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Abstract
Background Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis, though 
its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has not been elucidated. Herein, 
we enrolled 40 dairy (Holstein) cows at the end of the lactation phase for dry-cow therapy: 20 were treated with IMM 
ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth subnitrate) and 20 (controls) received 
only bismuth subnitrate. Fecal grab samples were collected before and after treatment (weeks 1, 2, 3, 5, 7, and 9) for 
bacterial quantification and metagenomic next-generation sequencing.

Results Overall, 90% and 24% of the 278 samples had Gram-negative bacteria with resistance to ampicillin and 
ceftiofur, respectively. Most of the cows treated with ceftiofur did not have an increase in the number of resistant 
bacteria; however, a subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment. 
At week 5, the antibiotic-treated cows had lower microbiota abundance and richness, whereas a greater abundance 
of genes encoding extended-spectrum β-lactamases (ESBLs), CfxA, ACI-1, and CMY, was observed at weeks 1, 5 and 
9. Moreover, the contig and network analyses detected associations between β-lactam resistance genes and phages, 
mobile genetic elements, and specific genera. Commensal bacterial populations belonging to Bacteroidetes most 
commonly possessed ESBL genes followed by members of Enterobacteriaceae.

Conclusion This study highlights variable, persistent effects of IMM ceftiofur treatment on the gut microbiome 
and resistome in dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes 
encoding ESBL production that persisted for 9 weeks. Fecal shedding of ESBL-producing Enterobacteriaceae, which 
was classified as a serious public health threat, varied across animals. Together, these findings highlight the need for 
additional studies aimed at identifying factors associated with shedding levels and the dissemination and persistence 
of antibiotic resistance determinants on dairy farms across geographic locations.
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Background
Globally, multi-drug resistant (MDR) bacteria were esti-
mated to cause 4.95 (3.62–6.57) million deaths a year, 
with third-generation cephalosporin-resistant Esch-
erichia coli and Klebsiella pneumoniae among the lead-
ing causes of MDR deaths worldwide [1]. These resistant 
bacterial populations are also considered to be the most 
concerning and economically impactful antimicrobial-
resistant threats in the U.S. [2]. Enterobacteriaceae with 
resistance to third-generation cephalosporins carry 
genes encoding extended-spectrum β-lactamase (ESBL) 
production, which also confer resistance to penicillins 
and monobactams. Hence, use of third-generation ceph-
alosporins to treat humans and for livestock production 
may contribute to the emergence of ESBL-producing 
Enterobacteriaceae. In the U.S, less than 1% of all anti-
biotics used in livestock correspond to cephalosporins, 
with most use (80%) occurring in cattle [3]. At present, 
two cephalosporins are approved for use in dairy cattle 
and include cephapirin (a first generation cephalospo-
rin) and ceftiofur (a third-generation cephalosporin) [3, 
4]. Ceftiofur is approved for use only via the parenteral 
and intramammary route for therapeutic indications 
including mastitis, metritis, respiratory disease, and foot 
rot [4].

Mastitis, an infection of the mammary gland, is the dis-
ease with the highest incidence in dairy cattle [5]; hence, 
~ 90% of dairy farms use intramammary (IMM) β-lactam 
antibiotics during the dry-off period to treat and prevent 
mastitis [5–7]. More specifically, a study of 37 Wisconsin 
dairy farms reported ceftiofur to be the most common 
β-lactam antibiotic used intramammarily to treat clinical 
mastitis and for prophylactic dry-cow therapy [5]. Ceftio-
fur has bactericidal activity against both Gram-negative 
and Gram-positive bacterial populations, low toxicity 
potential, and efficient penetration of most body fluids. 
Consequently, β-lactams are also used to treat a variety 
of pathologies in humans such as septicemia, urinary 
tract infections, respiratory infections, meningitis, and 
peritonitis.

Cephalosporins like ceftiofur exhibit varied pharma-
cokinetics and pharmacodynamics based on the route of 
administration in dairy cattle. When administered par-
enterally, these drugs rapidly disseminate throughout the 
body, primarily getting eliminated through the kidneys 
(61–77%) within 24  h post-administration [8]. Active 
metabolites of ceftiofur have been detected in the biliary 
system (~ 30%), [8] ileum, and colon (20% of plasmatic 
concentration) [9]. Following parenteral application, the 
half-life of ceftiofur is usually a few hours, though it may 

vary depending on the animal’s health and specific drug 
formulation [9]. In contrast, when delivered intramam-
marily, cephalosporins have a longer half-life and are pre-
dominantly excreted through the urine [10] and udder 
[11, 12]. A prior study, however, detected cephapirin in 
the feces (2.12 ± 0.09  µg/kg) up to 6  h after treatment 
[10], which was also shown for ceftiofur. It was also esti-
mated that 13% of the administered dose of ceftiofur was 
detected in the feces 5–6 days after IMM treatment [13]. 
Therefore, understanding the effects of IMM cephalospo-
rin treatment on the fecal microbiota and resistome, or 
collection of antibiotic resistance genes (ARGs), requires 
investigation.

Using mathematical modeling, another study predicted 
that parenteral ceftiofur therapy would reduce the total 
concentration of E. coli in cattle, but would lead to an 
increase in the fraction of ESBL-resistant E. coli [14]. 
Despite this prediction, several prior studies have not 
observed a correlation between ceftiofur treatment and 
an increase in the emergence of ESBL-producing bacte-
rial populations [9, 15, 16]. Although one study of cows 
receiving systemic ceftiofur treatment in early lacta-
tion observed an increase in the abundance of resistant 
Enterobacteriaceae for 7–8 days, the increase was tem-
porary and was not observed 29–35 days after treatment 
[17]. Similarly, in feedlot cattle, the combined treat-
ment of chlortetracycline and ceftiofur was linked to an 
increase in the number of resistant E. coli and ESBL and 
tetracycline resistance genes [18], suggesting co-selection 
of these ARGs. To further clarify these relationships, we 
conducted a longitudinal study of dairy cattle to deter-
mine how IMM ceftiofur treatment impacts the gut 
microbiota and abundance of antibiotic resistant bacte-
rial populations through the dry period and early part of 
lactation.

Since ceftiofur has been detected in the gut when 
delivered intramammarily [13], we hypothesized that it 
will select for the growth of specific microbiota mem-
bers that carry clinically important ARGs. Leveraging 
metagenomic and bacterial culture techniques, we fur-
ther hypothesized that IMM ceftiofur treatment will 
lead to an increase in fecal shedding of ceftiofur-resistant 
bacteria and cause alterations in the gut microbiome and 
resistome that are maintained even after antibiotic ces-
sation. Findings from this study could inform decisions 
about the use of third-generation cephalosporins in live-
stock, particularly given their importance in human and 
animal health as well as the global priority to control the 
emergence of ESBL-producing Enterobacteriaceae on 
farms.
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Methods
Study design and sampling scheme
The aim of this study was to assess the effects of IMM 
ceftiofur hydrochloride (CHCL) treatment on the gut 
microbiome of dairy cows at dry-off, the last milking 
before the dry period (Fig. 1). The study was conducted 
in 2019 (June-November) at the Dairy Cattle Teach-
ing and Research Center at Michigan State University 
(MSU), which contained ~ 230 lactating Holstein cows. 
Forty cows were enrolled at dry-off, with an average of 
266 ± 43 days in milk (DIM). Cows were only enrolled 
if they met the following inclusion criteria: no antibi-
otic treatment during the last 90 days of lactation and 
a somatic cell count (SCC) of < 150,000 cells/mL using 
the most recent Dairy Herd Improvement Association 
(DHIA) test. The cows were randomly assigned to one of 
two treatment groups and were matched based on parity 

and monthly milk production. The antibiotic-treated 
group (n = 20) received 4 IMM infusions (1 per mam-
mary gland) that each contained 500 mg ceftiofur (Spec-
tramastDC®; Zoetis Animal Health) after the last milking 
plus an internal IMM teat sealant containing bismuth 
subnitrate (Orbeseal®; Zoetis Animal Health). The control 
group received only the internal IMM teat sealant with-
out the SpectramastDC®.

