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Abstract 

Background The goal of this study was to assess the microbial ecology and diversity present in the uterus of post‑
partum dairy cows with and without metritis from 24 commercial California dairy farms using shotgun metagen‑
omics. A set subset of 95 intrauterine swab samples, taken from a larger selection of 307 individual cow samples 
previously collected, were examined for α and β diversity and differential abundance associated with metritis. Cows 
within 21 days post‑partum were categorized into one of three clinical groups during sample collection: control (CT, 
n = 32), defined as cows with either no vaginal discharge or a clear, non‑purulent mucus vaginal discharge; metritis 
(MET, n = 33), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; and purulent discharge 
cows (PUS, n = 31), defined as a non‑fetid purulent or mucopurulent vaginal discharge.

Results All three clinical groups (CT, MET, and PUS) were highly diverse, with the top 12 most abundant genera 
accounting for 10.3%, 8.8%, and 10.1% of mean relative abundance, respectively. The α diversity indices revealed 
a lower diversity from samples collected from MET and PUS when compared to CT cows. PERMANOVA statistical 
testing revealed a significant difference (P adjusted < 0.01) in the diversity of genera between CT and MET samples 
(R2 = 0.112, P = 0.003) and a non‑significant difference between MET and PUS samples (R2 = 0.036, P = 0.046). ANCOM‑
BC analysis revealed that from the top 12 most abundant genera, seven genera were increased in the natural log fold 
change (LFC) of abundance in MET when compared to CT samples: Bacteroides, Clostridium, Fusobacterium, Phocaei-
cola, Porphyromonas, Prevotella, and Streptococcus. Two genera, Dietzia and Microbacterium, were decreased in natural 
LFC of abundance when comparing MET (regardless of treatment) and CT, while no changes in natural LFC of abun‑
dance were observed for Escherichia, Histophilus, and Trueperella.

Conclusions The results presented here, are the current deepest shotgun metagenomic analyses conducted 
on the bovine uterine microbiome to date (mean of 256,425 genus‑level reads per sample). Our findings support 
that uterine samples from cows without metritis (CT) had increased α‑diversity but decreased β‑diversity when com‑
pared to metritis or PUS cows, characteristic of dysbiosis. In summary, our findings highlight that MET cows have 
an increased abundance of Bacteroides, Porphyromonas, and Fusobacterium when compared to CT and PUS, and sup‑
port the need for further studies to better understand their potential causal role in metritis pathogenesis.
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Introduction
As the fourth most common health issue in cows as 
identified by U.S. producers, metritis remains a major 
detriment to the American dairy industry [1]. Metritis 
is a uterine disease in cattle and typically occurs within 
21  days post-partum, characterized by an enlarged 
uterus, fever, and fetid, watery red-brown uterine dis-
charge [2]. Metritis negatively impacts milk production, 
reproductive performance, and increases the risk of cull-
ing [3]. The economic impacts of these production issues 
cost producers a mean of $511 per case of metritis [4]. In 
North America, metritis is estimated to affect 10 to 30% 
of post-partum dairy cows [5, 6].

Generally, bacteria are frequently implicated as the 
cause of bovine metritis. Traditional, culture-based 
methods have often isolated certain bacteria from uter-
ine swabs collected from cows with metritis, in particu-
lar, Escherichia coli, Trueperella pyogenes, Fusobacterium 
necrophorum, and Prevotella melaninogenica [7, 8]. How-
ever, such studies were limited to only those microbes 
that could be isolated and identified while growing on 
the media type and in atmospheric conditions provided. 
With the advent of culture-independent 16S rRNA gene 
sequencing, a substantially larger array of microbes was 
identified, and additional bacteria were associated with 
metritis, including those belonging to the genera Bacte-
roides and Porphyromonas [9–11]. The 16S rRNA-based 
studies also identified bacteria potentially associated 
with uterine health, albeit with occasionally conflict-
ing findings. For example, the species belonging to the 
genus Escherichia are well-known uterine pathogens as 
evidenced by culture-based and animal-infection stud-
ies [12]. Yet, various studies have also demonstrated 
either an association between E. coli and uterine health 
or found little to no reads matching E. coli from uterine 
samples taken from cows with metritis [9, 13].

Despite the inability of 16S rRNA-based approaches to 
reach a uniform agreement on a specific etiology for met-
ritis, these analyses have allowed for the study of the over-
all community dynamics within the uterine microbiome 
in addition to increases or decreases of relative abundance 
for specific taxa. Common ecology metrics from micro-
bial community analysis studies often estimate α-diversity 
(diversity of microbes within a sample) and β-diversity 
(diversity of microbes between samples) [14]. Again, 16S 
rRNA-based studies are inconclusive on whether uterine 
samples taken from cows with metritis have significant 
changes in α-diversity. Some studies reported decreased 
α-diversity in samples taken from cows with metritis 

compared to healthy cows [9, 10, 15]; while other stud-
ies reported no statistical difference in α-diversity metrics 
between samples collected from with metritis and healthy 
cows [11, 16, 17]. One possible explanation for the disa-
greement between these studies is the wide range of sample 
size and sequencing depth, with one of the larger stud-
ies [9] (n = 60) resulting in nearly 5 million 16S reads for 
all samples, while one of the smaller studies [17 (n = ]28) 
resulted in approximately 27,000 16S reads. As metrics for 
the estimation of α-diversity are heavily biased when taxa 
are unobserved, the ability of shotgun metagenomics to 
identify low abundance taxa more accurately and without 
the biases introduced by the necessary PCR amplification 
used in 16S rRNA methods may prove useful in discerning 
the community interactions within the uterine microbiome 
[18, 19].

