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Abstract
Background  Mammalian lungs comprise a complex microbial ecosystem that interacts with host physiology. 
Previous research demonstrates that the environment significantly contributes to bacterial community structure in 
the upper and lower respiratory tract. However, the influence of host genetics on the makeup of lung microbiota 
remains ambiguous, largely due to technical difficulties related to sampling, as well as challenges inherent to 
investigating low biomass communities. Thus, innovative approaches are warranted to clarify host-microbe 
interactions in the mammalian lung.

Results  Here, we aimed to characterize host genomic regions associated with lung bacterial traits in an advanced 
intercross mouse line (AIL). By performing quantitative microbial profiling (QMP) using the highly precise method of 
droplet digital PCR (ddPCR), we refined 16S rRNA gene amplicon-based traits to identify and map candidate lung-
resident taxa using a QTL mapping approach. In addition, the two abundant core taxa Lactobacillus and Pelomonas 
were chosen for independent microbial phenotyping using genus-specific primers. In total, this revealed seven 
significant loci involving eight bacterial traits. The narrow confidence intervals afforded by the AIL population allowed 
us to identify several promising candidate genes related to immune and inflammatory responses, cell apoptosis, DNA 
repair, and lung functioning and disease susceptibility. Interestingly, one genomic region associated with Lactobacillus 
abundance contains the well-known anti-inflammatory cytokine Il10, which we confirmed through the analysis of Il10 
knockout mice.

Conclusions  Our study provides the first evidence for a role of host genetic variation contributing to variation in the 
lung microbiota. This was in large part made possible through the careful curation of 16S rRNA gene amplicon data 
and the incorporation of a QMP-based methods. This approach to evaluating the low biomass lung environment 
opens new avenues for advancing lung microbiome research using animal models.
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Background
Healthy lungs house a diverse and complex microbial 
ecosystem that contributes to critical aspects of host 
biology. Previous surveys of lung microbiota reveal 
microbial alterations in the context of disease, including 
cystic fibrosis [1], asthma [2], chronic obstructive pulmo-
nary disease [3, 4], lung cancer [5, 6], as well as COVID-
19 [7–9]. Thus, revealing the fundamental forces that 
govern the assembly and stability of bacterial communi-
ties in the lung is of critical importance for understand-
ing its role in health and disease. Environmental factors, 
including smoking status [3, 10], infant feeding mode 
[11], early life stress [12], household [13, 14], and antibi-
otic use [15, 16] are identified as significant contributors 
to upper and lower respiratory tract bacterial community 
structure. However, there is a paucity of research explor-
ing the influence of host genetics on the makeup of lung 
microbiota.

The role of host genetics on bacterial community struc-
ture at other body sites has been demonstrated using 

twin designs [17], comparison of mouse inbred strains 
[18, 19], genome-wide association studies [20–24], and 
quantitative trait locus (QTL) analyses [25, 26]. These 
studies are largely limited to the gut, although research-
ers are beginning to successfully apply these methods to 
low-biomass communities. For example, we previously 
used a novel QTL mapping approach in a murine skin 
microbiota study whereby we extended bacterial trait 
mapping to both 16S rRNA gene copy (DNA) as well as 
16S rRNA gene transcripts (RNA) [27]. Microbial profil-
ing based on RNA as template preferentially reflects liv-
ing/active cells, and accordingly increased the number 
of significant associations detected between the host and 
resident skin microbes [27].

Microbiome research on the human lung environ-
ment still lags, largely due to technical sampling chal-
lenges unique to this site [28–32]. Bronchoalveolar lavage 
(BAL), the established best practice for sampling human 
lung microbiota, is invasive, costly, requires sedation, and 
poses unnecessary risks to healthy subjects [31]. These 

Graphical Abstract 

Keywords  Mouse, Lung microbiota, Host genetics, QTL mapping, Quantitative microbial profiling, Lactobacillus, 
Interleukin 10



Page 3 of 16Chung et al. Animal Microbiome            (2023) 5:31 

barriers impede sampling large numbers of individu-
als, which is required to detect biological signals with 
methods such as GWAS [31]. Non-invasive sampling 
strategies, such as sputum or tracheal aspirate collection, 
are more accessible, but complicated by poorly defined 
methods for sputa processing, ambiguous origins of col-
lected microbiota, and a substantial risk of contamina-
tion from the oropharynx [31, 33]. Moreover, the low 
biomass of bacterial samples collected from the lower 
airways poses further challenges for handling contami-
nation. The so-called “kitome” of nucleic acid extraction 
kits and reagents, as well as laboratory environments, 
are well-documented sources of contamination that can 
radically affect data interpretation, as contaminants tend 
to be preferentially amplified and sequenced over true 
microbial signal in low biomass samples [34–40]. Thus, 
novel approaches that can be readily translated to human 
research are needed to advance our understanding of 
dynamic host-microbe interactions in the mammalian 
lung.

In this study, we aimed to improve the experimental 
profiling of resident lung microbes for QTL mapping of 
the lung microbiota, using a mouse advanced intercross 
line (AIL) that was previously successful for genetic map-
ping in both the gut [41] and low biomass environment of 
the skin [27, 42]. For this, we employed a strategy to first 
screen for taxa that are likely to be true lung residents 
using 16S rRNA gene amplicon profiles at the transcript 
(RNA) level, followed by measurements of overall bacte-
rial load and selected individual taxa using the highly pre-
cise method of droplet digital PCR (ddPCR) (Graphical 
abstract). QTL linkage mapping of lung microbiota using 
ddPCR-based estimates revealed significant associations 
with host loci, whose confidence intervals contain genes 
related to immune and inflammatory responses, cell 
apoptosis, and DNA repair. Further, a significant asso-
ciation between Lactobacillus abundance and a region 
of the mouse genome containing Il10, a well-known 
anti-inflammatory cytokine, was confirmed through the 
analysis of Il10 knockout mice. These data suggest that 
incorporating quantitative profiling from ddPCR bacte-
rial load measurements for use in linkage mapping may 
improve study reliability, and thus open new avenues for 
advancing lung microbiome research.