Fecal grab samples were collected from each animal’s 
rectum using clean obstetric sleeves on the last day of 
lactation, which corresponded to the day prior to IMM 
treatment (Day − 1). The matched cows were re-sampled 
simultaneously at weeks 1, 2, 3, 5, and 7 during the dry-off 
period and again as fresh cows at week 9 (Fig. 1). Samples 
were collected within 2 days of each other per week and 
thus, are reported by week in the analysis. This longitudi-
nal sampling scheme was chosen to determine whether 

Fig. 1 Study design showing the production stage and sampling time points for all 40 animals. Twenty dairy cattle received intramammary ceftiofur 
(IMM Antibiotic) and 20 matched dairy cattle receiving no IMM antibiotic treatment (Control). Cows were matched based on parity and monthly milk 
production at Day − 1, which corresponds to the last day of lactation and the day prior to IMM treatment. Matched cows were sampled simultaneously 
following treatment at weeks 1, 2, 3, 5, and 7 during the dry-off period and again as fresh cows at week 9. Cows remained healthy and were given the 
same diet. Figure created with BioRender
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any resistant bacterial populations and/or ARGs per-
sisted beyond the ~ 8-week dry-off period and intro the 
fresh period (week 9) in the treated versus control cows. 
This timeline also allowed for an assessment of potential 
impacts due to physiological and dietary changes that 
occur during the fresh period at week 9. Following collec-
tion, each sample was homogenized by hand massage in 
a whirl-pak bag and immediately aliquoted for bacterial 
culture and DNA extraction for metagenomic next-gen-
eration sequencing (mNGS). For the latter, 0.25 g of feces 
per sample was preserved at -80ºC in 750 µl of 190 Proof 
ethanol (95% ethanol) as suggested [19, 20].

Data about ambient temperature and relative humidity 
were obtained from the East Lansing MSU Horticultural 
Station through Enviroweather (https://enviroweather.
msu.edu/) (Additional file 1, Table S1). Diet ration 
reports and nutrient amounts given to the cows during 
the study (one report per lactation phase) were recorded 
by farm personnel using Spartan Dairy 3 software and 
were chosen based on recommendations provided by the 
National Research Council’s 2001 Nutrient Requirements 
of Dairy Cattle (NRC 01) [21] (Additional file 1, Table 
S2). Animals from both treatment groups were given the 
same diet at each sampling, which corresponded to their 
physiological and productive stage at the time. Moreover, 
the same farm personnel evaluated animal health sta-
tus over the course of the study and all cows remained 
healthy. Researchers were blinded to treatment status 
during sample collection and the subsequent laboratory 
analyses.

Sample size justification
The sample size was determined using the ‘pwr.t.test()’ 
function from the ‘pwr’ package (version 1.3-0) in R. This 
computation incorporated a power of 80% and a signifi-
cance level of 0.05, catering to a two-sided alternative 
hypothesis for a paired investigation. An assumed mod-
erate effect size, quantified using Cohen’s d, was set at 
0.46. Given these conditions, 40 cows, equally divided 
into a group of 20 for treatment and a group of 20 for 
controls, were deemed necessary to detect differences 
in the abundance of ARGs, particularly those encoding 
β-lactamases, and taxa between the two groups. This 
sample size also respects ethical principles by minimiz-
ing the use of animals while still ensuring reliable results. 
Furthermore, it is in accordance with logistical consider-
ations and resource availability, reinforcing its appropri-
ateness for the scope and objectives of the study.

Quantification of antibiotic-resistant bacteria
Total bacterial counts were quantified and presented 
as colony-forming units (CFUs) per gram (g) of feces. 
Moreover, the percentage of ceftiofur- and ampicillin-
resistance was quantified for Gram-positive bacteria 

on day − 1 and week 1 as well as Gram-negative bacte-
ria on day-1 through week 9. Fecal samples were diluted 
at a concentration of 10− 1 using 1 g of feces and 9 ml of 
1× PBS and plated in duplicate on selective media using 
a spiral autoplater (Neutec Group Inc.). The media for 
Gram-negative bacteria was MacConkey lactose agar 
(MAC; Criterion®), whereas Columbia Nalidixic Acid 
agar (CNA; BD Difco ®) with 5% sheep blood was used for 
Gram-positive bacteria. Amphotericin B (4  µg/ml) was 
also added to inhibit fungal growth along with varying 
concentrations of antibiotics. To recover resistant Gram-
negative and Gram-positive bacteria, a ceftiofur (Cef ) 
concentration of 8  µg/ml was used per the Clinical and 
Laboratory Standards Institute (CLSI) guidelines VTE01 
for animal isolates using values for Enterobacteriaceae 
(Gram-negative) and Staphylococcus spp. and Enterococ-
cus spp. (Gram-positive) [22]. These values were chosen 
because guidelines are not available for human isolates. 
Comparatively, 25  µg/ml of ampicillin (Amp) was used 
to recover resistant Gram-positive bacteria [23], while 
32  µg/ml of Amp was used for resistant Gram-negative 
bacteria based on the M100 CLSI guidelines for human 
isolates of Enterococcus spp. and Enterobacteriaceae, 
respectively.

The antibiotic concentration on MAC that inhibited 
susceptible (S) bacteria and enabled the growth of resis-
tant (R) strains was tested with the following control 
strains: E. coli ATCC 25,922 (AmpS, CefS), E. coli ATCC 
35,218 (AmpR, CefS), and three ESBL-producing E. coli 
strains (AmpR, CefR) obtained from clinical samples in 
a prior study [24]. CNA controls included ATCC 29,212 
(AmpS, CefR), ATCC 29,213 (AmpS, CefS), Listeria mono-
cytogenes ATCC 3382 (AmpS, CefR), L. monocytogenes 
ATCC 19,115 (AmpS, CefR), Streptococcus pneumoniae 
ATCC 49,619 (AmpS, CefS), Streptococcus equi subsp. 
zooepidemicus ATCC 700,400 (AmpS, CefS), and Strepto-
coccus agalactiae strain COH1 (AmpS, CefS). Inhibition 
of Gram-negative bacteria was tested with E. coli ATCC 
25,922 and the ESBL-producing E. coli strains.

To culture the bacteria using the spiral autoplater, dif-
ferent modes and volumes of the diluted sample were 
used. Specifically, 40  µl (C mode) was used for MAC, 
100  µl (C mode) for MAC with ampicillin, and 400  µl 
for MAC with ceftiofur. Additionally, for CNA, 40 µl (C 
mode) was used, while CNA with ampicillin and CNA 
with ceftiofur required 200  µl (linear mode) and 100  µl 
(C mode), respectively. The plates were incubated at 37oC 
for 24 h under aerobic conditions (MAC) or in the pres-
ence of 5% carbon dioxide (CNA) (Fig.  2). Media con-
trols were also plated to test each batch of MAC for the 
ability to inhibit Gram-positive bacteria using Staphy-
lococcus aureus ATCC 29,213 and Enterococcus faecalis 
ATCC 29,212. Lastly, Gram-negative ceftiofur-resistant 
colonies recovered from the plates were characterized 

https://enviroweather.msu.edu/
https://enviroweather.msu.edu/
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using oxidase tests (OxiStrips™, Hardy Diagnostics) and 
Chromocult® Coliform agar (Merck KGaA, Darmstadt, 
Germany) to test for β-glucuronidase and β-galactosidase 
activity.

Statistical analysis of bacterial counts
Data analysis and plot generation were performed using 
R v.4.2.2 and RStudio v.2023.03.0 + 386. To ensure a more 
suitable scale for analyzing bacterial counts, the CFU/g 
values were transformed to log10 values. This transforma-
tion involved adding 1 to the raw counts to account for 
instances of 0 counts, as the log10 of 1 is 0. The R base 
function log10() was then applied to obtain the log10-
transformed CFU/g values. The rstatix package v.0.7.2 
was used to generate summary statistics, including mea-
sures of central tendency, through the ‘get_summary_
stats()’ function.