The β-diversity of uterine microbiota from cows with 
and without metritis is also frequently measured in uterine 
microbiome studies. Typically, various comparative met-
rics (e.g. Bray–Curtis or UniFrac) analyzing the similarity 
or dissimilarity of the microbiota occurrence are calcu-
lated; ordination plots based on these metrics (e.g. Princi-
pal Coordinate Analysis and Non-metric multidimensional 
scaling) display the microbiota diversity and are generally 
paired with statistical analyses (e.g. PERMANOVA and 
ANOSIM) to determine significance [14]. While the 16S 
rRNA-based studies examined previously disagreed on the 
α-diversity of healthy uterine microbiota and from uterus 
affected with metritis, those that did analyze β-diversity all 
concluded that the uterine microbiome from healthy and 
metric cows was significantly different [10, 15–17].

We previously evaluated intrauterine E. coli isolated from 
307 dairy cows with and without metritis throughout Cali-
fornia for phenotypic antimicrobial resistance (AMR) and 
analyzed risk factors impacting the isolation of intrauterine 
E. coli [20]. The objective of this study was to use shotgun 
metagenomic analyses on a subset of intrauterine swabs 
(n = 95) to assess the microbial ecology and diversity of 
microbes observed in the uterus during metritis and when 
the uterus is not affected by metritis. We hypothesized that 
cows with metritis would have a distinct microbial compo-
sition, characterized by a microbiome dysbiosis when com-
pared to cows without metritis or categorized as PUS.

Results
Intrauterine microbiome diversity analysis
The α diversity was assessed by genera using Chao1, 
Simpson, and the Shannon index (Fig.  1). The Chao1 
index estimates were significantly increased for MET 
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compared to CT samples (p = 0.021) (Fig.  1A). Simp-
son index values were significantly decreased between 
CT and PUS samples (p = 0.0005) and CT and MET 
samples (p < 0.0001) (Fig.  1B). Shannon index values 
were significantly different between CT and PUS sam-
ples (p = 0.0003) and CT and MET samples (p < 0.0001) 
(Fig. 1C).

Bray–Curtis dissimilarity distances calculated from 
CSS normalized read count data were used to cre-
ate NMDS ordinations to visualize β diversity. Two 
NMDS ordinations were created to identify differences 
between clinical groups of cows sampled (Fig. 2A) and 
between the same clinical groups, but with samples 
from MET cows separated by whether cows sampled 
received antimicrobial treatment (Fig.  2B). Three-
dimensional scatterplots of both NMDS ordinations 
were also created to help better visualize significant 
differences between clinical groups (Additional file  1: 
Fig.  3A) and clinical groups with MET separated by 

antimicrobial treatment (Additional file  1: Fig.  3B). 
PERMANOVA statistical testing revealed a significant 
difference (P adjusted < 0.01) in the diversity of genera 
between CT and MET samples (R2 = 0.112, P = 0.003) 
and a non-significant difference between MET and PUS 
samples (R2 = 0.036, P = 0.046). When analyzing NMDS 
with MET separated by antimicrobial treatment, pair-
wise PERMANOVA revealed significant differences 
between CT v. MET_NoTreat (R2 = 0.075, P = 0.006), 
CT v. MET_Treat (R2 = 0.242, P = 0.003), and PUS v. 
MET_Treat (R2 = 0.155, P = 0.003) (Additional file  2: 
Table  1). In comparison, pairwise ANOSIM revealed 
significant differences between only CT v. MET_
NoTreat (P = 0.003) and CT v. MET_Treat (P = 0.003) 
(Additional file 2: Table 2). There were 1301 total gen-
era detected by Kraken2/Bracken analysis (at least 100 
sequence reads per million, in at least one sample). The 
total apparent taxa abundances are visualized in a heat-
map present in Additional file 1: Fig. 3.

Fig. 1 Bovine intrauterine swab microbiome α diversity. Genus‑level distributions for A Chao1, B Simpson, and C Shannon indices, comparing 
clinical groups (CT = 32, MET = 33, and PUS = 31). For microbiome α diversity data, only Shannon data were normally distributed (Shapiro–Wilk 
p value = 0.073). Horizontal black lines indicate significant pairwise comparisons of clinical groups had significantly different mean Chao1 
and Simpson values based on Wilcoxon Sum Rank Test or significantly different mean Shannon values based on Tukey–Kramer HSD p < 0.05 (*), 
p < 0.001 (**), and p < 0.0001 (***); p < 0.05 was considered a significant difference
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Differentially abundant taxa
At the genus level, all three clinical groups (CT, MET, 
and PUS) were highly diverse with the top 12 most 
abundant genera only accounting for 10.3%, 8.8%, and 
10.1% of mean relative abundance, respectively. In 

other words, all other genera made up 89.7%, 91.2%, 
and 89.9% of CT, MET, and PUS sample microbiota. 
Within the top 12 most abundant genera, Bacteroides 
was the most abundant (1.2% of CT, 1% of MET, 1.1% of 
PUS), while the least abundant was Trueperella (0.64% 
of CT, 0.56% of MET, 0.64% of PUS).