Results
AIL mouse population and overall study design
We analyzed 242 lung tissue samples derived from the 
15th generation of a previously established AIL popula-
tion, as described by Belheouane et al. [27]. In brief, the 
AIL consisted of MRL/MpJ, NZM2410/J, BXD2/TyJ, and 
CAST/EiJ mice (Jackson Lab, Maine, USA). To create a 
heterogenous intercross line, mice were intercrossed in 
equal strain and sex distributions [27, 42].

To map genomic regions associated with bacterial 
traits in the murine lung, we carried out a nested strat-
egy to identify and map candidate resident taxa while 
minimizing the influence of potential contamination (see 
Methods). First, we screened for putative bacterial lung 
residents by analyzing 16S rRNA gene amplicon profiles 
at the transcript (RNA) level, thereby preferentially iden-
tifying live/active taxa. These data were further curated 
through the application of the “decontam” R package 
[34], which incorporates information from negative 
controls and absolute quantification of bacterial load to 
identify possible contaminants in metagenomic sequenc-
ing data (see Methods). For this purpose, we applied 
ddPCR to obtain precise total bacterial load measure-
ments. Next, a core measurable microbiota (CMM) was 
defined based on the processed sequences derived from 
RNA template for further analysis. In a second step, we 
measured the bacterial loads of individual candidate taxa 
using ddPCR. Finally, linkage mapping was performed 
on the following panel of traits: (1) CMM based on con-
ventional relative abundance estimates, derived from 
RNA template (herein: CMM-RA), (2) CMM based on 
relative abundance corrected by quantitative microbi-
ome profiling (QMP; i.e., ddPCR estimates of bacterial 
load), derived from RNA template (herein: CMM-QMP), 
(3) ddPCR estimates of candidate taxa derived from 
DNA template (herein: ddPCR-DNA), and (4) ddPCR 
estimates of candidate taxa derived from RNA template 
(herein: ddPCR-RNA).

16S rRNA gene sequencing and ddPCR to define bacterial 
traits
To identify resident candidate taxa from the lung, we first 
performed 16S rRNA gene amplicon sequencing on both 
DNA and RNA reverse transcribed into complementary 
DNA (cDNA) as template (see Methods). After sequence 
processing, we determined the DNA-based data to be of 
insufficient quality/quantity, similar to another report 
that attempted to sequence DNA from murine lung sam-
ples using a comparable PCR protocol ([43]; note other 
studies using a two-step PCR protocol/higher number 
cycles yielded different results, e.g. [44–47]). However, 
rather than adopting a two-step PCR protocol as in Bar-
fod et al. [43], which may be more prone to amplifying 
contaminants in low biomass samples [48], we instead 
narrowed the 16S sequencing data analysis to the tran-
script (RNA) level. This reflects metabolically active cells 
[49, 50], and may better reveal true resident lung bacteria 
interacting with the host, as demonstrated in our QTL 
mapping study exploring gene-microbe interactions in 
the skin of this same AIL [27]. To assess for potential con-
tamination, we employed the “frequency” method from 
the “decontam” R package (v.1.4.0) using a threshold of 
0.1 (see Methods). This analysis resulted in the removal 
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of potential contaminant amplicon sequence variants 
(ASVs), including the common contaminants Halomo-
nas and Shewanella. In total, we analyzed 8,414,939 
sequences, and after normalizing sequencing coverage 
to 4,000 sequences per sample, a total of 20,772 ASVs 
remained in the data set. We first analyzed murine lung 
bacterial community composition at the genus and ASV 
levels based on 16S rRNA gene profiles (Fig. 1, Additional 
file 1: Figure S1). The most abundant genera include Lac-
tobacillus, uncl. Lachnospiraceae, and Pelomonas, with a 
mean relative abundance of 9.85, 8.79, and 7.50%, respec-
tively (Additional file 2: Table S1). Lactobacillus and 
Pelomonas were additionally selected as bacterial can-
didate traits for targeted linkage mapping using ddPCR 
(see below).

Next, we defined a CMM [25, 26] (see Methods) con-
sisting of 58 taxa ranging from the genus- to phylum-
level, as well as 13 ASVs. The number of CMM traits 
represents a small fraction of the total number of lung 
microbiota (e.g., 1.74% of genera and 0.06% of ASVs), 
but their abundances represent 55.16% and 22.38% of the 
respective taxa at these levels.

Because 16S rRNA gene amplicon profiling is prone 
to biases and errors related to relative abundance com-
positional analysis [51], we performed QMP using 
ddPCR-based bacterial load estimates at the RNA level to 
account for these concerns. 16S rRNA sequence-derived 
relative abundances of the CMM traits were then subse-
quently transformed into corrected, absolute quantitative 
abundances [51] (see Methods), i.e., CMM-QMP traits. 
Thereafter, the quantitative profiles of the 58 taxa and 13 
ASVs were included as an independent set of bacterial 
traits.