The Shapiro-Wilk test was performed using the rstatix 
R function ‘shapiro_test()’ to determine whether the 
count data were normally distributed; a resultant p-value 
below 0.001 was indicative of a non-normal distribution. 
Accordingly, the non-parametric one-sided paired Wil-
coxon signed rank test was used with the ‘wilcox_test()’ 
function from the rstatix package to detect differences 
between the ceftiofur-treated and control animals at a 
single time point or between the same group at 2 time 
points. This test represents an appropriate alternative 
when the assumption of normality, which is inherent to 
parametric methods, is violated. To account for repeated 
measures in either the ceftiofur-treated or control ani-
mals over the 9-week sampling period (7 samples/cow), 
the unpaired Friedman’s rank-sum test was used. This 
test represents a non-parametric alternative to the one-
way repeated measures ANOVA and was performed 
with the ‘friedman_test()’ function from the rstatix 
package. Both tests were used to compare the number 
of CFU/g as well as the proportion of resistant bacteria 
between treatment groups and time points. A p-value 
of ≤ 0.05 was indicative of a statistically significant 
difference.

The ‘ggline()’ function from the ggpubr package v.0.6.0 
was used to create line plots, with the ‘geom_point()’ 
function from the ggplot2 package v.3.4.2 used to add 
points. To display significant differences, p-values were 
incorporated into the plots using “geom_signif()” and 
“stat_pvalue_manual()” functions.

The R package Aligned Rank Transform (ARTool) 
v.0.11 was used with the art() function to analyze how 
multiple factors, including physiology, diet, weather, 
and time post-treatment can affect the log10 of CFU/g. 
The fixed effects in the model were lactation phase, time 
point, group, ambient temperature, and diet type, while 
the cow ID was considered a random effect. After cre-
ating the model, the summary() function was used to 

generate a comprehensive summary of the model. Finally, 
the Analysis of Deviance Table (Type III Wald F tests 
with Kenward-Roger df ) was obtained with the anova() 
function, which provided the significance of each term in 
the model by considering its contribution after account-
ing for the other terms.

DNA isolation and metagenomic next generation 
sequencing (mNGS)
Fecal DNA from samples collected on day − 1 and 
weeks 1, 5, and 9, were selected for DNA extraction and 
sequencing. The samples were centrifuged at 16,000 rpm 
for 5 min at 4 °C to remove the supernatant and residual 
ethanol, which was followed by two washes with 1 ml 
of molecular grade 1× PBS that was removed as done in 
the prior step. The DNeasy PowerSoil Pro Kit (Qiagen, 
Germantown, MD, USA) was used to extract DNA from 
each sample according to the manufacturer’s instruc-
tion followed by two wash steps using the C5 solution 
to improve the DNA quality ratio prior to DNA elution. 
Genomic DNA was measured using a Qubit 3.0 with the 
dsDNA High Sensitivity (HS) assay kit (Invitrogen™, MA, 
USA), while the quality ratios 260/230 and 260/280 were 
quantified with a NanoDrop ND-1000 (Thermo Fisher 
Scientific Inc, DE, USA). DNA extractions were per-
formed in 13 batches by one individual using the same 
protocol.

The metagenomic composition of cattle feces was ana-
lyzed for a total of 159 samples collected one day prior to 
treatment (day − 1) and at weeks 1, 5, and 9 post-treat-
ment. The DNA extracted from each sample (average: 
1277.3 ng ± 310.5 ng of dsDNA) was sent to CosmosID 
(Rockville, MD, USA) for mNGS. Libraries were pre-
pared with the Nextera™ XT DNA Library Preparation 
Kit (Illumina, San Diego, CA, USA) and sequenced on 
the Illumina HiSeq X platform 2 × 150  bp (Fig.  2). The 
DNA library preparations and sequencing were per-
formed in a single batch, except for one sample that was 
re-sequenced because of quality issues.

Sequence processing
Paired-raw sequences were first analyzed with FastQC v. 
0.11.7 [25] to assess quality and MultiQC v.1.7 [26] was 
used to summarize FastQC results into a single report. 
Trimommatic v.0.39 [27] was applied to remove low-
quality reads and adapters used for Illumina sequenc-
ing with the parameters ILLUMINACLIP:nextera.
fa:2:30:10:3:TRUE, LEADING:10, TRAILING:3, SLID-
INGWINDOW:4:15 and MINLEN:36. Burrows-Wheeler 
Aligner (BWA) v.0.7.15 [28] and SAMtools v.1.4.1 [29] 
were used to remove bovine DNA reads (Bos taurus, 
ARS-UCD1.2)  and BEDTools v.2.30.0 was used to con-
vert non-host reads from BAM format to FASTQ.
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Microbiota characterization
Non-host paired reads were analyzed using the Metaph-
lan 4 software [30] and the mpa_vJan21_CHOCOPh-
lAnSGB_202103 database to identify taxonomic features. 
The minimum read length was set to 60 bp, and the mini-
mum mapping quality value was set to -1. The robust 
average quantile value was set to 0.1, and the Bowtie2 
presets were set to very-sensitive-local. The normalized 
abundance score for each taxonomic feature was calcu-
lated by dividing the number of reads by the number of 
genome equivalents, which were determined by divid-
ing the total number of sequenced base pairs by the esti-
mated average genome size using the MicrobeCensus 
v.1.1.1 method [31].

Resistome profiling
To characterize the resistome, the Resistance Gene Iden-
tifier (RGI) v.6.0.0 software [32] was used to analyze 
non-host paired metagenomic reads based on homology 

models. The Comprehensive Antibiotic Resistance Data-
base (CARD) v.3.2.5 was aligned with the RGI software 
for metagenomic short reads with the command ‘rgi 
bwt’ using K-mer Alignment (KMA) v.1.4.9 with 20  bp 
k-mers as seeds while setting the coverage and identity to 
at least 50% and 80%, respectively. These settings, espe-
cially the relatively low coverage parameter, were chosen 
to account for the shallow sequencing depth encountered 
in the study. Moreover, the settings specified the use of 
each query sequence to match only one template and 
results were reported at the drug class and allele levels. 
Resistance determinants based on point mutation (SNP) 
models, such as those identified with the rRNA, pro-
tein variant, and protein overexpression models were 
excluded. The abundance of each ARG allele was nor-
malized by dividing the depth by the number of genome 
equivalents and multiplying the result by 100. A heatmap 
containing the 70 most abundant ARGSs was made with 
the R package pheatmap v.1.0.12. The heatmap values 

Fig. 2 Summary of methods used for the quantification of Gram-positive and Gram-negative bacteria and metagenomics. The goal of these analyses was 
to identify the effects of intramammary (IMM) ceftiofur treatment on the cattle fecal microbiome using both culture-based methods and sequencing. 
Figure created with BioRender.com
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were modified to represent the log10 of the normalized 
abundance. A small increment, specifically ‘0.0000001’, 
was added to each value to counteract the computational 
issues associated with a logarithm of zero. Hierarchical 
clustering was performed on the samples and genes using 
the Ward D2 method.

Identification of plasmids, virulence factors and viruses
To identify plasmids, virulence factors, and virus 
sequences, the Plasmid Sequence Database (PLSDB) 
(updated on 06-23-2020) [33], Virulence Factor Database 
(VFDB) setB (12-08-2022) [34], and Virus-Host (11-29-
2022) [35] nucleotide databases were utilized, respec-
tively (Fig. 2). KMA v.1.4.3 [36] was employed with 20 bp 
k-mers, requiring each query sequence to match only one 
template. Normalization was conducted as described for 
the resistome.

Diversity analyses of the microbiome and resistome
The R package Phyloseq v.1.38 [37] was used to ana-
lyze alpha and beta diversity of the microbiome (i.e., 
microbiota, plasmids, virulence genes, and viruses) and 
resistome profiles. The alpha diversity was calculated 
using the number of reads for microbiota or the depth 
for features identified with KMA and measured with the 
Shannon index and Observed (richness) index. Normal-
ized abundances were used to calculate the beta diversity 
based on Bray-Curtis dissimilarities with the Vegan pack-
age v.2.6-4 [38].

Statistical analysis of microbiome features
Microbiome and resistome normalized abundances and 
alpha diversity indexes were analyzed with the Shapiro-
Wilk’s test, which indicated a non-normal distribution of 
the data (Shapiro-Wilk, P < 0.05). Consequently, paired 
and one-sided Wilcoxon signed rank tests were used to 
compare treatment groups per time point. The unpaired 
Friedman’s rank-sum test was used to test for time-based 
fluctuations, which accounts for repeated measures and 
was described for bacterial counts. Permutational mul-
tivariate analysis of variance (PERMANOVA) with 999 
permutations and principal coordinate analyses (PcoA) 
were performed to compare the beta diversity between 
treatments and time points with the Vegan function 
adonis2  [38]. Mixed-effects models were applied to 
identify factors associated with variations in microbiota 
abundance across time points using ARTool as described 
for Gram-negative bacteria; the same variables were 
examined.