Fig. 2 Nonmetric multidimensional scaling (NMDS) based on Bray–Curtis (BC) dissimilarity of cumulative sum scaling normalized genus‑level read 
counts of bovine intrauterine microbiome. Ellipses correspond to 95% confidence interval. A NMDS ordination by three clinical groups of cows 
sampled (CT = 32, MET = 33, and PUS = 31) (ANOSIM‑ analysis of similarities, p = 0.001, R = 0.128; PERMANOVA‑ permutational multivariate analysis 
of variance, R2 = 0.085, p = 0.001) B NMDS ordination by clinical groups of cows samples with MET cows (i.e., cows with clinical signs of metritis) 
stratified by treatment with antimicrobials or not (CT = 32, MET_No Treatment = 23, MET_Treatment = 10, and PUS = 31) (ANOSIM p = 0.001, R = 0.129; 
PERMANOVA R2 = 0.126, p = 0.001)
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Comparative abundance across treatment groups
Upon deploying scatter plot analysis (Fig.  3), we 
unraveled the unique microbial landscapes across vari-
ous treatments, revealing striking differences in organ-
ism abundance among the control (CT), metritis (Met), 
and pus (Pus) groups. For the CT versus MET com-
parison, data points prominently clustered along the 
45° reference line, indicating a group of organisms with 
consistent relative abundances across both treatments. 
However, points significantly deviating from this line 
flagged organisms with pronounced abundance differ-
ences between these two groups. Notably, organisms 
found exclusively in either CT or MET were clearly 
demarcated, emphasizing their contrasting micro-
bial profiles. Specifically, 316 organisms (genera) were 
uniquely associated with the metritis condition com-
pared to the control. For instance, Shigella emerged as 
the most abundant organism specific to the metritis 
condition, whereas 66 genera were exclusive to the con-
trol group.

The CT versus PUS comparison shared some similar-
ities with the former but also revealed distinct patterns. 
While a major portion of organisms again aligned along 
the 45° line, the exclusive organisms for this compari-
son—231 for CT and 139 for Pus—highlighted the 
subtle differences in microbial compositions between 
them. Intriguingly, while CT-exclusive organisms saw 
an uptick in this comparison, those exclusive to Pus 
witnessed a decline.

For the MET versus PUS plot, distinctive microbial 
imprints corresponding to metritis and pus were dis-
cerned. The metritis condition boasted a rich diversity 
with 374 exclusive organisms, contrasted with Pus, 
which had a limited set of 32 exclusives. This observa-
tion provides invaluable insights into their respective 
microbial ecosystems.

Integral to these plots were select genera, namely 
Bacteroides, Porphyromonas, Fusobacterium, Escheri-
chia, and Trueperella, designated as "Disease associ-
ated (Lit.)" in recognition of their documented links to 
disease conditions in the existing literature. Their posi-
tions in the scatter plots underscore their ubiquity and 
high abundance in both conditions across all pairwise 
comparisons. This allows users to hover over individual 
data points, accessing detailed information about each 

organism, thereby offering an enriched visualization 
experience beyond the traditional static displays.

The Venn diagram (Additional file  1: Fig.  1) crafted 
to elucidate shared and unique microbial constituents 
among the CT, MET, and PUS groups further nuanced 
our understanding of the microbial landscape. Central to 
this visualization was a significant intersection of 1,113 
organisms shared across all three treatments, reflecting 
a core microbial community integral to all conditions. In 
contrast with the earlier scatter plots that underscored 
the abundance and specificity of organisms across pair-
wise comparisons, the Venn diagram shed light on inter-
sections and exclusivities. For instance, while the scatter 
plots demarcated organisms exclusive to CT or Met con-
ditions, the Venn diagram quantified this exclusivity: CT 
boasted 48 unique organisms, whereas MET had a more 
expansive unique set with 191 organisms. PUS, in com-
parison, had a more constrained unique microbial signa-
ture with only 14 exclusive organisms.

Diving deeper into shared microbial constituents, 
183 organisms were found at the intersection of CT 
and MET, whereas the CT and PUS overlap housed 18 
organisms (Additional file 1: Fig. 1). The MET and PUS 
comparison again revealed a considerable shared set, tal-
lying 125 organisms. In terms of comprehensive micro-
bial diversity, CT, MET, and PUS treatments comprised 
1,362, 1,612, and 1,270 total organisms, respectively. This 
aligns with the scatter plot observations, which showed 
considerable organism variations across treatments, fur-
ther confirmed by the unique and shared entities in the 
Venn diagram.

Phyla level changes in natural log fold change 
in abundance
To determine if any taxa were differentially abundant 
between clinical groups, ANCOM-BC was used to gen-
erate natural log fold change (LFC) in abundance data. 
Figure  5 presents these data at the phyla level for three 
clinical group comparisons: MET_No_Treatment, MET_
Treatment, and PUS clinical groups compared to CT. For 
MET_No_Treatment samples, seven phyla had increased 
natural LFC in abundance (Ignavibacteriae, Gemma-
timonadetes, Deferribacteres, Chlorobi, Chlamydiae, 
Bacteroidetes, and Aquificae), and the phylum Actino-
bacteria has a decreased natural LFC in abundance when 

Fig. 3 Comparison plots for the read counts at the genus level across three distinct treatment groups: control (CT), metritis (Met), and pus (Pus). 
The dataset was then segmented for three pairwise group comparisons: A CT vs. Met, B CT vs. Pus, and C Met vs. Pus. To facilitate a comprehensive 
visual representation of these comparisons, log2 transformed scatter plots were generated using R. Several genera, namely "Bacteroides", 
"Porphyromonas", "Fusobacterium", "Escherichia", and "Trueperella", were designated as "Disease associated (Lit.)", based on existing literature linking 
these genera to disease conditions

(See figure on next page.)



Page 6 of 18Basbas et al. Animal Microbiome            (2023) 5:59 

Fig. 3 (See legend on previous page.)
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compared to CT. The MET_Treatment samples, when 
compared to CT, had the greatest number of increased 
(natural LFC > 0) (n = 14) and decreased (natural LFC < 0) 
(n = 12) phyla. Of these phyla, three were increased by 
one natural LFC or greater (Thermotogae, Planctomy-
cetes, and Chlorobi) and three were decreased by one 
natural LFC or greater (Evosea, Euglenozoa, and Api-
complexa) when compared to CT. Lastly, PUS samples 
had four phyla with increased natural LFC in abundance 
(Gemmatimonadetes, Chlorobi, Chlamydiae, and Bacte-
roidetes) and the phylum Actinobacteria has a decreased 
natural LFC in abundance when compared to CT.

