACJ and AWA 
diets, the microbial diversity was similar among the other 
diets based on Pielou’s evenness (Fig. 5B). The microbial 
compositions of fish fed ICJ, IWA and SBM were similar 
based on the four alpha-diversity indices (Fig. 5).

Beta‑diversity
The PCoA plots built on the four beta-diversity indi-
ces showed that the microbiota of fish fed FM diet were 
clearly distinct from the other diets (Fig.  6). Based on 
the four beta-diversity indices, the PCoA plots showed 
that microbiota of fish fed ICJ, IWA and SBM diets were 
similar, and clearly clustered from those fed FM, ACJ and 
AWA diets (Fig. 6A-D). The PCoA plots based on Jaccard 
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distance, unweighted UniFrac distance and PhILR trans-
formed Euclidean distances showed separation of micro-
biota in fish fed ACJ diet compared with fish fed AWA 
diet (Fig.  6A, B, D). On the contrary, the microbiota of 
fish fed ACJ diet were similar compared with fish fed 
AWA diet based on Aitchison distance matrix (Fig. 6C). 
The PERMANOVA tests showed that beta-diversity 
were significantly influenced by the dietary groups, and 
the results were in line with the PCoA plots (Additional 
file 1: Table S5). Based on the four distance matrices, the 
microbiota of fish fed FM diet were significantly different 
from those fed the other diets. Also, the PERMANOVA 
tests showed similarity in the microbiota of fish fed ICJ, 
IWA and SBM diets, which were different from those fed 
ACJ and AWA diets. The statistical tests showed that the 
microbiota of fish fed ACJ diet were significantly differ-
ent from fish fed AWA diet. The tests for homogeneity 
and multivariate dispersions are presented in Additional 
file 1: Fig. S7 and Table S6. The multivariate dispersions 
were significantly affected by the dietary groups based on 
the four distance matrices.

Metabolic capacity of gut microbiota
Fifty-eight percent (526) of the 906 ASVs identified 
in the current study could be mapped to at least one 
model from a published collection of GSMMs of gut 
microbiota. Thirty-seven percent (338), 19% (176) and 
1.3% (12) of the ASVs were matched to family, genus, 
and species, respectively (Additional file  1: Fig. S8A). 

The ASVs matched to family, genus, and species were 
mapped to an average of 16, 13 and 1 model(s), respec-
tively (Fig. S8B). The models mapped to ASVs contained 
4802 different reactions, half of which (55%) were pre-
sent in all samples. Most samples (90%) contained more 
than 90% of the reactions, but the abundances of many 
reactions differed significantly between samples and 
diets. Furthermore, the variability in the data could be 
explained in a few components using PCA of reaction 
abundances rather than ASV abundances (Additional 
file 1: Figs. S2 and S3).

By classifying the reactions into metabolic pathways, 
ten pathways were enriched in pairwise comparisons 
between the dietary groups (Fig. 7). The differences in 
mean abundance of enriched pathways for each pair 
of diets are presented in Additional file 1: Fig. S9. The 
gut microbiota of fish fed FM diet showed predicted 
enrichment of metabolic pathways related to mucin 
O-glycan degradation, valerate metabolism and O-Gly-
can degradation, as well as lower enrichment of purine 
and pyrimidine catabolism pathways compared with 
fish fed ICJ and SBM diets (Fig.  7 & Additional file  1: 
Fig. S9A, E). The gut microbiota of fish fed ACJ diets 
showed predicted enrichment of mucin O-glycan deg-
radation pathway compared with fish fed ICJ, IWA, 
AWA and SBM diets (Fig.  7 & Additional file  1: Fig.  
S9). The predicted enrichment of metabolic pathways 
was similar for fish fed FM and ACJ diets, except for 
glycerophospholipid pathway (enriched in fish fed FM) 
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and nucleotide interconversion (enriched in fish fed 
ACJ) (Fig. 7 and Additional file 1: Fig. S9B).