Finally, as indicated above, we selected two candidate 
bacterial traits, Lactobacillus and Pelomonas, for further 
independent analysis, as they were the two most abun-
dant classifiable genera and are frequently identified as 

lung residents [43, 52, 53]. Droplet digital PCR is ideal 
for quantifying low biomass samples, as the process of 
fractionating a sample into thousands of individual drop-
lets, in which independent PCR reactions occur, allows 
for the amplification of even very low levels of target 
strains [4, 54–56]. This was demonstrated by e.g., Gob-
ert et al., who effectively measured low levels of Lac-
tobacillus in fecal samples using ddPCR [54]. We thus 
generated load estimates for Lactobacillus and Pelomo-
nas using genus-specific primers adapted for ddPCR 
(see Methods). This was performed at both the DNA and 
RNA level, as (i) ddPCR is sensitive enough to allow for 
absolute quantification and (ii) taxon-specific primers 
are expected to be less prone to contaminating taxa than 
universal PCR primers. Importantly, these specific esti-
mates are significantly correlated to those based on 16S 
rRNA gene sequencing for both Lactobacillus (ddPCR-
RNA vs. CMM-RA: Spearman’s r = 0.5848, p < 2.2 × 10− 16; 
ddPCR-RNA vs. CMM-QMP: r = 0.7131, p < 2.2 × 10− 16) 
and Pelomonas (ddPCR-RNA vs. CMM-RA: r = 0.2519, 
p = 7.411 × 10− 05; ddPCR-RNA vs. CMM-QMP: r = 0.2916, 
p = 3.796 × 10− 06), whereby the correlation is stronger for 
the CMM-QMP traits.

Summary statistics and evaluation of sources of variation 
for lung bacterial traits
Prior to genetic mapping, it is important to determine 
whether (i) a given phenotype displays sufficient varia-
tion between individuals, and (ii) any residual variation 
remains after accounting for potential covariates such 
as cage, sex, or age. Summary statistics for each of the 
four categories of bacterial traits are provided in Addi-
tional file 2: Tables S1-3. This reveals considerable inter-
individual variation among traits. In particular, traits 
with large mean abundances, such as Lactobacillus and 
Pelomonas, display a large range, from 0 to 88.15% and 

Fig. 1  Lung bacterial community composition of AIL mice. Samples are ordered according to bacterial load in both panels, with the taxonomy displayed 
for the ten most abundant genera, determined separately, for (A) QMP and (B) relative abundance data. The lowest 10% of the samples based on bacterial 
load is shown in the zoomed window of panel A, for which the three negative extraction controls (NEC) are the lowest
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0-82.85% across the dataset for the CMM-RA measure-
ments (Additional file 2: Tables S1-3).

Next, we evaluated the influence of host and environ-
mental factors on bacterial trait variation in each of the 
four categories by constructing a mixed effects model 
that includes sex and age as fixed explanatory variables, 
cage as a random effect, and the bacterial trait values as 
responses (see Methods; Additional file 2: Table S4-6). 
These variables are associated with variation in trait val-
ues to varying degrees. For example, cage explains 0% of 
the total variance for Lactobacillus, but explains 28.83% 
of the total variance for Pelomonas among CMM-RA 
traits. However, importantly, the remaining residual 
variation in all four categories of traits accounts for the 
greatest proportion of total variance after accounting for 
sex, age, and cage effects. This suggests that other vari-
ables differing between individual mouse hosts, such as 
genotype, may contribute to variation in bacterial trait 
abundances.

QTL mapping of lung microbiota traits
To test for associations between resident lung bacteria 
and the host genome, we performed QTL mapping for 
the CMM-RA and CMM-QMP traits, as well as for the 
ddPCR-DNA and -RNA for Lactobacillus and Pelomo-
nas. In total, this yielded seven significant (p ≤ 0.05) and 
six suggestive (p ≤ 0.1) host loci involving eight bacterial 
traits (CMM-RA: one significant, five suggestive; CMM-
QMP: four significant, one suggestive; ddPCR-DNA/
RNA: two significant), with narrow confidence intervals 
ranging from 0.08 to 3.59 Mb, with an average of 1.80 Mb 
(Table 1, Additional file 3: Table S7). The number of 
protein-coding genes within these confidence inter-
vals ranged from one to 36. For example, two significant 
associations were detected among the CMM-QMP traits 
at the genus-level, including Pelomonas and Streptococ-
cus at chromosomes 11 and 16, for which the confidence 
intervals contained one and eight genes, respectively. For 
ddPCR-DNA and -RNA, Lactobacillus and Pelomonas 
were each significantly (p < 0.05) associated with a single 
genomic locus (Fig. 2; Table 1).

Overall, the phenotyping performed for the two abun-
dant core taxa Lactobacillus and Pelomonas was based 
on four different methods, which differ according to (i) 
primers (universal vs. taxon-specific), (ii) relative abun-
dance vs. quantitative estimates, and (iii) DNA vs. RNA. 
To compare these methods, we generated four respective 
QTL profile plots for each of the three significant associa-
tions involving these two taxa (Fig. 3). For the Lactobacil-
lus association on chromosome 1, only the ddPCR-DNA 
measurements revealed a significant association, which 
suggests that this region of the genome associates only to 
their cell number rather than their activity. In contrast, 
the Pelomonas QTL on chromosome 4 involves only the 
ddPCR-RNA estimates. Lastly, the Pelomonas QTL on 
chromosome 11 involves only the CMM-QMP estimates. 
A similar peak structure is apparent for the CMM-RA 
estimate, but does not reach the significant or sugges-
tive threshold. Thus, with regard to the three categories 
mentioned above, the involvement of quantitative- over 
relative abundance information appears to be most 
important for the detection of gene-microbe interactions, 
while differences between primers and/or cell number vs. 
activity may lead to discrepancies between phenotyping 
methods.