Genus level changes in natural log fold change 
in abundance
Of the 12 most abundant genera, Dietzia and Micro-
bacterium were significantly decreased in abundance 
in MET when compared to CT. Seven genera, namely 
Bacteroides, Clostridium, Fusobacterium, Phocaeicola, 
Porphyromonas, Prevotella, and Streptococcus were sig-
nificantly increased in abundance in MET when com-
pared to CT. The three genera that were unchanged in 

MET samples compared to CT were Escherichia, Hist-
ophilus, and Trueperella.

To compare significantly increased or decreased abun-
dances for genera for all three clinical group comparisons, 
a heatmap was created (Fig. 5). Seven genera (Liquorilac-
tobacillus, Cyclobacterium, Owenweeksia, Anoxybacter, 
Flavihumibacter, Dyadobacter, and Oceanobacillus) were 
increased in natural LFC abundance (minimum = 0.35 
and maximum = 0.66) for MET_No_Treatment, MET_
Treatment, and PUS clinical groups compared to CT. 
Conversely, three genera (Pseudonocardia, Glutamici-
bacter, and Rathayibacter) decreased in natural LFC 
abundance (minimum = − 0.54 and maximum = − 0.88) 
for all three clinical groups when compared to CT.

To determine whether genera often associated with 
metritis or uterine health by other studies were differ-
entially abundant within our sample population, a heat 
map was created in Fig. 6 to analyze natural LFC in the 
abundance of MET_No_Treatment and MET_Treatment 
compared to CT for 31 selected genera. None of the 
selected genera were significantly changed in natural LFC 
abundance for Pus when compared to CT.

Fig. 3 continued
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For MET_No_Treatment, 21 genera (e.g. Trueperella, 
Prevotella, Porphyromonas, Fusobacterium, Escherichia, 
and Bacteroides) were not significantly different when 
compared to CT. Four genera (Streptobacillus, Filifactor, 
Citrobacter, and Chlamydia) were significantly increased 
in natural LFC of abundance in MET_No_Treatment 
samples when compared to CT. Six genera (Streptomyces, 
Micrococcus, Corynebacterium, Brucella, Brevibacterium, 
and Bifidobacterium) were significantly decreased in nat-
ural LFC of abundance in MET_No_Treatment samples 
when compared to CT.

For MET_Treatment, four genera (e.g. Porphyromonas, 
Fusobacterium, Enterococcus, and Chlamydia) were not 
significantly different when compared to CT. Ten genera 
(e.g. Streptobacillus, Salmonella, Filifactor, Cryptococ-
cus, Citrobacter, Arcanobacterium, and Anaerococcus) 
were significantly increased in natural LFC of abundance 
in MET_Treatment samples when compared to CT. Sev-
enteen genera (e.g. Trueperella, Streptomyces, Staphylo-
coccus, Prevotella, Micrococcus, Klebsiella, Escherichia, 
Corynebacterium, Brucella, Brevibacterium, Bifidobac-
terium, Bacteroides, and Bacillus) were significantly 
decreased in natural LFC of abundance in MET_Treat-
ment samples when compared to CT. Of these 17 gen-
era, only Micrococcus was decreased by one natural LFC 
or greater in MET_Treatment when compared to CT. 
Ignoring stratification by antimicrobial treatment, three 
genera (Streptobacillus, Filifactor, and Citrobacter) were 
increased and six genera (Streptomyces, Micrococcus, 
Corynebacterium, Brucella, Brevibacterium, and Bifido-
bacterium) were decreased in natural LFC of abundance 
in MET samples compared to CT.

Discussion
Comparison to previous shotgun metagenomics studies
This study represents the currently largest cross-sec-
tional metagenomic characterizations of the uterus of 
cows with and without metritis, with a total of 95 animals 
from 24 commercial dairy farms. Furthermore, the data 
generated represents the deepest current sequencing 
coverage for the uterine microbiome of dairy cows, using 
high sequencing depth for individual samples. Together, 
the findings from our study represent a broad population 
of dairy farms in California, with a genera-level charac-
terization and comparison of the microbiota between 
cows with and without metritis. Most research in bovine 
metritis and uterine microbiota has relied on amplicon 
16S rRNA sequencing [21, 22]. As of early 2023, only one 
study, conducted by Bicalho et  al. (2017), analyzed the 
bacterial microbiota present in the bovine uterus using 
shotgun metagenomics [6]. Their study performed shot-
gun metagenomics sequencing on uterine swabs samples 
collected from 20 cows (nine healthy and eleven metritis 

cows) located on a single dairy farm. Their study resulted 
in 6.3 million quality-filtered reads that were then passed 
through MG-RAST [23] annotation and relied on the 
alignment of 16S rDNA genes to classify bacteria, pro-
ducing nearly 3 million bacterial reads. Of these nearly 
3 million reads, 25,334 reads matched 16S sequences at 
a 97% similarity level. In contrast, our study of 95 sam-
ples resulted in 1.39 trillion raw reads and 1.34 trillion 
quality-filtered reads that were then classified through 
Kraken2 [24]. Genus-level abundance data was then cre-
ated using Bracken [25] resulting in 24,616,858 Kmers 
assigned to a genus for identification accuracy. The high 
sequencing depth of the current study comparatively 
resulted in nearly a thousand-fold increase in the number 
of reads matching a bacterial taxon when compared to 
the Bicalho et al. study. Additionally, the transition from 
bacterial identification by alignment of reads towards 
16S sequences to the use of exact alignment of k-mers 
allowed more accurate taxonomic identification of bacte-
rial sequence data [26]. Furthermore, MG-RAST advises 
against classification past the genus level, while both 
Kraken2 and Bracken provided accurate species-level 
identification [27]. The majority of the analyses presented 
here were restricted to genus enabling comparison to 
other studies on the uterine microbiome characterization 
during metritis, with analysis at the species level pending.