Biomarker identification
The analysis of differentially abundant features was car-
ried out with three different approaches: 1) Linear Dis-
criminant Analysis (LDA) Effect Size (LefSe), which 

identifies the effect relevance of a differential feature 
based on an algorithm that includes non-parametric tests 
and LDA [39]; 2) Analysis of compositions of microbi-
omes with bias correction (ANCOM-BC), which uses 
linear regression models and corrects for bias induced by 
sample differences [40]; and 3) Microbiome Multivariable 
Associations with Linear Models (MaAsLin2) [41] that 
uses generalized linear and mixed models. A consensus 
approach was used to ensure robust identification of dif-
ferentially abundant features; only differentially abundant 
features (P < 0.05) identified with two or more pipelines 
were reported. To generate plots for the biomarkers, the 
abundance scores for each feature, whether gene or taxa, 
were normalized by dividing by the average score for the 
corresponding feature at each time point. This provided 
a fold-change (FC) value for each feature. Subsequently, 
bar plots were constructed to indicate the group mean 
FC along with the corresponding standard error at each 
time point. The function ‘ggbarplot()’ from the ggpubr 
package v.0.6.0 was employed to create these visualiza-
tions, with the standard error displayed.

Characterization of β-lactamase carrying contigs
Non-host paired metagenomic sequences were assem-
bled using SPAdes v.3.13.0 with the option ‘--meta’ [42] 
and MEGAHIT v.1.2.9 with the option ‘meta-large’. 
Assemblies obtained with both tools were evaluated 
with Quast v.5.0.0 using the script ‘metaquast.py’ with a 
custom reference list of the 20 most abundant microbial 
species [43]. MultiQC v.1.7 was used to consolidate indi-
vidual Quast reports. Key parameters including N50, L50, 
the largest contig size, total length, misassembles, mis-
matches, indels, and the genome fraction were compared 
between the SPAdes and MEGAHIT assembly meth-
ods. SPAdes was superior, delivering significantly longer 
total lengths (Wilcoxon signed rank test, P = 0.00013), 
and registering fewer misassembles, mismatches, and 
indels (Wilcoxon signed rank test, P < 0.05). Conse-
quently, assemblies generated by SPAdes were used for 
downstream analyses. The proportion of reads mapping 
a contig was identified with BWA v.0.7.15 [28] and SAM-
tools v.1.4.1 [29]. Prodigal v.2.6.3 (PROkaryotic Dynamic 
programming Gene-finding Algorithm) [44] was used to 
translate contigs into amino acid sequences. Open-read-
ing frames (ORFs) obtained with Prodigal were mapped 
to the protein databases CARD [32], VFDB [34], and 
mobile orthologous groups database (mobileOG-db) [45] 
using DIAMOND v.2.0.1 and the blastp command [46]; 
the minimum sequence identity was set to 80% and the 
e-value at 0.001. Contigs carrying β-lactamases that con-
fer resistance to cephalosporines with a length ≥ 500  bp 
were extracted with seqtk and taxonomically classified 
using the contig annotation tool (CAT) v.5.2.3 with the 
database 2021-01-07_CAT [47].
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Network analysis
Correlations between ARGs, plasmids, viruses, virulence 
factors, and bacterial genera were identified by calculating 
Spearman’s correlation coefficients; only coefficients (ρ) 
greater than 0.75 and p-values < 0.01 were included in the 
networks. Significant correlations were analyzed with the 
R package Hmisc v.4.7-2 [48]. Network plots and statistics 
were analyzed with Gephi v.0.9.2 [49], including the degree 
and betweenness centrality. The comparisons of centrality 
measures among β-lactam ARGs were analyzed between 
treatment groups and time points using one-sided and 
paired Wilcoxon signed rank tests.

Results
Characteristics of the study population and sampling 
scheme
In this longitudinal study, 40 Holstein cows were enrolled at 
the end of lactation. Animals were matched based on par-
ity and monthly milk production and pairs were randomly 
assigned to the treatment or control group. Importantly, 
no difference in the average DIM was observed between 
the antibiotic-treated (mean = 262.69 ± 37) and control 
(mean = 269.59 ± 47) cows (Wilcoxon signed rank test, 
P = 0.22). Mastitis was ruled out in these cows as the somatic 
cell counts (SCC) in milk was an average of 34,8718 ± 23,602 
cells/mL (antibiotic group mean = 35,300 cells/mL; control 
group mean = 34,4211 cells/mL). Fecal samples were col-
lected from all animals through the 9-week period except 
for one cow in the antibiotic group. This cow had a C-sec-
tion in week 9 and hence, a final sample was not obtained. 
Sampling began in the summer and ended in the fall and 
hence, the temperatures gradually decreased over the course 
of the study (Additional file 1, Table S1). Moreover, all cows 
received four diets that corresponded to their lactation 
phase, which included the maintenance (day − 1), dry (weeks 
1–5), close-up (week 7), and fresh (week 9) diets (Additional 
file 1, Table S2). All cows were pregnant and healthy during 
the study with most giving birth around the ninth week after 
dry-cow therapy.

Bacterial quantities vary across samples and groups
Slight variation in total bacterial counts was observed at 
different time points throughout the sampling period. At 
week one, the antibiotic-treated cows had significantly 
lower Gram-negative bacterial counts (Wilcoxon signed 
rank test, P = 0.0148), which was also observed at week five 
(Wilcoxon signed rank test, P = 0.0487; Fig. 3A). No differ-
ence in total Gram-negative bacterial counts was observed 
between groups at weeks 2, 3, 7, or 9 (Wilcoxon signed rank 
test, P > 0.05). For the Gram-positive bacteria, significantly 
higher counts were recovered in the control animals relative 
to the ceftiofur-treated animals one week after treatment 
(Wilcoxon signed rank test, P = 0.029; Fig. 3B).

Despite the slightly lower abundance of Gram-negative 
CFUs one day prior to treatment (day − 1) in the antibi-
otic-treated (mean = 4.41 × 105 CFUs) cows compared to 
the control cows (mean = 8.25 × 105 CFUs), the difference 
was not significant (Wilcoxon signed rank test, P = 0.057). 
To ensure that this difference did not impact the results, 
however, we also calculated the fold-change by dividing 
the logarithm with base 10 (log10) of the CFU/g at each 
time point by the log10 of the CFU/g at day − 1 for each 
animal. Using this approach, no significant differences 
were detected in the total Gram-negative bacterial counts 
between the ceftiofur-treated and control groups at any 
of the samplings (Wilcoxon signed rank test, P > 0.05). 
Bacterial count data are provided in Additional file 1, 
Table S3. Moreover, use of mixed-effects models demon-
strated that the total number of Gram-negative bacteria 
was not influenced by treatment (ANOVA, P = 0.14) but 
by the interaction of lactation phase and ambient tem-
perature (ANOVA, P = 0.001), which was similar to the 
interaction between time post-treatment and tempera-
ture (ANOVA, P = 0.002). Warmer temperatures and the 
period near the end of lactation (prior to dry-off) were 
associated with greater counts of Gram-negative bacteria.

The level of phenotypic resistance varies across samples 
and groups
The percent of Gram-negative and Gram-positive bac-
terial populations with phenotypic resistance to ampi-
cillin and ceftiofur was determined for all samples. 
Overall, 90% of the samples had Gram-negative bacteria 
with resistance to ampicillin, while 24% of the samples 
had Gram-negative bacteria with resistance to ceftiofur. 
Regardless of treatment status, a greater proportion of the 
total number of Gram-negative bacteria had resistance 
to ampicillin (2.76%± 10.60%) than resistance to ceft-
iofur (0.02%± 0.09%) within a fecal sample (Additional 
file 2, Figures S1A and S1C). By contrast, Gram-positive 
bacteria with resistance to both ampicillin and ceftio-
fur were recovered from all (100%) of the samples from 
both the antibiotic-treated and control animals. For these 
Gram-positive bacteria, a greater proportion of the total 
number had ceftiofur resistance (28.16% ±21.82%) than 
ampicillin resistance (4.81% ± 6.06%) per sample (Addi-
tional file 2, Figures S1B and S1D). A difference between 
treatment groups was only observed for the percentage of 
ampicillin-resistant Gram-positive bacteria, which was 
higher in the ceftiofur-treated cows than the control cows 
at week 1 (Wilcoxon signed rank, P = 0.0413).