Analysis of candidate genomic regions
The narrow confidence intervals afforded by the AIL pop-
ulation allowed us to identify several promising candidate 
genes. In Table 2, we report a list of candidate genes from 
significant QTLs and their functions, summarized from 
experimental evidence. Most genes within the candidate 
regions are related to immune response, inflammatory 
response, cell apoptosis, and/or DNA repair. A number 
of genes are notable due to their role in lung functioning 
and disease susceptibility. For the QTL on chromosome 
1 associated with variation in Lactobacillus ddPCR-
DNA, the Mk2 (mitogen-activated protein kinase-
activated protein kinase 2) and the Il10 (Interleukin 10) 
genes are the two closest genes in proximity to peak SNP 
UNC1677482. In humans, MK2 is a downstream prod-
uct of the p38MAPK pathway acting as a pro-inflammatory 

Table 1  QTL mapping statistics for CMM-RA, CMM-QMP, and ddPCR-DNA/RNA with significant associations
Type Taxon Trait Chr Peak SNP LOD 

score
Confidence 
interval

Size 
(Mb)

Phenotypic 
variance (%) 
assoc. with 
peak SNP

CMM-RA Order Enterobacteriales 1 UNC1088683 5.49 88.61–90.40 1.79 9.92

Family Enterobacteriaceae 1 UNC1088683 5.49 88.61–90.40 1.79 9.92

CMM-QMP Class Deltaproteobacteria 1 UNC1143014 6.03 93.30–95.02 1.72 11.01

Genus Pelomonas 11 UNC20541010 4.42 121.68–121.76 0.08 8.19

Streptococcus 16 JAX00427186 4.85 86.88–88.15 1.27 8.96

ASV ASV8_Propionibacterium 14 UNC24933570 6.36 122.04–125.01 2.97 11.58

ddPCR-DNA Lactobacillus 1 UNC1677482 6.38 131.79–133.44 1.65 11.43

ddPCR-RNA Pelomonas 4 UNC6891976 5.74 21.98–25.57 3.59 10.35
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kinase, and induces various signals such as cytokines in 
response to lipopolysaccharide (LPS)- and virus-induced 
infections [58–61]. MK2 is involved in transcriptional 
and post-transcriptional regulation of cytokine expres-
sion and was previously shown to affect the stability of 
Il10 transcript [59]. IL-10, a well-known anti-inflamma-
tory cytokine, is e.g., also involved in mitigating disease 
severity in Mycobacterium tuberculosis infection [62]. For 
the Pelomonas (ddPCR-RNA) QTL on chromosome 4, 
the peak SNP lies within an intergenic region. However, 
several genes are found within the confidence interval, 
including Pou3f2 and Mms22l. POU family transcription 
factors were previously shown to be highly expressed in 
small-cell lung carcinoma (SCLC) cell lines and to con-
tribute to neuroendorcrine differentiation in non-small 
cell lung carcinoma (NSCLC) cell lines[63]. MMS22L was 
shown to accelerate cancer cell growth in lung cancer 
cell lines [64]. In contrast to the other candidate genes, 

Klhl32 is poorly characterized. However, recent work by 
de Vries et al. [65] identified KLHL32 as a protein-coding 
gene that strongly associates with DNA methylation lev-
els of a specific CpG-site (a cytosine base located adjacent 
to a guanine base) in patients with chronic obstructive 
pulmonary disease (COPD).

Evaluation of Lactobacillus in a Il10 knockout model
Given the promising association detected between Lac-
tobacillus load (DNA) and a locus containing the well-
known anti-inflammatory cytokine IL-10, we aimed 
to confirm this potential gene-microbe association in 
an Il10 knockout model using the same phenotyping 
method as for our mapping population. We accordingly 
performed ddPCR to quantify the Lactobacillus load at 
the DNA level using genus-specific primers in Il10+/+, 
Il10+/− and Il10−/− mice. Interestingly, we observe signifi-
cant differences in Lactobacillus according to genotype, 

Fig. 2  Manhattan plots from linkage mapping of bacterial traits. From inner to outer circles: Enterobacteriales CMM-RA, Enterobacteriaceae CMM-RA, 
Deltaproteobacteria CMM-QMP, Pelomonas CMM-QMP, Streptococcus CMM-QMP, ASV8_Propionibacterium CMM-QMP, Pelomonas ddPCR-RNA, and Lacto-
bacillus ddPCR-DNA. CMM-RA traits are shown in yellow, CMM-QMP in blue, and ddPCR-DNA/RNA in green. Peak SNPs are highlighted with red dots. LOD 
score on the y-axis indicates the -log p value of the association between a locus and a phenotypic trait
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with Il10+/+ mice displaying higher abundances than 
Il10+/− and Il10−/− mice (Fig. 4). We confirmed that the 
loads were associated only with genotype and not with 
any other variables including sex, cage, age, and cross 
(Kruskal Wallis; p > 0.05).