α and β diversity of the intrauterine microbiome
Analysis of α-diversity and β-diversity was conducted to 
assess variation in the type or abundance of microbes 
between metritis clinical groups. Current research sug-
gests that cows with metritis or in the process of devel-
oping metritis have a dysbiosis of the uterine microbiota 
characterized by homogenization of taxa and a decrease 
in bacterial richness [22, 28]. Figure  1A displays the 
Chao1 index values for the three clinical groups and the 
only significant difference was between CT and MET 
samples, with MET samples having higher mean Chao1 
index values. Because Chao1 estimates of microbial rich-
ness that is heavily influenced by rare taxa, the higher 
Chao 1 index for cows with metritis could represent 
the invasion of the diseased uterus by less commonly 
observed microbes due to a disruption in the resistance 
to colonization that otherwise would be observed in 
a healthy uterus [29]. Conversely, Fig.  1B and C display 
Simpson and Shannon index values, two measures of 
diversity that account for not only the number of spe-
cies present but also the relative abundance of each spe-
cies. Lower Simpson and Shannon indices are observed 
for MET compared to CT, aligning with that observed 
in previous studies [15]. As both Simpson and Shannon 
α-diversity indices account for microbial richness and 
abundance, these indices provide a more representative 
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estimation of the microbial community presence within 
samples. Notably, the lack of a significant difference for 
the α-diversity indices between MET and PUS samples 
supports the hypothesis of a low microbial abundance 
in the uterus of cows with abnormal vaginal discharge 
as used for case definition for MET and PUS here, with 
a wide range of opportunistic microbes. For MET, a con-
trasting high richness and low diversity was observed, 
which is the characteristic of dysbiosis.

To analyze β-diversity between clinical groups, NMDS 
ordinations were generated for CT, MET, and PUS clini-
cal groups (Fig. 2A), and these same clinical groups with 
an additional group, MET_Treatment, generated for 
samples taken from MET cows that had received antimi-
crobial treatment due to metritis (Fig. 2B). Although the 
colored ellipses representing the 95% confidence intervals 
for the various clinical groups analyzed in Fig. 2 overlap, 
both ordinations in Fig. 2A and B were found to be signif-
icantly different by PERMANOVA and ANOSIM. While 
NMDS provides a visual approach to access β-diversity, 
PERMANOVA, and ANOSIM statistically test for sig-
nificant differences between groups and is a mainstay 
of microbiome studies [30]. This discrepancy between 
ordination and statistical analysis of the β-diversity 
between cows with metritis and without metritis has 
also been observed by other studies [15, 17]. Interest-
ingly, in Fig. 2B the 95% confidence intervals for CT and 
MET_Treatment is only slightly overlapping, with a clear 
separation of the two clinical groups in the 3D NMDS in 
Additional file 1: Fig. 3B. This suggests that the combined 
presence of metritis and antimicrobial treatment resulted 
in a significant effect in distinguishing the uterine micro-
biome when compared to CT. This is in agreement with 
the findings of Jeon et  al. 2021 in which ceftiofur treat-
ment of dairy cows with metritis leads to a decreased rel-
ative abundance of Fusobacterium. Conversely, Jeon et al. 
(2018) found Porphyromonas significantly increased after 
ceftiofur treatment [31, 32].

Differential abundance of bacterial genera previously 
associated with metritis
Previous culture-independent studies, such as PCR-
type methods and 16S rRNA sequencing, have observed 
a higher relative abundance of Bacteroides, Porphy-
romonas, and Fusobacterium in the uterine microbiota 
of cows with metritis, and a decrease in the relative 
abundance of these same genera in healthy cows [9, 28]. 
In addition to these three genera, species in the genera 
Escherichia and Trueperella continue to be pathogens of 
interest in the etiology of bovine metritis [21]. Figure  3 
confirmed Bacteroides, Porphyromonas, Fusobacterium, 
Escherichia, and Trueperella as genera present more 
abundantly in MET when compared to CT; however, the 

difference in mean relative abundances for these gen-
era between CT, and MET was not significant (adjusted 
p > 0.05) (Table  1). To further investigate if these five 
genera, and 26 additional genera of interest, were differ-
entially abundant between clinical groups a heatmap of 
natural LFC in abundance was created using data from 
ANCOM-BC analysis (Fig.  6). Notably, none of these 
five genera previously identified as present at a higher 
prevalence were found to be significantly different in 
abundance when comparing MET_No_Treatment to CT 
(Fig. 6, Additional file 2: Table 3). A significant decrease 
in abundance of Bacteroides, Escherichia, and Truep-
erella in MET_Treatment compared to CT cows was 
observed, suggesting antimicrobial treatment with antibi-
otics (the most commonly used in the farms sampled was 
ceftiofur), was associated with a lower bacterial load of 
these genera.