Similar results were obtained when the total number 
of resistant bacteria (CFUs/g) was examined, which did 
not take the total bacterial counts into consideration. 
Although no differences were identified between the 
number of resistant Gram-negative bacteria in the treated 



Page 9 of 19Vasco et al. Animal Microbiome            (2023) 5:56 

and control groups for either antibiotic within a sam-
pling, some notable differences were still observed. For 
example, a subset (25%) of the treated cows shed higher 
levels of ceftiofur-resistant bacteria for up to 2 weeks 
post-treatment when compared to the control cows 
(Fig. 3C). In addition, the total number of ceftiofur-resis-
tant Gram-negative bacteria increased in both groups at 
week 9 relative to week 7, though this increase was only 
significant for the control cows (Wilcoxon signed rank 

test, P = 0.032). Regardless, a gradual increase in ceftio-
fur-resistant bacteria was observed for both groups by 
week 9 as compared to week 5 (Wilcoxon signed rank 
test, P < 0.02) while the number of ampicillin-resistant 
Gram-negative bacteria increased significantly in both 
groups between weeks 7 and 9 (Wilcoxon signed rank 
test, P < 0.01; Fig.  3E). No differences were observed for 
the number of resistant Gram-positive bacteria by group 
or between the two samplings (Fig.  3D F). Statistical 

Fig. 3 Number of bacterial colony-forming units (CFUs) per gram of feces. Total number (log10 CFUs/g) of A) Gram-negative and B) Gram-positive 
bacteria recovered from each sample in the ceftiofur-treated (orange) and control (gray) cows. Numbers of ceftiofur-resistant C) Gram-negative and D) 
Gram-positive bacteria are also shown along with the number of ampicillin-resistant E) Gram-negative and F) Gram-positive bacteria. Numbers are plot-
ted before (Day − 1) and after treatment for Gram negative bacteria through 9 weeks and after 1 week for Gram-positive bacteria. Line plots show means 
and standard error bars with sample counts represented as dots. Boxplots indicate the median, lower, and upper quartiles, and the whiskers represent 
extreme values in the distribution. P-values were calculated using a paired Wilcoxon signed rank test to compare treatment groups within a sampling 
point and the same group across two samplings. The per animal variability over time was calculated with the Friedman rank-sum test (FT), which accounts 
for repeated measures and is shown per treatment group for the Gram-negative bacteria. Significant p-values between sampling points are represented 
for all cows (black) as well as control (grey) and antibiotic-treated (orange) cows
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comparisons between groups and within groups are pro-
vided in Additional file 1, Tables S4 and S5.

Metagenomic sequencing metrics
The average number of reads (151  bp) per sample was 
5.74 (± 1.1) million, and no difference was observed in 
this number between treatment groups (Wilcoxon signed 
rank test, P = 0.11) (Table 1). In week 5, however, samples 
from the antibiotic-treated group had a lower number of 
reads compared to controls (Wilcoxon signed rank test, 
P = 0.035) (Additional file 2, Figure S2). The mean propor-
tion of duplicate sequences was 11.36% (± 2.25), while the 
GC content was 48.00% (± 0.67) and 9.23% (± 1.41) had 
failed sequences.

After quality control, approximately 4,211.06 (± 763.37) 
sequences were dropped per sample, corresponding to 
0.07% (± 0.01) of the raw reads. On average, 21.42% of the 
reads corresponded to bovine DNA. No differences were 
identified between treatments in the number of non-host 
paired reads (Wilcoxon signed rank test, P = 0.129). How-
ever, cows treated with ceftiofur had a significantly lower 
number of non-host reads in week 5 (Wilcoxon signed 
rank test, P = 0.041), but not in the number of genome 
equivalents (Wilcoxon signed rank test, P = 0.062) (Addi-
tional file 2, Figure S2). The proportion of microbial taxa 
identified with Metaphlan 4 corresponded to 11.95% of 

the non-host reads, which varied significantly over time 
showing lower abundance in samples taken during the 
dry-off (weeks 1–5) and fresh (week 9) periods as com-
pared to late lactation (day − 1). The lactation phase sig-
nificantly impacted the proportion of host reads, average 
genome size, and reads mapping to contigs. Similarly, 
time post-treatment influenced the metrics of contig 
assembly (Table 1).

Taxonomic profiling reveals differences across lactation 
phases
The microbiome was dominated by bacteria (92.29%), 
archaea (6.25%), eukaryotes (1.42%), and viruses (0.03%). 
The normalized abundance of microorganisms was sig-
nificantly higher during the late lactation period (Day − 1) 
compared to the dry-off and pre-calving periods (Wil-
coxon signed rank test, P < 0.001) (Fig. 4A). Mixed effects 
models were utilized to determine the contributing fac-
tors of microbial abundance fluctuations. In this analysis, 
lactation phase (ANOVA, P = 0.0002) was associated with 
the observed differences in microbial abundance, while 
environmental temperature and treatment group did not 
significantly impact the taxonomic abundance (ANOVA, 
P = 0.12, P = 0.92, respectively). Differences in alpha 
(Shannon) diversity were observed over the sampling 
period (Friedman’s test, P = 2.77e-10). The most diverse 

Table 1 Metagenomic sequencing metrics from cattle fecal DNA.
Feature Mean p-value*

Lactation 
Phase

Temperature Treatment Time post-treatment Lactation 
Phase: Tem-
perature:
Treatment

Reads
Raw reads (150 bp) 5,735,481 0.94 0.70 0.84 0.40 0.61

Non-host reads (150 bp) 4,507,080 0.79 0.72 0.73 0.36 0.42

Proportion of host reads
(Bos Taurus %)

21.417576 < 0.0001 0.60 0.83 0.78 0.46

Proportion in non-host reads
Bacteria (%) 11.027 < 0.0001 0.12 0.92 0.05 0.70

Archaea (%) 0.746 < 0.0001 0.89 0.53 0.08

Eukaryota (%) 0.170

Viruses (%) 0.004 0.45 0.94 0.33 0.65 0.31

Genome equivalents (Nº) 239.930 0.06 0.47 0.77 0.51 0.10

Average genome size (bp) 2,754,869 < 0.0001 0.97 0.33 < 0.0001 0.73

Contig assemblies
Contigs (Nº) 341430.855 1.00 0.62 0.99 0.09 0.31

Reads mapping contigs (%) 36.011 0.01 0.69 0.37 < 0.0001 0.02
N50 (Kbp) 0.764 0.98 0.35 0.87 0.88 0.23

L50 (Kbp) 5.703 0.92 0.81 0.63 0.01 0.12

Largest contig (Kbp) 38.065 0.15 0.35 0.75 0.02 0.38

Length (Mbp) 14.887 0.87 0.72 0.56 0.01 0.29
*P-values were calculated with ANOVA using mixed effects models including differences in lactation phase, ambient temperature (ºC), treatment group, time post-
treatment, and diet while controlling by cow ID. It should be noted that the factor of diet did not contribute significantly to the model due to the correlation between 
diet variation and each specific lactation phase. Significant p-values are in bold. The analysis could not incorporate the factor of Eukaryota as it was not detected 
consistently across all samples
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communities were detected before dry-cow therapy (Day 
− 1) (Fig. 4B). When comparing antibiotic-treated versus 
control cows, the abundance and alpha diversity of taxa 
were only significantly lower in week 5 (Wilcoxon signed 
rank test, P = 0.01).