Discussion
Core microbiota
In line with previous studies [45–47], Limosilactobacil-
lus, Weissella, Ligilactobacillus and Streptococcus were 
annotated as core microbiota in the present study and are 
commonly identified in the intestine of Atlantic salmon 
reared in seawater [23, 37, 45]. These taxa belong to the 
group of lactic acid bacteria (LAB), which are known 
to promote beneficial health effects in fish [48–50]. It 
is important to note that prior to seawater transfer, fish 
were reared under the same environmental conditions 
and fed a fishmeal/fish oil-based commercial diet in 
freshwater. Therefore, the presence of LAB as the core 
microbiota after the feeding experiment could be attrib-
uted to the composition of the commercial diet (particu-
larly lipid content) and the environmental conditions 
(e.g., temperature, dissolved oxygen, pH etc.) used during 
the pre-experimental stage. Peptostreptococcus and Lach-
nospiraceae were also identified as core taxa in the pre-
sent study. These taxa have been found in the intestinal 
digesta of Atlantic salmon but are rarely identified as core 
microbiota [37, 45, 46]. Lachnospiraceae are associated 
with production of short chain fatty acids (butyrate) [51], 
and has been reported to play a role in preventing inflam-
matory diseases in fish [52]. It is noteworthy to state that, 
Mycoplasma which is commonly reported as core micro-
biota in the intestine of both wild and farmed Atlantic 
salmon [37, 47, 53–58], was not identified in the present 
study. It is unclear why Mycoplasma was not detected, 
but it might be linked to the differences in environmen-
tal factors during the early life stages of fish such as live 
food, feeds, water temperature and salinity or simply lack 
of exposure to Mycoplasma. These factors are reported to 
influence the establishment of core microbiota in fish [48, 
56–60]. Also, a recent study has demonstrated that the 
establishment of Mycoplasma increased with time in sea-
water [58], implying that the experimental duration may 
be too short for its establishment in the gut of fish used 
in the current experiment.

Soybean meal has a dominating effect on modulation 
of gut microbiota
In accordance with previous findings in fish [23–26, 61–
63], the present study observed differences between the 
gut microbiota of fish fed FM diet compared with those 
fed SBM diet. The microbial richness and diversity were 
higher in fish fed FM diet compared with fish fed SBM 
diet, which is in line with previous studies [23, 24]. Most 
of the microbial taxa found in Atlantic salmon gut such 
as Lactobacillus, Limosilactobacillus, Ligilactobacillus, 

HT002, and Vagococcus were more abundant in fish 
fed FM diet compared with fish fed SBM diet. The cur-
rent results showed that the microbiota of fish fed SBM 
were dominated by LAB such as Lactobacillus, Limosi-
lactobacillus, Ligilactobacillus, Weissella, Enterococcus 
and Streptococcus, which is in accordance with previ-
ous findings [23–25]. The high abundance of LAB in fish 
fed SBM-based diet has been attributed to the presence 
of soluble and insoluble oligosaccharides such as raffi-
nose and stachyose, which can be used as substrates for 
metabolism and growth by the microbiota [23]. Results 
from the present study published elsewhere [29] showed 
that fish fed SBM diet developed typical signs of SBMIE 
and as previously mentioned, LAB are generally consid-
ered as beneficial microbes promoting intestinal health 
and growth of fish. Although members of LAB, such as 
some species of Enterococcus and Streptococcus, are con-
sidered pathogenic, it seems counterintuitive that LAB 
enrichment could be observed in fish that developed 
SBMIE. This observation challenges the general under-
standing that microbiota play a role in the development 
of SBMIE in fish. The relationship between increased 
relative abundance of LAB and development of SBMIE 
has been documented in previous studies [23, 24, 26]. 
Reveco et  al. [24] speculated that the increased relative 
abundance of LAB could be related to their capability to 
produce antimicrobial peptides (such as bacteriocins) 
against the certain bacteria in fish presenting SBMIE. 
Also, during the development of SBMIE, it is possible 
that the commensal bacteria (LAB) have less competition 
and more opportunity to proliferate. It remains unclear 
whether the increase in relative abundance of LAB is a 
cause or a consequence of the inflammatory response in 
fish presenting SBMIE. Further investigation is needed 
to clarify the role of intestinal microbiota in the develop-
ment of SBMIE in Atlantic salmon fed plant-based diets.