Discussion
In this study, we applied a rigorous combination of 
experimental- and data curation procedures that enabled 
us to carry out the first systematic assessment of host 
genetic effects on the mammalian lung microbiota. From 
the panel of traits defined for mapping, we identified 
seven significant and six suggestive host gene-microbial 
associations. Importantly, we found that incorporating 
quantitative bacterial load estimates in defining micro-
bial phenotypes to be more effective in identifying gene-
microbe associations than 16S rRNA gene amplicon 
profiles alone. While we identified only two significant 
associations among CMM-RA traits, five further signifi-
cant associations were revealed after incorporating bac-
terial load information (i.e., CMM-QMP and ddPCR). 
Previous studies of the lung microbiota have identified 
two of the bacterial taxa involved, Lactobacillus [32, 53, 

109] and Pelomonas [43], and these may represent key 
inhabitants of this host habitat. Moreover, we confirmed 
an association between Lactobacillus and a genomic 
region containing the Il10 gene in an independent Il10 
knockout mouse model. This confirmation is of particu-
lar significance given the expected impact of environ-
mental differences on the lung microbiota, as the Il10 
mice were housed and analyzed in a completely separate 
facility with differences in food, bedding, caretakers, etc.

Lactobacillus are known to inhabit the mammalian 
lung and are generally regarded as probiotic bacteria 
[52]. Additionally, previous research showed Lactobacil-
lus to modulate host immune responses and to reduce 
injury during lung infection [110–112]. Our targeted 
mapping approach revealed Lactobacillus load to be 
associated with a region containing the important can-
didate genes Il10 and Mk2. The functional relationship 
between Lactobacillus and these genes remains unclear, 
although a number of studies suggest a clinically rele-
vant link. A previous study administered the Lactobacil-
lus casei strain Shirota (LcS) to 2-week-old mice, which 
were then challenged with ovalbumin to induce allergic 
symptoms in the lungs [113]. This revealed modified 

Fig. 3  Overview and comparison of the Manhattan plots of Lactobacillus and Pelomonas traits from CMM-RA, CMM-QMP, and ddPCR-DNA and ddPCR-
RNA, with each column dedicated to the chromosome where the QTL was detected; Lactobacillus ddPCR-DNA at chromosome 1, Pelomonas ddPCR-RNA 
at chromosome 4, and Pelomonas CMM-QMP at chromosome 11, from left to right. Solid black lines indicate significant thresholds and dashed lines 
indicate suggestive thresholds of each trait. Red vertical lines indicate confidence intervals of the QTL.
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Table 2  List of candidate genes within confidence intervals and their functions
Trait Gene Functions (& references)

RA Enterobacteriaceae / 
Enterobacteriales

Chrnd, Chrng Nicotine dependence, smoking behaviors, lung cancer, COPD [66]; 
lung hypoplasia [67]

Ecel1 Restrictive lung disease (affected by respiratory muscles) [68]

Dis3l2 Lung function [69]

Kcnj13 Development & physiology of the respiratory system [70]; tracheal 
tubulogenesis [71]

QMP Deltaprotebacteria Per2 NSCLC [72, 73]; lung tumorigenesis [74]

Twist2 Lung cancer [75]; lung adenocarcinoma [76]; Pneumonia [77]

Pelomonas Ptchd3 Asthma [78]

Streptococcus Grik1 Lung metastasis (of colorectal cancer in vivo) [79]; lung cancer [80]

Bach1 Lung cancer [81–83]; cystic fibrosis [84]

Map3k7cl NSCLC [85]; pulmonary cell development [86]

ASV8_Propionibacterium Nalcn Respiratory rhythm [87]; NSCLC [88]

Fgf14 Lung Adenocarcinomas [89, 90]; lung functioning & phenotype [91]

Ubac2 COPD [92]; cystic fibrosis [93]; asthma [94]

Zic2 Lung adenocarcinoma [95]; NSCLC [96]; SCLC [97, 98]

ddPCR-DNA Lactobacillus Mk2 Lung cancer [99]; inflammatory pulmonary diseases [100]

Il10 Tuberculosis [101]; asthma [102]; NSCLC [103, 104]

Il19 Antimicrobial defense in airway epithelial cells [105]

pIgR COPD-like phenotype airway inflammation [106]

ddPCR-RNA Pelomonas Pou3f2 NSCLC [63]

Mms22l Lung carcinogenesis [64]

Klhl32 COPD [65]

Fut9 Bronchopulmonary dysplasia [107]
Key: COPD: chronic obstructive pulmonary disorder, NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer

Fig. 4  Lactobacillus load according to Il10 genotype. Bacterial loads determined by ddPCR (DNA) were log10-transformed and compared using Kruskal-
Wallis tests with Wilcoxon signed-rank post-hoc tests. P values were corrected for multiple testing according to Benjamini and Hochberg [108]. Error bars 
depict standard error. p < 0.01 **, p < 0.05 *, not significant “ns”
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immune response, including increased IL-10 levels, in 
mice administered LcS compared to controls. Although 
it seems that the effect is dependent on species or strain 
[114, 115], research continues to demonstrate a benefi-
cial role of Lactobacillus in immunity. For example, nasal 
administration of L. casei aided lung recovery from S. 
pneumoniae infection [112], and oral administration of L. 
rhamnosus caused changes in cytokine levels that aided 
recovery from lung injury and inflammation induced by a 
synthetic analog of viral double stranded RNA, poly(I:C) 
[111]. Given this evidence, it is possible that Lactobacil-
lus and/or its metabolites modulate the phosphorylation 
of p38MAPK, perhaps through bacterial byproducts or 
components of the bacterial cell wall [116, 117], which 
affect downstream signals that support lung function and 
recovery. Alternatively, Mk2 gene expression and subse-
quent IL-10 production may affect the growth or modify 
the abundance of Lactobacillus in the lung.