Significant changes in the bacterial composition were 
also detected across samplings as visualized in a relative 
abundance plot (Fig. 4C) and a Bray-Curtis dissimilarity 
ordination (PERMANOVA, F = 23.68, R2 = 0.31, P = 0.001) 
(Fig.  4D). The day before dry-off (day − 1) was charac-
terized by a higher abundance of Actinobacteria, Fir-
micutes, Euryarchaeota and Proteobacteria compared to 
weeks 1, 5, and 9. Stratifying by treatment status detected 
several differences in the abundance of various taxo-
nomic groups (Additional file 1, Table S6). Cows treated 
with ceftiofur, for instance, had a higher abundance of 
Ruminococcacea and a lower abundance of Romboutsia 
and Rickenellaceae one week after treatment, compared 
to the control group (Wilcoxon signed rank test, P < 0.05) 
(Additional file 2, Figure S3). At week 5, however, a lower 
abundance of several taxa including families Ruminococ-
cacea, Lachnospiraceae, and Methanobacteriaceae, were 
detected in the antibiotic-treated cows.

Although a slight rebound in the Actinobacteria popu-
lation was observed at week 9, this was only observed in 
the antibiotic-treated group (Fig. 4C, Figure S3). Campy-
lobacter were also more abundant in the ceftiofur-treated 
cows compared to the controls. Overall, the differences 
in the taxonomic profiles between the treatment groups 
demonstrated a persistent effect of the antibiotic on cer-
tain bacterial groups, but not on the overall microbiota 
composition. No taxa were consistently affected over 

the 9-week period, though one taxon was persistently 
affected in weeks 1 and 9, three taxa in weeks 1 and 5, 
and five in weeks 5 and 9. Given that differences were 
observed due to time post-treatment, which included 
transitions in diet, temperature decreases, and changes in 
pregnancy stage, we only compared between treatment 
groups within each time point for the microbial abun-
dance and diversity metrics.

Resistome composition analyses identified persistent ARG 
signatures
After treatment with ceftiofur, a significantly higher 
abundance of ARGs was observed in animals only at week 
1 (Wilcoxon signed rank test, P = 0.03) (Fig.  5A)  along 
with a lower Shannon index (Wilcoxon signed rank test, 
P = 0.03) (Fig. 5B). Similarly, the number of observed ARG 
alleles was lower in week 5 in cows treated with ceftio-
fur (Wilcoxon signed rank test, P = 0.04). The main ARG 
drug classes identified were for resistance to tetracyclines 
(46.92%), macrolides and streptogramins (19.04%), lin-
cosamides (13.78%), and cephamycins (13.75%) (Fig. 5C). 
The mean normalized allelic composition of ARGs var-
ied significantly over time (PERMANOVA, F = 11.98, 
R2 = 0.19, P = 0.001), although samples from different time 
points generally overlapped in the PCoA (Fig. 5D). At the 
gene level, the tetracyline resistance genes, tet(W), tet(Q) 
and tet(O), were the most abundant representing 28.49%, 
10.28% and 6.12% of the ARGs detected, respectively. 
Other highly abundant ARGs were mel (9.09%), cfxA2 
(7.17%), lnuC (6.11%), and blaOXA-608 (5.04%) (Additional 
file 2, Figure S4).

Fig. 4 Microbiota diversity and composition before (Day − 1) and 1, 5, and 9 weeks after dry-cow therapy. (A) Normalized abundance and (B) Shannon 
Index (alpha diversity) among ceftiofur-treated (orange) and control (grey) cows. Each boxplot shows the median, lower, and upper quartiles with the 
whiskers representing extreme values in the distribution. (C) The mean normalized abundance of microbial taxa at the phylum level, and (D) a PCoA of 
the Bray-Curtis dissimilarity. Ellipses in the PCoA are clustered by sampling point and contain at least 90% of the samples. P-values were calculated using 
a paired Wilcoxon signed rank test to compare treatment groups within a sampling point

 



Page 12 of 19Vasco et al. Animal Microbiome            (2023) 5:56 

Importantly, a persistent increase in the abundance 
of genes encoding cephalosporin resistance was identi-
fied in the ceftiofur-treated cows relative to the controls 
(Fig.  6A). The treated cows, for example, had a signifi-
cantly greater abundance score at weeks 1, 5, and 9 rela-
tive to the control cows (Wilcoxon signed rank test, 
P < 0.008 at each week) In comparison to the baseline 
measurement taken on day − 1, the treated cows also 
had an increased abundance of cephalosporin resistance 
genes one week after IMM treatment (Wilcoxon signed 
rank test, P < 0.01). A significant increase, however, was 
not observed in the control cows (Wilcoxon signed rank 
test, control, P = 0.062). In all, the greatest abundance 
of cephalosporin resistance genes was found in week 9, 
which was significantly higher than in week 5 for both 
groups (Wilcoxon signed rank test, control, P = 0.022; 
antibiotic-treated, P = 0.0006). Genes important for ceph-
alosporin resistance encoded antibiotic efflux pumps or 
were important for inactivation and reduced permeability 
to the drug. Antibiotic inactivation by β-lactamases was 
the main mechanism of resistance observed for the ceph-
alosporins, showing a persistent increase in β-lactamase 
(bla) genes in the treated versus control cows (Fig.  6B). 
The bla genes encoding ESBL production, aci1, cfxA2, 
and cfxA6, were among those that increased over the 
sampling period (Additional file 1, Table S7). Although 
controls also had these ESBL genes, more were identified 
only in the antibiotic-treated group at week 5, including 

blaCMY-22 and blaCMY-59 (Fig. 6C). Additionally, co-selec-
tion of other ARGs such as  aadA8b, tet(X4), and arnA, 
was observed in weeks 5 solely in the ceftiofur-treated 
cows. These ARGs confer resistance to aminoglycosides, 
tetracyclines, and peptides, respectively.

The plasmidome, virulome, and virome varied between 
groups
The normalized abundance of plasmids and virulence 
genes was significantly lower in ceftiofur-treated cows in 
the first week after treatment compared to the controls 
(Wilcoxon signed rank test, P < 0.05; Fig. 7); however, the 
number of observed features was similar between groups 
(Wilcoxon signed rank test, P > 0.05). Despite the higher 
abundance of viruses identified prior to treatment in the 
antibiotic-treated group, no differences were observed at 
later time points. Nonetheless, there were significant dif-
ferences in the mean plasmidome and virulome composi-
tion over time, with days −1 and week 9 as well as week 
1 and week 5 forming two clusters in the PCoA (PER-
MANOVA, plasmids, F = 28.60, R2 = 0.36; virulence genes, 
F = 4.79, R2 = 0.085; all, P = 0.001) (Additional file 2, Fig-
ures S5A and S5B). The virome composition also showed 
significant differences over time, but clear clusters were 
not observed in the PCoA (PERMANOVA, F = 9.2, 
R2 = 0.15, P = 0.001) (Figure S5C). These analyses suggest 
that IMM ceftiofur lowered the abundance of plasmids 
and virulence factors in the short term.

Fig. 5 Fecal resistome composition of dairy cows during the 9-week study. A) The normalized abundance score and B) Shannon Index comparing anti-
biotic-treated (orange) and control (grey) animals is shown. Each boxplot includes the median, lower, and upper quartiles with the whiskers representing 
extreme values in the distribution. C) The resistome composition at the drug class level shows the average proportion; “n” indicates the number of genes 
assigned to a given class. D) PCoAs of the Bray-Curtis dissimilarity clustered by sampling point (ellipses contain at least 90% of the samples). P-values were 
calculated using a paired Wilcoxon signed rank test to compare treatment groups within a sampling point
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Multiple bacterial hosts had phenotypic or genotypic 
resistance to β-lactams
Culture-based identification. Among 882 Gram-neg-
ative bacterial isolates resistant to ceftiofur, 146 were 
preserved for further analyses; 72 were recovered from 
control cows and 74 from ceftiofur-treated cows. A maxi-
mum of 4 CFUs were selected per sample based on dif-
ferences in morphology and lactose fermentation on 
MAC media. Biochemical assays classified 94 isolates as 
E. coli, 25 as other members of Enterobacteriaceae, and 
27 as non-Enterobacteriaceae.