The lower abundance of Trueperella is further sup-
ported by the lower natural LFC in the abundance of the 
phylum actinobacteria (i.e., Actinomycetota), of which 
Trueperella is a member, for all clinical group compari-
sons versus CT (Fig.  4). This decreased abundance of 
Trueperella in MET_Treatment compared to CT cows is 
unsurprising as previous studies demonstrated low mini-
mum inhibitory concentration values and resistance to 
ceftiofur in E. coli and T. pyogenes isolates collected from 
uterine swabs [20, 33]. A recent 16S rRNA-based study 
analyzing the impact of ceftiofur treatment on the uterine 
microbiome of cows with metritis revealed a significant 

Table 1 Natural log fold change of abundance data collected 
from ANCOM‑BC for MET vs. CT for top 12 most abundant genera

a Natural log fold change of abundance for MET (regardless of antimicrobial 
treatment) vs. CT for top 12 most abundant genera
b Mean of percent relative abundance for top 12 genera for all MET samples, 
regardless of antimicrobial treatment (n = 33)

“–” Indicates genera with non-significant natural log fold change values for MET 
vs CT (p adjusted > 0.05)

Genera Natural log fold 
change of MET vs. 
 CTa

MET (Combined Treatment) 
mean percent relative 
 abundanceb

Bacteroides 0.20 1.03

Clostridium 0.09 0.61

Dietzia − 0.19 0.61

Escherichia – 0.63

Fusobacterium 0.20 1.03

Histophilus – 0.63

Microbacterium − 0.16 0.67

Phocaeicola 0.16 0.64

Porphyromonas 0.19 0.89

Prevotella 0.17 0.79

Streptococcus 0.22 0.70

Trueperella – 0.56
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decrease in the relative abundance of Fusobacterium, in 
contrast to our results [31]. The same study also observed 
that ceftiofur treatment had no significant effect on the 
bacterial load of Porphyromonas and Bacteroides within 
the uterine microbiota of cows with metritis. Interest-
ingly, observations from Jeon et  al. 2021 align with our 
result for Porphyromonas, but contrast our observed 
decrease in natural LFC in abundance of Bacteroides in 
MET_Treatment compared to CT cows. Our data are 
from a cross-sectional study design and limit findings to 
potential causal associations of individual microbes and 
metritis, and therefore further studies would need to be 
conducted to evaluate the potential causation impacts of 

these pathogens in the uterus following treatment or not 
with ceftiofur.

When comparing natural LFC of abundance for MET 
(regardless of antimicrobial treatment) to CT, Bac-
teroides, Fusobacterium, and Porphyromonas were 
increased by 0.2, 0.2, and 0.19 natural LFC, respectively 
(Table  1). Escherichia and Trueperella were not signifi-
cantly different in natural LFC of abundance (adjusted 
p > 0.05). The observed higher natural LFC in the abun-
dance of Bacteroides, Porphyromonas, and Fusobacte-
rium in cows with metritis agrees with previous 16S 
rRNA and shotgun metagenomics-based studies that dis-
covered similar findings [6, 28]. The lack of significance 

Fig. 4 Heatmap of natural log fold changes in abundance of the 26 phyla with an adjusted p < 0.05 for MET_No_Treatment, MET_Treatment, or PUS 
when compared to control. Red indicates increased abundance in the comparison group versus control; blue indicates decreased abundance 
in the comparison group versus control. Zero values in white cells indicate non‑significant log fold change of abundance (adjusted p > 0.05)
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for Escherichia may be explained by the role different 
strains of E. coli play in the pathogenesis of metritis and 
by the decreasing likelihood of Escherichia coli identi-
fication following parturition, however, this should be 
elucidated through a study focusing on WGS of E. coli 
in cows with metritis [34, 35]. Our observed lack of sig-
nificance for Trueperella contrasts previous 16S rRNA 
-based studies that reported the genus as more abundant 
in cows with metritis than cows without metritis [13, 15].

Two additional genera, Micrococcus and Filifactor are 
also of interest due to their large change in abundance, 
as contrasted by other genera, when comparing MET to 
CT (Fig. 6, Additional file 2: Table 3). Specifically, Micro-
coccus was decreased in natural LFC in abundance (-0.66 
and -1.33) and Filifactor was increased in natural LFC 
in abundance (0.53 and 0.94) when comparing MET_
No_Treatment and MET_Treatment to CT, respectively. 
Unlike the five genera previously discussed, both Mic-
rococcus and Filifactor have not commonly been associ-
ated with bovine metritis. A culture-based study of the 

uterine microbiome of cows with and without metritis at 
the time of insemination found Micrococcus to be the  5th 
most isolated genus of bacteria with 7.8% of cows being 
culture-positive [36]. Micrococcus luteus was also the  2nd 
most commonly isolated species in the study explaining 
why the authors found low species diversity within this 
genus. Another culture-based study of the uterine micro-
biome also isolated Micrococcus luteus from cows with 
and without metritis (n = 6 out of 279) [37]. The lower 
natural LFC in the abundance of Micrococcus in MET 
cows compared to CT may be due to a lower overall bac-
terial diversity of the cow’s uterus during metritis versus 
without metritis, as already described above. Bacteria in 
the genus Filifactor have been either associated with or 
found in high abundance in cows with metritis [9, 10]. In 
particular, Jeon et  al. 2015 observed a significant asso-
ciation between Bacteroides and Filifactor in cows with 
metritis. Little is known about the role Filifactor in the 
development of metritis, however the species Filifac-
tor alocis has been cited as an emerging pathogen in the 

MET_No 
Treatment

MET_Treatment PUS

0.42 0.66 0.36

0.40 0.79 0.35

-0.71 -0.77 -0.54

0.48 0.83 0.41

0.36 0.66 0.40

0.37 0.64 0.39

0.49 0.82 0.54

-0.54 -0.88 -0.60

0.41 0.57 0.51

-0.76 -0.69 -0.74

Fig. 5 ANCOM‑BC heatmap of natural log fold changes in abundance of 10 genera for which pairwise comparisons between MET_No_Treatment, 
MET_Treatment, and PUS when compared to CT had an adjusted p < 0.05. Colors correspond to 25% increments of natural log fold changes 
in abundance. Purple indicates decreased abundance in the comparison group versus the control. Green indicates increased abundance 
in the comparison group versus the control. A star indicates non‑significant (adjusted p > 0.05) for the clinical group comparison for that genus
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development of human periodontal disease, a polymicro-
bial disease affecting the tissues around the teeth [38, 39]. 
As bacteria in the genus Filifactor have been previously 
associated with metritis and have been implicated in the 
development of another disease with a multifactorial eti-
ology, further research into the role of Filifactor within 
the uterine microbiome may prove insightful.