Likewise, Pelomonas was previously identified as a 
member of the murine lung bacterial community [43]. 
In humans, recent studies identified Pelomonas in the 
oropharynx of patients infected with SARS-CoV-2 virus 
[118] and also in breast cancer patients [119], with asso-
ciations with multiple cytokines and immune genes. Yet, 
the role of Pelomonas in the mammalian lung remains 
largely unknown. A potential mechanism might be via 
γ -aminobutyric acid (GABA) found in the pulmonary 
neuroendocrine cells (PNEC) distributed along the alve-
olar airway epithelium [120]. GABA acts as a mediator 
in mucus production and airway smooth muscle toning 
and contraction [121–123]. Interestingly, Pelomonas was 
found to contribute to contraction frequency in hydra 
[124]. Although the potential interplay between Pelomo-
nas and GABA in the lungs awaits experimental investi-
gation, we speculate that this may contribute to crosstalk 
between the host and bacteria. Moreover, given its asso-
ciation with Pou3f2 and Mms22l, Pelomonas might play 
a role in susceptibility to lung cancer and other related 
lung diseases. Additionally, POU transcription factors are 
specifically expressed in small cell lung cancer (SCLC), 
contributing to accelerating cell growth, and POU3F2 
was revealed to maintain the proneuronal/neuroendo-
crine phenotype of SCLC [125]. MMS22L was found to 
be over-expressed in clinical and esophageal cancers, 
playing a role in growth and survival of cancer cells [64]. 
This gene might impact the efficacy of DNA-damaging 
agents, as the knockout of the gene enhances cancer cell 
apoptosis [64]. Based on these observations, both Pou3f2 
and Mms22l might serve as cancer therapy targets, which 
could be aided by the mechanistic understanding of a 
possible interaction with Pelomonas.

Other QTL intervals also include interesting genes 
associated with lung or respiratory tract develop-
ment, functioning, and/or diseases that are potentially 

supported by the host-microbe interactions. Entero-
bacteriaceae and Enterobacteriales were found to be 
associated with QTL on chromosome 1 with a narrow 
confidence interval of 1.79  Mb. Within this interval, 
Chrnd and Chrng were previously shown to contribute 
to nicotine dependence [66], and Kcnj13 was shown to 
take part in smooth muscle morphogenesis and trachea 
development in the mouse respiratory tract [71]. Yin et 
al. [71] found that mice deficient in Kcnj13 developed 
shorter trachea due to loss of function of the potassium 
channel KCNJ13, which is critical during trachea tubu-
logenesis. Another candidate region on chromosome 16 
is associated with variation in Deltaproteobacteria abun-
dance. Within this interval, the core circadian clock gene 
Per2 was found near the peak SNP. Interestingly, mem-
bers of the Per subfamily act as tumor suppressor genes 
in mice, and the downregulation and loss of PER2 is asso-
ciated with tumor proliferation and metastasis, including 
NSCLC [72–74]. In contrast, increased PER2 expression 
inhibits cell growth and NSCLC growth [72, 73].

The success of our mapping study relied on our 
approach to mitigate contamination and the employ-
ment of quantitative microbial profiling. Studies com-
paring ddPCR and qPCR find that while qPCR has a 
lower detection limit, it yields a worse signal-to-noise 
ratio when tested with negative controls [56], and yields 
inconsistent results when tested against intentionally 
contaminated samples diluted to replicate low-bio-
mass conditions [126]. Further, Taylor et al. [127] note 
that ddPCR is also particularly advantageous for stud-
ies requiring long sample processing times, e.g. where a 
study cohort might be constructed slowly over time, as 
the method is robust to batch effects.

In our study, we find that incorporating ddPCR-based 
quantitative profiling improved the detection of gene-
microbe interactions. In particular, it is known that 
QTL mapping significance thresholds are influenced by 
the underlying phenotype distribution [128]. Our sig-
nificance thresholds were assigned based on random 
and repetitive shuffling of microbial phenotype values 
across genotypes. The probability of a given genotype/
sample to be randomly assigned its original phenotype 
value is higher when interindividual variation is low, ulti-
mately leading to higher significance thresholds. Notably, 
our QTL analysis using CMM-QMP phenotypes were 
assigned lower QTL significance thresholds compared to 
the QTL analysis using CMM-RA phenotypes (see e.g., 
Pelomonas CMM-RA vs. CMM-QMP QTL on chromo-
some 11, Fig.  3), as variation within the CMM-QMP is 
greater than that within the CMM-RA (Additional file 2: 
Tables S1-2). Thus, it is possible that the increase in inter-
individual variability among CMM-QMP traits, made 
possible through ddPCR measurements, better reflects 
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the underlying biological distribution of the trait, which 
also contributes to lower significance thresholds.

The effectiveness of our mapping approach is congru-
ent with previous employing absolute abundance pro-
filing to characterize resident microbial communities 
[129–134]. Vandeputte et al. [51] found microbial load to 
be a key feature of Crohn’s increase disease, with disease 
being characterized by a reduced bacterial load rather 
than differences in abundance among disease-associated 
taxa per se. Similarly, Sibila et al. [135] identified an asso-
ciation between bacterial load and airway inflammation 
in patients with bronchiectasis. A subsequent clinical 
trial conducted using the same patient cohort revealed 
that those with a high bacterial load showed significant 
improvement after receiving antibiotic therapy in com-
parison to those with a low bacterial load [135].