β-lactamase-carrying contig (BCC) characteriza-
tion. Among all 40 cows, 158 bla alleles conferring 

resistance to cephalosporins were identified in the fecal 
resistome. For those contigs with a length ≥ 500  bp, 287 
contigs carried β-lactamase genes, which had an aver-
age size of 3,446.54  bp (± 3,544.4  bp). These BCCs car-
ried aci1 (n = 13), cfxA2 (n = 219), cfxA3 (n = 5), cfxA4 
(n = 32), cfxA5 (n = 2), and cfxA6 (n = 16). The average 
coverage estimate was 7.53 (± 4.2), while the number of 
77  bp k-mers was 30892.6 (± 35537.02). Co-localization 
of MGEs was identified in 166 (57.84%) of the contigs. 
β-lactamase genes cfxA2, cfxA4, and cfxA6 were com-
monly found in those contigs containing MGEs for con-
jugation. These elements include mobN, mobB, traC, and 
HMPREF1204_00020, which encodes a DNA primase 

Fig. 7 Effects of intramammary (IMM) ceftiofur treatment on the abundance of plasmids, virulence factors and viruses. The median, lower, and upper 
quartiles are shown in each boxplot with the whiskers representing extreme values in the distribution. P-values were calculated with the Wilcoxon signed 
rank test to compare the ceftiofur-treated and control cows within a sampling point

 

Fig. 6 Effects of IMM ceftiofur treatment on the fecal resistome of cattle. Boxplots show the abundance score for genes encoding A) resistance to 
cephalosporins; and B) β-lactamases conferring resistance to cephalosporins. C) Differentially abundant ARGs are shown after ceftiofur treatment with 
the mean fold-change and standard error per group. The median, lower, and upper quartiles are shown in each boxplot with the whiskers representing 
extreme values in the distribution. P-values were calculated using the paired Wilcoxon signed rank test to compare treatment groups within a sampling 
point and between sampling points within the same treatment group; significant p-values are shown for all cows (black), control cows (grey), and cows 
treated with ceftiofur (orange)
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(EC2.7.7.-) that was linked to multidrug resistance in 
Bacteroides in a prior study [50]. Despite these findings, 
the taxonomic classification of the contigs with CAT was 
only possible for 20 contigs. These included genes encod-
ing ACI-1 in Gammaproteobacteria, CfxA2, CfxA4, and 
CfxA6 in Bacteroidetes, EC-5 in Treponema, OXA-659 in 
Campylobacterales, SHV-160 in Proteobacteria and Bac-
teroidetes, and TEM-116 and TEM-183 in Enterobacte-
riaceae. For 18 of the 20 contigs, taxonomic assignments 
using CAT were based on a single ORF. Two contigs were 
exceptions: one classified as Aeromonadales based on 2 
ORFs, and another as Bacteroides xylanisolvens based on 
14 ORFs.

RGI host assignations. The resistomes and variants 
database (CARD) also provided taxonomic assignations 
for various ARG alleles (Additional file 1, Tables S8-
S9). Among the most abundant β-lactamases, the cfxA2 
sequences were assigned to Phocaeicola (45.94% of the 
allele reads), Bacteroides (38.8%), Prevotella (1.16%), 
Parabacteroides (9.65%), and Butyricimonas (4.44%). 
The blaCFX-A6 sequences were mostly assigned to uncul-
tured organisms (97.55%) and Bacteroides (2.45%), 
whereas aci1 was only assigned to Acidaminococcus fer-
mentans. Genes encoding CMY-22 and CMY-59, which 
were detected only in the antibiotic-treated cows, were 
assigned to E. coli and Klebsiella pneumoniae, respec-
tively. Other highly abundant β-lactamase genes were 
common in cows from both treatment groups including 
those encoding OXA-608, which was assigned to Cam-
pylobacter jejuni, and SHV-160 assigned to Klebsiella 
pneumoniae.

Correlation networks. Correlations between 
β-lactamase genes and plasmids, phages, and virulence 
genes showed their potential ecological associations in 
the fecal microbiota. E. coli was the most common host 
of plasmids, phages and virulence factors correlated with 
β-lactamase genes, followed by Klebsiella, Salmonella 
and other Enterobacteriaceae (Additional file 2, Figure 
S6). The genera correlated with β-lactamase genes, how-
ever, were primarily from phyla Firmicutes, Bacteroide-
tes, Actinobacteria, and Proteobacteria (Additional file 
2, Figure S7). No significant differences were observed 
in centrality measures between treatment groups at 
any time point, suggesting that the co-occurrence of 
β-lactamase genes with other genes and taxa was ecologi-
cally similar in both groups.

Discussion
It was estimated that ~ 90% of dairy farms use IMM 
β-lactam antibiotics during the dry-off period to treat 
mastitis [5–7] despite the possibility of selecting for 
resistant bacterial populations. Of great concern is the 
emergence and selection of ESBL-producing Entero-
bacteriaceae, which are considered a serious public 

health threat [1, 2]. Although the effect of IMM ceftio-
fur treatment has been studied in the milk microbiota, 
including five days with IMM 125  mg/day [51, 52] and 
a single application of 2  g of CHCL [53], the impact of 
this treatment on the gut microbiome had not been elu-
cidated. Through this study, we have demonstrated per-
sistent effects on the fecal microbiome due to a single 
2 g dose of IMM ceftiofur via culture-based analyses and 
metagenomics. Compared to the controls, the antibiotic-
treated cows had altered microbial profiles and a greater 
abundance of β-lactam resistance genes that increased 
in abundance over the dry-off period; a subset also had 
elevated concentrations of cultivable ceftiofur-resistant 
Gram-negative bacteria.

Following subcutaneous treatment, a prior study 
showed that Holstein steers had higher concentrations 
of CHCL in the gastrointestinal tract compared to ceft-
iofur crystalline-free acid (CCFA) [9], though only CCFA 
resulted in decreased fecal E. coli concentrations for up 
to two weeks. Similarly, parenteral ceftiofur treatment 
resulted in lower fecal E. coli concentrations for 3 days 
[16] and up to a month post-treatment [17]. In the lat-
ter study, systemic ceftiofur administration resulted in 
a significant increase in the level of ceftiofur-resistant 
Enterobacteriaceae, though the concentrations returned 
to baseline levels after one week [17]. Consistent with 
these findings, we observed a reduction in the total num-
ber of Gram-negative bacteria in the treated cows one 
week after IMM ceftiofur treatment when compared to 
controls as well as enhanced recovery of Gram-nega-
tive bacteria with resistance to ceftiofur for two weeks 
post-treatment. Re-emergence of ceftiofur resistance 
in the Gram-negative bacteria was also observed at 9 
weeks (pre-calving) in both the treated and control ani-
mals, which is similar to results from another study 
[17]. Herein, this increase was associated with sampling 
period and ambient temperature as well as lactation 
phase, which involves specific dietary requirements and 
physiological states. Ambient temperature affects the 
cows’ metabolism and immune response [54], which can 
impact the gut microbiota, including the population of 
Gram-negative bacteria. In fact, warmer temperatures 
have been linked to higher levels of fecal shedding of 
Shiga-toxin producing E. coli in dairy cattle [55]. Diet, 
which is linked to lactation phase, can also impact the 
gut microbiota. Indeed, a diet containing higher levels of 
metabolizable energy can promote the growth of certain 
bacteria, possibly including certain Gram-negative spe-
cies, when given to lactating and fresh cows [56]. Dietary 
changes can also influence the pH level in the gut, which 
can further impact bacterial growth and antibiotic resis-
tance [57, 58]. Other factors that could contribute to the 
expansion of resistant Enterobacteriaceae populations 
include environmental acquisition of resistant strains, 
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increased frequency of horizontal gene transfer, peri-
parturient immune suppression, or increased contact 
with personnel. Regardless, it is important to note that in 
vitro bacterial quantifications do not distinguish between 
acquired and intrinsic antimicrobial resistance. Future 
studies should therefore focus on isolating the resistant 
strains for characterization using biochemical tests and 
whole-genome sequencing, which can define the genetic 
mechanisms of resistance as well.

Following IMM ceftiofur treatment, a lower abun-
dance score and diversity of taxa was detected in the 
fecal microbiota, which was also observed for plasmids 
and virulence genes. Conversely, a higher abundance of 
ARGs was observed in the antibiotic-treated cows one 
week following IMM treatment when compared to the 
control cows. Because this difference was not observed 
in the subsequent time points, it suggests the temporary 
selection of resistant bacterial populations. Intriguingly, 
Campylobacter and Bifidobacterium were more abundant 
in the ceftiofur-treated cows as compared to controls, 
which is not surprising given that most Campylobacter, 
with the exception of C. fetus, have intrinsic resistance 
to third-generation cephalosporins [59]. In fact, nine 
β-lactamase genes were associated with Campylobacter 
including blaOXA-608, which was one of the most abundant 
ARGs detected.