Differential abundance of bacterial genera significant 
for all clinical group comparisons
Ten genera were found to be significantly 
(p-adjusted < 0.05) increased or decreased in natural 
LFC of abundance for all three clinical group pairwise 
comparisons (MET_No_Treatment, MET_Treatment, 
and PUS when compared to CT) and are presented in 
Fig.  5. Seven genera (Liquorilactobacillus, Cyclobac-
terium, Owenweeksia, Anoxybacter, Flavihumibacter, 

Dyadobacter, and Oceanobacillus) were found to be 
increased in natural LFC of abundance for all three clini-
cal group comparisons suggesting an association with 
uterine disease.

Members of the genus Liquorilactobacillus are lac-
tic acid bacteria most often isolated from fermented 
plant materials (e.g. ciders, molasses, cocoa beans, and 
olives) [40]. Many strains of Liquorilactobacillus are 
capable of producing the exopolysaccharide dextran 
from sucrose [41]. Interestingly, Liquorilactobacillus 
satsumensis isolated from water kefir (also known as 
tibicos), a fermented beverage produced from incu-
bating water kefir grains in water with added sugar 
and fruits, produced an exopolysaccharide, that when 
hydrolyzed, was observed to promote the growth of 
Bacteroides within an ex vivo model of the large bowel 
[42]. This synergy between Liquorilactobacillus and 

Fig. 6 ANCOM‑BC heatmap of natural log fold changes in abundance of 31 selected genera for which MET_No_Treatment and/or MET_Treatment 
when compared to CT had an adjusted p < 0.05. PUS was not included as none of the selected genera were significant for this clinical group. 
Colors correspond to 25% increments of natural log fold changes in abundance. Purple indicates decreased abundance in the comparison group 
versus the control. Green indicates increased abundance in the comparison group versus the control. A star indicates non‑significant (adjusted 
p > 0.05) for the clinical group comparison for that genus
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Bacteroides, a genus frequently associated with met-
ritis [9, 28], may explain why Liquorilactobacillus was 
increased in natural LFC of abundance within cows 
presenting with uterine disease.

The first reported isolation of the genus Oceanoba-
cillus was from deep-sea sediment at a depth of 1050 m 
in 2001 [43]. Since then the genus has been detected 
in various environmental samples, including Korean 
Kimchi, human gut, and pork at slaughter [44–46]. In 
general, Oceanobacillus are Gram-positive, obligate 
aerobes or facultative anaerobes, and moderately halo-
philic rods. One isolate taken from pork samples was 
positive for the antimicrobial resistance genes blaTEM 
and blaCTX-M that confer resistance to β-lactam anti-
biotics [46]. Oceanobacillus was detected previously in 
uterine samples of cows with metritis and cows with-
out metritis but appears to be a rarely identified mem-
ber of the uterine microbiome [16].

The other five genera found to be increased in natu-
ral LFC of abundance for all three clinical group com-
parisons have not previously been associated with the 
bovine uterine microbiome, suggesting they may have 
been contaminants in our samples. More research is 
needed to reveal why bacteria in the genera Cyclobac-
terium [47], Owenweeksia [48], Anoxybacter [49], Fla-
vihumibacter [50], and Dyadobacter [51] were detected 
in our uterine swab samples.

The genera Pseudonocardia, Glutamicibacter, and 
Rathayibacter decreased in natural LFC abundance 
for all three clinical groups when compared to CT 
(Fig.  5). Pseudonocardia are aerobic, Gram-positive, 
non-motile bacteria that may form hyphae and have 
primarily been isolated from soil and other environ-
mental samples [52]. The genus has been identified 
in 16S rRNA-based studies dealing with the microbi-
ome of reproduction, including from vaginal and rec-
tal swabs taken from human mothers and amniotic 
fluid samples from healthy human pregnancies [53, 
54]. Pseudonocardia has also been cultured from cattle 
manure and was detected in low abundance (< 0.01% 
prevalence) in a 16S rRNA-based study of bovine 
uterine swabs [9, 55]. Given its low abundance within 
bovine uterine swabs and isolation from cattle manure, 
it is possible that Pseudonocardia was in the uterine 
microbiome, but could also have been an environmen-
tal contaminant.

Glutamicibacter are aerobic, gram-positive, rod-
shaped bacteria often found in soil and often used in 
bioremediation [56, 57] and Rathayibacter are Gram-
positive, aerobic, non-motile, irregularly shaped bac-
teria first isolated on annual grasses [58]. As primarily 
environmental bacteria, the role of these two genera in 
the bovine uterine microbiome remains unknown.

Conclusion
Our findings support that uterine samples from cows 
without metritis (CT) had increased α-diversity but 
decreased β-diversity when compared to metritis or PUS 
cows, characteristic of dysbiosis. The microbiomes of 
CT and MET clinical groups were different at the genus 
level and differentiated based on antimicrobial treatment 
history. ANCOM-BC detected no significant difference 
in the abundance of Bacteroides, Porphyromonas, Fuso-
bacterium, Escherichia, or Trueperella when compar-
ing MET_No_Treatment to CT. However, Bacteroides, 
Escherichia, and Trueperella were decreased in abun-
dance in MET_Treatment compared to CT. When com-
paring MET to CT (regardless of treatment) Bacteroides, 
Porphyromonas, and Fusobacterium were higher in natu-
ral LFC of abundance, while Escherichia and Trueperella 
were not significantly different in natural LFC of abun-
dance, calling into question the previous hypothesis for 
the role of these two genera with bovine metritis. Liq-
uorilactobacillus and Oceanobacillus, two genera either 
infrequently or not previously associated with bovine 
uterine disease, were found to be more prevalent in cows 
with metritis and have biologically plausible explanations 
for this observation. In summary, our findings highlight 
that MET cows have an increased abundance of Bacte-
roides, Porphyromonas, and Fusobacterium when com-
pared to CT and PUS, and support the need for further 
studies to better understand their potential causal role in 
metritis pathogenesis.