Conclusions
In summary, by combining the unique resource of a high-
resolution mouse genetic mapping population together 
with experimental and computational advances in study-
ing low biomass microbial communities, we demon-
strate a novel role for host genetic variation in shaping 
lung microbiota composition. We find several promis-
ing associations for the commonly identified lung taxa 
Lactobacillus and Pelomonas. Given that mouse mod-
els of human lung diseases, including asthma, chronic 
obstructive pulmonary disease, and pulmonary fibrosis, 
have served as powerful tools for understanding patho-
physiology and identifying new drug targets [136], our 
results suggest that the functional relevance of these taxa 
that may be exploited for future preventative/therapeutic 
purposes. These approaches outlined here may find use-
ful application in future experimental models of host-
microbe interactions in the lung.

Methods
Animal husbandry
The analysis of G15 intercross mice was approved by the 
“Ministerium für Energiewende, Landwirtschaft, Umwelt 
und ländliche Räume des Landes Schleswig- Holstein” 
in Kiel, Germany (reference number: V 312– 72,241. 
122–5 (12 − 2/09)). The G15 AIL mouse population was 
generated by intercrossing four strains, MRL/MpJ, 
NZM2410/J, BXD2/TyJ, and CAST/EiJ, with equal sex 
and strain distributions for 15 generations as previ-
ously described [27, 42]. The analysis of Il10 KO and 
wildtype C57BL/6 mice was performed according to 
approved animal protocols and institutional guidelines 
of the Max Planck Institute for Evolutionary Biology in 
Plön. Mice were maintained and handled in accordance 
with FELASA guidelines and German animal welfare law 
(Tierschutzgesetz §  11, permit from Veterinäramt Kreis 
Plön: 1401–144/PLÖ–004697).

Il10 KO and wildtype C57BL/6 mice (Jackson Labo-
ratories, Maine, USA) were mated at age of 8–10 weeks 
to produce F1 mice, using both directions of the cross to 
reduce potential “grandmother,” or legacy effects [137, 
138]. Heterozygous F1 mice were mated within each cross 
at 10 weeks and included 11 pairs from each cross. F2 
mice were weaned at 3 weeks; males and females were 
housed in separate cages according to family, with mixed 
genotypes. Mice were maintained in individual ventilated 
cages (IVCs), type II long (Tecniplast®, Greenline) in a 
specific pathogen-free facility (MPI für Evolutionsbiolo-
gie, Plön, Germany) with a 12-h light/dark cycle. Decal-
cified water and food (1324, fortified, from Altromin) 
were provided ad libidum. An average of ten mice (range: 
9–15) were selected from each sex of each genotype from 
each cross for tissue extraction at 17 weeks of age.

Sampling and nucleic acid extraction
The entire lower respiratory tract was dissected and pre-
served in RNALater (Thermo Fisher Scientific) at 4  °C 
overnight. Samples were stored at -20 °C after removing 
RNALater. Approximately the bottom half of the left lobe 
was obtained for nucleic acid extraction, using tools ster-
ilized with 70% ethanol, RNase-Away (Thermo Fisher Sci-
entific), and sterilizing beads (Fine Science Tools) heated 
to at least 120  °C. Lung tissues were first homogenized 
using Lysing Matrix E (MP Biomedicals) and nucleic acid 
extraction was conducted using the AllPrep 96 DNA/
RNA kit (QIAGEN) with on-column DNase I treatment 
(QIAGEN), according to manufacturer’s protocol, with 
the exception of TCEP instead of β-mercaptoethanol for 
the lysis step. A total of 40µL of RNA was eluted by add-
ing 20µL of RNase-free water twice; 30µL of EB buffer 
was added twice for DNA elution. Concentrations were 
measured using NanoDrop 1000 (Thermo Fisher Sci-
entific), with RNA samples diluted to equal concentra-
tions (200ng/µL). Reverse transcription was performed 
according to the manufacturer’s instructions using High-
Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems) using 10µL of template RNA.

16S rRNA gene amplicon sequencing
The V1-V2 hypervariable region of the 16S rRNA gene 
was amplified using primers 27  F and 338R, barcoded 
with unique eight-based MIDs (multiplex identifiers), 
using a dual indexing approach on Illumina MiSeq plat-
form for both cDNA and DNA template [27]. We chose 
the V1-V2 region of the 16S rRNA gene for multiple rea-
sons. In particular, we made previous experience of this 
primer pair performing well in an earlier low biomass 
study of the same G15 mice [27], which also enables future 
cross-body site analyses. Three negative extraction con-
trols (NEC) from each extraction plate and one microbial 
community DNA standard (20ng/µL) (ZymoBIOMICS) 
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were included. Host reads were removed from DNA 
extracts using “Kneaddata” (v.0.6.1), which removes host 
reads based on the provided reference database, Mus 
musculus. However, the sequence qualities and read 
counts were not sufficient after this procedure, and we 
thus did not further proceed with these sequences gen-
erated from the extracted DNA (Additional file 4: Table 
S8). Sequences were processed using the “DADA2” pack-
age (v.1.14.1) [139] with the Ribosomal Database Project 
(RDP) training set 16 [140] for taxonomic classification, 
resulting in abundance tables of amplicon sequence 
variants (ASVs). Results were merged with metadata 
including sex, age, weight, and cage information, using 
“phyloseq” (v.1.30.0) [141] for further analysis in R 
(v.3.6.3).

ddPCR
A 20µL ddPCR master mix was prepared with QX200™ 
ddPCR™ EvaGreen® SuperMix (BioRad) following the 
manufacturer’s instructions (BioRad), with a final primer 
concentration of 120nM and with 10ng of nucleic acid 
template. PCR was performed on Bio-Rad C1000 Touch 
Thermal Cycler with the following conditions: 95  °C for 
5 min, 40 cycles at 95 °C for 15 s and 60 °C for 1 min, 4 °C 
for 5 min, 90 °C for 5 min, and incubation at 10 °C. Final 
products were transferred to QX200™ Droplet Reader 
and quantified as gene copies (per 20µL) using Bio-Rad 
QuantaSoft (v.1.7.4.0917). Lactobacillus and Pelomonas 
loads were quantified using genus specific primers on 242 
DNA and cDNA samples each (Table 3).