Despite the temporary increase in ARG normalized 
abundance and diversity observed one week after ceft-
iofur treatment, a subset of critically important genes 
persisted. Importantly, the antibiotic-treated cows had 
an exclusive and persistent increase in the abundance 
of ESBL genes (e.g., aci1, cfxA, and blaCMY) in the fecal 
resistome at each of the subsequent time points exam-
ined. Although increases in the abundance of ESBL 
genes following parenteral ceftiofur treatment have been 
reported, no prior studies have examined the effect of 
IMM treatment. Steers receiving subcutaneous CCFA, 
for example, had a higher abundance of bacterial isolates 
harboring blaCMY-2 up to 4 days post-treatment, which 
resulted in co-selection of isolates containing tet(A) and 
blaCMY-2 after a subsequent chlortetracycline treatment 
for up to 26 days [18]. Similarly, Holstein cows treated 
with systemic CCFA had a higher abundance of genes 
encoding CfxA β-lactamases three days after treatment 
[60], while other studies reported an increase in blaCMY-2 
in cattle feces for up to 10 days post-treatment when pure 
cultures were analyzed [16, 61]. Our findings are consis-
tent with these previous studies and underscore the need 
for the judicious use of third-generation cephalosporins 
in livestock. Furthermore, they highlight how continuous 
monitoring is needed to understand how ARGs are main-
tained in dairy cattle and the farm environment.

Although the abundance of ESBL genes was higher in 
the ceftiofur-treated cows across the sampling period, an 

increase in cephalosporin-resistant bacterial populations 
(CFUs) was not observed. This discrepancy between the 
culture-based and sequencing methods could be attrib-
uted to the oxygenic environment and/or media used 
for cultivation. The hindgut microbiota is composed 
predominantly of anaerobic bacteria; thus, aerobic and 
microaerophilic conditions used for the quantification 
of Gram-negative and Gram-positive bacteria could 
only capture a fraction of the microbiota. Bacteroidetes 
members like Prevotella and Bacteroides, for example, 
are common Gram-negative anaerobes residing in the 
hindgut. Because these members were commonly found 
to carry genes encoding CfxA ESBLs [62], the resis-
tant CFUs observed likely underestimate the actual lev-
els of resistance, particularly given the high abundance 
of cfxA alleles detected. Likewise, aci1 was the second 
most abundant ESBL gene and was previously reported 
in the Gram-negative Firmicutes Acidaminococcus [63] 
and Gram-positive genus Bifidobacterium [64]. In fact, a 
prior study identified that Bacillus, Bacteroides, Eubac-
terium, Bifidobacterium, Clostridium and E. coli are 
important degraders of ceftiofur in the bovine gut [65]. 
These findings suggest that the increased abundance of 
ESBLs following IMM ceftiofur treatment were linked to 
changes in the abundance of anaerobic bacteria, which is 
consistent with our host tracking analyses.

Indeed, identifying bacterial hosts and MGEs asso-
ciated with β-lactam resistance genes in cattle feces is 
critical for developing new interventions, understand-
ing the ecology of potential resistant threats that may 
emerge in farm environments, and defining risks associ-
ated with carriage of specific genes. As described herein, 
one approach to classify bacterial hosts is by identifying 
contigs or metagenome-assembled genomes containing 
genes encoding known β-lactamases. While culture iden-
tification of the resistant bacteria indicated 64% of the 
isolates were E. coli, metagenomic analyses showed that 
β-lactamase genes were mainly associated with commen-
sal bacteria. A significant association was also identified 
between blaCfxA and plasmid sequences, suggesting that 
horizontal gene transfer plays a key role in the acquisi-
tion of CfxA β-lactamase genes, particularly for members 
of phylum Bacteroidetes. Evidence of the relationship 
between Enterobacteriaceae and genes encoding the 
CMY, CTX, OXA, and TEM β-lactamase families was 
supported through the RGI analysis and co-occurrence 
networks showing correlations between these genes and 
plasmid sequences. Together, these results demonstrate 
the importance of horizontal gene transfer in the dissem-
ination of antibiotic resistance within bacterial commu-
nities, particularly among members of the Bacteroidetes 
phylum and within the Enterobacteriaceae family.

Intriguingly, the abundance of Actinobacteria was sig-
nificantly higher on day −1 compared to the subsequent 
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time points. The most abundant family belonging to phy-
lum Actinobacteria was Bifidobacteriaceae, which was 
represented mainly by the genus Bifidobacterium. Bifi-
dobacteriaceae are implicated in the utilization of oligo-
saccharides in the colon resulting in the production of 
volatile fatty acids (VFAs) [66]. Differences in the com-
position of the fecal microbiota, primarily caused by the 
abundance of Actinobacteria observed on day −1 could 
be associated with differences in the diet. During late 
lactation, higher levels of dry matter intake and metabo-
lizable energy as well as protein are consumed by cows 
compared to the dry off (weeks 1–7) and fresh (week 9) 
periods. However, further analyses of microbial meta-
bolic pathways and metabolite composition are necessary 
to better explain how differentially abundant taxa may 
impact cow performance.

Although this study is the first to describe the impact 
of IMM ceftiofur treatment on the gut microbiota, it is 
important to highlight a few limitations. For instance, 
current resistome databases do not include all known 
ARGs from cattle samples and hence, novel resistance 
determinants may remain unclassified. Moreover, the 
identification of species and ARGs can be limited by a 
low number of metagenomic reads, as sequencing depth 
of ≥ 50  million reads is needed for complex microbial 
communities such as those residing in the bovine gut 
[67]. Since the proportion of microbial phyla and ARG 
classes was shown to be constant across various sequenc-
ing depths [67], we were able to detect the predominant 
and differential metagenomic features in this analysis. 
The shallow sequencing depth and short DNA segments 
(150 bp) examined, however, may have reduced our abil-
ity to accurately classify the bacterial hosts within each 
BCC since flanking regions are often not included. Such 
issues could have also contributed to the discordance 
observed between the sequence- and culture-based 
methodologies. Consequently, future work involving use 
of third-generation sequencing platforms that sequence 
ultralong DNA segments such as the PacBio (40–70 Kbp) 
or Oxford Nanopore Technologies (> 100 Kbp), is needed 
for confirmation and characterization of these regions 
[68]. Since the identification of differentially abundant 
features, including bacterial taxa and genes, tends to vary 
across bioinformatic pipelines, we applied three different 
approaches but only reported those features with signifi-
cant p-values using at least two pipelines, as suggested 
previously [69]. Consequently, our analyses highlight 
those microbiome features, genes and taxa, that are most 
impacted by IMM ceftiofur treatment.

Conclusions
One application of IMM ceftiofur (2  g) at dry off con-
tributed to alterations in the fecal gut resistome, which 
resulted in an increase in the abundance of genes 

encoding resistance to cephalosporins and ESBLs in the 
treated versus control cows. Importantly, these genes 
were maintained in the cow gut at high levels for the 
9-week sampling period. Clinically important ESBL 
genes were mainly associated with Bacteroidetes and 
Enterobacteriaceae hosts as well as plasmid sequences, 
illustrating how ESBL-producing pathogens emerge and 
are selected for in this niche. While most of the cows 
given the prophylactic IMM ceftiofur treatment did not 
have altered microbiota compositions compared to the 
control cows, 25% had an increased level of ceftiofur-
resistant Gram-negative bacteria for up to 2 weeks post-
treatment. Indeed, the recovery of resistant CFUs was 
14× greater in the antibiotic-treated versus control cows 
at week 2. These findings demonstrate significant varia-
tion in the fecal shedding levels of cultivable bacterial 
populations across animals in this herd, which could be 
linked to selective factors such as diet, temperature, and 
lactation phase. Future studies should therefore focus on 
understanding the association between shedding and the 
dissemination and persistence of antibiotic resistance 
determinants in dairy farm environments across geo-
graphic locations.
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