The present study revealed that microbial richness and 
diversity were similar among fish fed ICJ, IWA and SBM 
diets. This implies that the inclusion of inactivated yeasts 
(CJ and WA) did not modulate the intestinal microbiota 
of fish fed SBM diet. This contradicts previous findings 
which showed that feeding diets containing Saccharo-
myces cerevisiae and WA yeasts modulated the intesti-
nal microbiota in rainbow trout [64, 65]. It is worthy of 
note that SBM was not used in the previous studies [64, 
65]. In line with our present results, dietary supplemen-
tation of mannan oligosaccharides (MOS) from yeasts 
did not modulate microbial diversity and richness of gilt-
head sea bream fed SBM-based diet [66]. These contra-
dicting results underscore the importance of ingredients 
used in diet formulation with respect to possible effects 
of yeast or its cell wall components on gut microbiota 
of fish [67]. The cell wall polysaccharides of yeasts such 
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as glucans and MOS can serve as substrates for micro-
bial growth [68–70], and as a consequence modulates 
the intestinal microbiota in fish fed yeast-based diets 
[64, 65]. However, our speculation is that 30% inclusion 
level of SBM possibly has a dominating effect in modu-
lating gut microbiota when compared with 10% inclusion 
level of inactivated yeasts in the current study. Study on 
the effects of inactivated yeasts (CJ and WA) in Atlantic 
salmon fed SBM-free diets is recommended in the future. 
Despite the similarity in microbial composition of fish 
fed ICJ, IWA and SBM diets, the results of the present 
study reported elsewhere [29] showed that inclusion of 
inactivated yeasts (CJ and WA) dampened the inflamma-
tory response in the distal intestine of fish fed SBM diet. 
Therefore, it can be hypothesized that the ameliorating 
effects of inactivated yeasts on SBMIE is related to their 
capability to stimulate immune responses rather than 
through modulation of intestinal microbiota in Atlantic 
salmon.

Autolyzed yeasts modulate gut microbiota of fish
The results of the present study revealed that the gut 
bacteria composition of fish fed ACJ and AWA diets 
were greatly affected by the diets when compared with 
the other groups. The ACJ and AWA diets promoted the 
dominance of genus Pediococcus and the family Bacil-
laceae, respectively. Such modulation consequently led to 
a decrease in richness and diversity of gut microbiota of 
fish fed ACJ and AWA diets compared with fish fed the 
remaining diets. A previous study reported that autol-
yzed S. cerevisiae reduced the microbial diversity of gilt-
head sea bream fed commercial-like diet [71].

The increased relative abundance of Pediococcus and 
Bacillaceae in Atlantic salmon fed the autolyzed yeasts 
may be explained by the autolytic conditions, feed-borne 
microbiota and/or feed composition. Based on BLAST 
analysis using the NCBI website, the Pediococcus ASV in 
our data set revealed sequence homologous to Pediococ-
cus acidilactici and P. claussenii, whereas the Bacillaceae 
ASVs matched a wide range of members in the Bacilli 
microbial clade, including Caldibacillus pasinlerensis, 
C. thermoamylovorans, Cerasibacillus terrae, C. quis-
quiliarum, Alkalihalobacillus gibsonii and A. lonarensis. 
Optimum growth temperature for the genus Pediococcus 
[72] and the family Bacillaceae [73] ranged between 30 
and 60 °C. Thus, it is plausible that the growth of spores 
of these microbial taxa were selectively promoted during 
the autolytic process (at 50  °C for 16 h). Although ther-
mal conditions during the spray-drying were expected 
to inactivate the microbes in the yeast, dead or bacte-
rial spores can still be profiled by the DNA sequencing 
methods. We could assert that the inclusion of autolyzed 
yeasts promotes the enrichment of a certain microbial 