Contamination assessment and defining core measurable 
microbiota
To assess for potential contamination, total bacterial load 
estimates were measured by ddPCR, which together with 
negative extraction controls (n = 3, i.e., one per 96 well 
extraction plate) were used for the “frequency” method 
in the R package “decontam” (v.1.6.0) with a threshold of 
0.1. This method identifies contaminants using a de novo 
classification method based on identifying a negative 
correlation between concentration (bacterial load) and 
the frequency of the putative contaminants appearing 
in samples - the lower the bacterial load, the higher the 
proportion/frequency of contaminant taxa is expected 
[34, 38]. ASVs identified as likely contaminants, including 

those belonging to Halomonas and Shewanella, were 
removed from the dataset prior to further analysis. After 
the decontamination process, samples were rarefied to 
even sampling depth of 4,000 reads per sample. CMM 
thresholds are study-specific and reflect the design, 
body site, and the aims of the study [142]. Here, using 
the cDNA template samples (RNA-level), we defined the 
CMM of resident lung microbiota using a 25% prevalence 
threshold together with a minimum relative abundance 
threshold of 1%. We reasoned that a 25% prevalence 
threshold cut-off was appropriate, as taxa below 20% 
prevalence can be limited in their statistical testability 
[143, 144] and because prevalence thresholds above 30% 
may be unnecessarily stringent for statistical reliabil-
ity [144]. The final CMM among 242 samples included 
13 ASVs and 58 taxa from the genus- to phylum-level 
(CMM-RA).

Quantitative microbiome profiling
We used ddPCR-based total bacterial load (RNA level) 
estimates for quantitative microbiome profiling (QMP), 
whereby 16S rRNA gene relative abundances were cor-
rected using bacterial load measurements and trans-
formed to “absolute” or quantitative abundances. For 
this, we used R function rarefy_even_sampling_depth 
(https://github.com/raeslab/QMP) [51], which rarefies 
samples to even sampling depth, defined as the ratio 
between sequencing depth and bacterial load (here, 
based on ddPCR). Among the QMP dataset (CMM-
QMP), taxa and ASVs included in the CMM were further 
selected for mapping.

QTL mapping
Prior to mapping, summary statistics were performed on 
all traits including CMM-RA, CMM-QMP, and ddPCR-
DNA/RNA in R studio (v.1.2.1335) with R (v.3.6.3) (Addi-
tional file 2: Tables S1-3). In order to perform a log10 
transformation of relative abundance values, a value of 
0.5 was added to the absolute abundances of all CMMs 
prior to converting the absolute abundances into rela-
tive abundances. Then, linear mixed effects analysis 
was performed on these traits using “lme4” (v.1.1–10) 
[145]. Variance was estimated using “r.squaredGLMM” 
in “MuMIn” (v.1.43.6) [146] and “VarCorr” in “lme4” for 
fixed and random effects, respectively.

Linkage mapping was performed using “DOQTL” 
(1.6.0) [147] and “QTLRel” (0.2.14) [148] in R (v3.2.2), 
whereby we fit an additive model that regresses the 
log10-transformed traits on the four founder haplotype 
contributions. Genotype data were previously collected 
and described in Belheouane et al. [27]. Briefly, the data 
was obtained by extracting DNA from liver tissue, which 
was processed using the MegaMuga (Illumina) array 
to obtain host genotypes. A kinship matrix was defined 

Table 3  List of primers used for ddPCR.
Primer 5’ – 3’ Reference

Total bacteria 63 F GCAGGCCTAACACATGCAAGTC [56]

355R CTGCTGCCTCCCGTAGGAGT

Lactobacillus F-Lacto GAGGCAGCAGTAGGGAATCTTC [57]

R-Lacto GGCCAGTTACTACCTCTATCCTTCTTC

Pelomonas 357 F CGGGTTGTAAACCGCTTTTGT

550R CGGGGATTTCACCTCTGTCT

https://github.com/raeslab/QMP
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using “kinship.probs” in “DOQTL” to adjust for the kin-
ship between animals [27]. A 3D-array of founder hap-
lotype contributions (sample # x 4 founders x marker #) 
[27] and kinship matrix, along with sex and age as fixed 
variables and cage information as random variable, were 
included for linkage mapping.

Permutations were run in R (v.3.2.2) for each trait by 
shuffling the phenotypic data to define significance 
thresholds at both the 90th and 95th percentiles of LOD 
scores [27]. Permutations were run 10,000 times, a ten-
fold increase from minimum recommendations by Gatti 
et al. [147]. QTL confidence intervals were defined at 1.5 
LOD score drops on either side of the QTL peak. After 
QTL mapping, genes located within confidence intervals 
were examined and then plotted using “get.mgi.features” 
and “gene.plot” in “DOQTL” to identify potential candi-
date genes.
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