taxon in the digesta of fish, but the effects seem to be 
yeast dependent. Therefore, the observed dominance of 
these microbial taxa in the gut of fish fed ACJ and AWA 
feeds probably reflects not only the  active microbes, 
but also dead microbes and spores transferred from the 
yeasts into the feeds. In future studies, analyzing the 
microbes in the yeast cream and the dried yeasts would 
further elucidate the extent to which the diet effects are 
attributable to the transfer of microbes from the yeasts 
to the diets. Techniques such as viability PCR and RNA 
sequencing [74], which are able to distinguish dead 
or active microbes, would provide useful information 
regarding the role of yeast- and feed-associated microbes 
in shaping the intestinal microbiota of fish fed yeast-
based diets. Changes in cell wall polysaccharide of autol-
yzed yeasts may also partly contributed to the observed 
dominance of Pediococcus and Bacillaceae in fish fed ACJ 
and AWA diets. Previous studies have reported that the 
solubility [75] and biophysical properties [18, 76] of cell 
wall polysaccharides of yeasts are modified by the auto-
lytic process. It is possible that the glucans and MOS in 
autolyzed yeasts are more available as substrates for the 
intestinal microbiota compared with intact yeasts. In the 
current study, it was impossible to distinguish whether 
the substrates for microbiota growth and metabolism 
were derived from SBM or from the yeast. Thus, the 
extent to which the modification of cell wall polysaccha-
rides of yeasts contributed to the intestinal microbiota 
of fish could not be ascertained. This hypothesis can be 
tested by supplementing autolyzed yeasts to SBM-free 
diets and sequencing the intestinal microbiota of fish fed 
these diets.

It remains unclear whether the high abundance of a 
single taxon in fish fed ACJ or AWA diet was beneficial 
or caused dysbiosis in the host. The species P. acidilactici 
and Bacillus subtilis are among the most widely studied 
probiotic bacteria and have been reported to promote 
growth performance, nutrient digestion, disease resist-
ance and intestinal health in farmed fish [20, 77–80]. 
Based on this, it was expected that the high relative 
abundance of Pediococcus and Bacillaceae in fish fed the 
autolyzed yeasts would enhance the performance and 
intestinal health compared with fish fed the other diets. 
This was not the case, based on the results of fish per-
formance and intestinal health presented in Agboola 
et  al. [29]. Fish performance was unaffected by the die-
tary treatments, and the inclusion of autolyzed yeasts in 
fish fed SBM did not alleviate SBMIE beyond the level 
observed for fish fed SBM with inactivated yeasts [29]. 
Therefore, it is possible that the physiological response 
of fish to high relative abundance of both Pediococcus 
and Bacillaceae is limited by low feed intake [29] and 
short experimental period used in the current study. 
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Long-term experiments with ad-libitum fish feeding of 
diets containing autolyzed yeasts is recommended in the 
future. Also, it could simply be that the microbiota are 
dead and without probiotic effects in fish. The lack of dif-
ference in physiology of fish fed inactivated and autolyzed 
yeasts also supports the hypothesis that the dominance of 
a single taxon in the gut of fish fed ACJ and AWA is due 
to transfer of bacteria spores from the feeds to the fish 
gut. Thus, the reproducibility of microbiota modulated in 
fish fed yeast-based diets in the present study should be 
investigated in future studies. It is important to note that 
no mortality or noticeable signs of disease were recorded, 
suggesting that the high abundance of a single taxon in 
fish fed ACJ and AWA diets in the present study did not 
lead to dysbiosis.

Gut microbiota is driven by feed microbiota and less by 
water microbiota
Feed and rearing water are two environmental factors 
shaping the intestinal microbiota of fish [81–90]. In 
agreement with previous studies in fish [81–86], there 
was high overlap between microbiota in the gut and 
the feeds. Still, it is unclear to what extent the carry-
over microbes from the feeds influenced the intestinal 
microbiota. It would be interesting in the future to stain 
for live/dead gut bacteria and then use fluorescence-
activated cell sorting followed by 16S rRNA sequenc-
ing to identify the dead spores from the live bacteria. In 
the current study, microbial overlap between the intes-
tine and the feeds was higher than the microbial overlap 
reported elsewhere [30, 86] in Atlantic salmon fed insect-
based diets. The discrepancy can be attributed to the feed 
processing technology used in these studies. Contrary to 
the present study, feeds used in the previous studies [30, 
86] were processed using extrusion technology. Extru-
sion is a hydrothermal process that is capable of inacti-
vating microbes, thus, it is likely that the viability of feed 
microbes in this study was higher than the previous stud-
ies [30, 86]. This may be responsible for the higher micro-
bial overlap between the feeds and the intestine in the 
current study compared with earlier studies. However, it 
is reported that the feed processing (pre-conditioning vs. 
non-preconditioning) slightly influenced the gut microbi-
ome of rainbow trout [91]. Further investigation on the 
impact of extrusion treatment on intestinal microbiota 
of fish fed yeast-based diets in Atlantic salmon may be 
needed in the future. In accordance with previous studies 
[25, 30], water had a lower impact in shaping the intesti-
nal microbiota of fish than the feeds. Microbial overlap 
between water and the intestine in the current study was 
higher than reported for Atlantic salmon reared in fresh-
water [25, 30, 86]. In seawater, Atlantic salmon main-
tain osmoregulation by ingesting water to compensate 

for water loss to the hyperosmotic environment [92]. 
Water drinking ability of salmon reared in seawater may 
facilitate uptake of microbes from the rearing water, and 
thus, may be responsible for the higher microbial overlap 
between water and the intestine compared with previous 
studies in freshwater phase [25, 30, 86].

Metabolic capacity of gut microbiota
The gut microbiota plays a critical role in host physiol-
ogy by supporting growth performance, nutrient diges-
tion, metabolism and participating in immune system 
maturation and pathogen defense [93, 94]. In the current 
study, a metagenome prediction tool was used to investi-
gate the metabolic capacity of the gut microbiota of fish 
fed the experimental diets. The results revealed that the 
gut microbiota of fish fed ACJ diet were enriched in path-
ways related to mucin O-glycan degradation compared 
with fish fed the other diets. The gut microbiota of fish 
fed ACJ was dominated by Pediococcus, which has capa-
bility to adhere to intestinal mucus [95] and intestinal 
epithelial cells [96]. The breakdown of mucin glycans by 
the gut microbiota generates a pool of microbial prod-
ucts that can be beneficial for host mucus production 
and for immune and metabolic responses [21, 22]. This 
plays an important function in mucosal health, which is 
considered the first line of defense protecting the epi-
thelial layer from pathogen invasion and other luminal 
compounds [21]. Our results further showed that path-
ways related to valerate metabolism were enriched in fish 
fed FM diet compared with fish fed ICJ, IWA and SBM 
diets. Valerate is a scarcely studied short chain fatty acid 
that can be produced as an end product of microbial fer-
mentation [97]. The production of short chain fatty acids 
can act as link between the microbiota and the immune 
system by modulating the different aspects of intestinal 
epithelial cell [97, 98]. It has been reported that valerate 
production can help to inhibit the growth of Clostridi-
oides difficile, both in vitro and in vivo [99], a bacterium 
that has been implicated in the development of inflam-
matory bowel disease in humans [100]. Although the role 
of valerate on fish physiology is not reported in literature, 
it is possible that increased valerate metabolism may be 
responsible for the normal intestinal health observed in 
fish fed FM diet in the current study [29].

Prediction tools are used to infer metabolic functions 
of gut microbiota produced through amplicon sequenc-
ing [101–103], but their validity is often questionable 
[103]. The GSMMs used in the current study were based 
on human gut microbiota, and the predicted metabolic 
capacities may not exactly mimic that of fish gut micro-
biota. Additionally, only about half of the identified ASVs 
were matched to a known GSMM, thus limiting the abil-
ity of the analysis to represent the whole gut microbiota 
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of fish used in the present study. Based on these short-
comings, the results of the predicted metabolic capacity 
of fish gut microbiota reported in this study should be 
interpreted with caution.

Conclusions
The present study showed that fifteen core microbial 
groups were detected in all dietary groups. The results 
showed that the richness and diversity of gut micro-
biota was lower in fish fed SBM compared with fish fed 
FM diet. The microbial composition and richness were 
similar among fish fed ICJ, IWA and SBM diets. Inclu-
sion of autolyzed yeasts (ACJ and AWA) lowered the 
richness and diversity of gut microbiota in fish. Fish fed 
ACJ diet increased relative abundance of Pediococcus, 
and mucin O-glycan degradation pathway while fish fed 
AWA diet increased relative abundance of Bacillaceae 
compared with other diets. The results also suggest that 
the ameliorating effects of yeasts on SBMIE is related to 
their capability to stimulate immune cells rather than 
through modulation of intestinal microbiota in Atlantic 
salmon. Future research should focus on increasing our 
understanding of functional role of microbiota enhanced 
through inclusion of yeasts in fish diets.
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