Material and methods
Sample collection
Samples used for metagenomic analyses were collected 
as part of a study analyzing AMR to common antimi-
crobials used for the treatment of bovine metritis for 
which the University of California Institutional Animal 
Care and Use Committee (IACUC; #20,620) approved 
all experimental procedures conducted with animals and 
the UC Davis Institutional Review Board (IRB) Adminis-
tration granted an exemption (IRB ID 1307716–1) [20].

Our population-based epidemiological used a cross-
sectional study designed to collect uterine swabs from 
post-partum cows between 3 and 21 days in milk (DIM). 
A convenience sample from 25 commercial dairy farms 
were selected as the study population to represent the 
target population of dairy farms in California (Additional 
file  2: Table  4). For this purpose, farms sampled were 
located in Northern California region, the Sacramento 
region, and the Central Valley, which represent over 95% 
of milking dairy cattle in California [59]. California has 
over 5.1 million lactating dairy cows and is the State with 
the largest population of dairy cattle in the U.S. [59].
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Cows sampled were classified into three clinical groups 
based on vaginal discharge (VD) characteristics: [60] nor-
mal discharge (CT): clear lochia, clear mucus, or no vagi-
nal discharge, metritis discharge (MET): watery, reddish 
or brownish, and fetid, and purulent discharge (PUS): 
non-fetid purulent or mucopurulent vaginal discharge. 
Samples were collected based on the diagnosis conducted 
for each animal immediately prior to the sample, which 
is described in detail in a prior publication for this study 
population [20]. Briefly, researchers (R.V.P. and A.G.) col-
lected vaginal discharge from cows using a Metricheck™ 
device (Simcrotech, Hamilton, New Zealand) cleaned 
with 2% chlorhexidine gluconate solution between cows. 
The VD was evaluated by sight and smell, and cows 
were assigned to the corresponding clinical presenta-
tion group. A sub-group was also evaluated in the study 
for the MET group, with MET_Treatment representing 
MET sampled cows that had received individual antimi-
crobial treatment in the last 14  days prior to sampling, 
and MET_No_Treatment for MET sampled cows that did 
not receive individual antimicrobial treatment in the last 
14 days prior to sampling; further description of sampling 
approach and treatments can be found in previously pub-
lished manuscript for this study population [20]. As a 
population-level cross-sectional epidemiological study, a 
limitation of our study is that detailed information on the 
dosage, number of treatments, and route of administra-
tion for treatments received by cows was not available, 
and therefore evaluated as a combined treatment effect, 
and the unbalanced enrollment of cows per treatment 
group at the farm level (Additional file 2: Table 4). As a 
population-based cross-sectional study, the goal was to 
sample multiple farms to provide a study population that 
represented the diversity of the target population (CA 
dairy farms), and a limitation of this type of sampling 
approach is that no associations from herd-level farm 
management practices can be drawn.

Researchers cleaned the vulva using dry paper tow-
els and 70% isopropyl alcohol prior to uterine swab col-
lection. A 30-inch double-guarded sterile culture swab 
(McCullough; Jorgensen Labs Inc., Loveland, CO, USA) 
was gently passed through the vulva and cervix until 
reaching the uterine body. The swab was exposed and 
rolled against the uterine wall, retracted within the dou-
ble sheath, removed from the cow, and placed imme-
diately in sterile cryogenic tubes (Thermo Scientific™ 
Nalgene™, Rochester, NY). These tubes were transported 
on ice until storage in the laboratory at -80℃ for future 
DNA extraction.

Sample selection
To select 95 out of the 307 swabs collected, certain crite-
ria were created to prioritize swabs that would undergo 

DNA extraction and sequencing. We selected swabs col-
lected from cows less than or equal to 14 DIM at sam-
pling (n = 224). When possible, one swab from a MET 
cow matching the DIM criteria was randomly selected 
from each of the 25 farms enrolled in the study. After the 
selection of a MET cow, swabs from CT and PUS cows 
from the same farm were randomly selected for each of 
the 25 farms using a random number generator (Excel; 
Microsoft Corp., Redmond, WA, USA). Due to DNA 
quality issues, swabs chosen for sequencing were biased 
towards those acquired towards the end of the collection 
period as preliminary DNA extractions revealed more 
recent swabs resulted in much higher quality gDNA. 
After final selection (n = 95), samples were chosen from 
cows belonging to CT (n = 31), MET (n = 34), and PUS 
(n = 30) clinical groups and belonged to 24 of the 25 
farms sampled in the initial study.

DNA extraction
DNA was extracted using the QIAamp DNA minikit 
(Qiagen, Valencia, CA) according to the manufacturer’s 
instructions for buccal swabs. The addition of the follow-
ing steps to increase the recovery of high-quality DNA 
was based on methodology from previous publications 
[61]. Frozen swabs were placed in sterile 2 mL microcen-
trifuge tubes with 400 µL of buffer AL and left to thaw 
at room temperature for 30 min. Once thawed, the swab 
was removed with sterile forceps and the microcentrifuge 
tube was centrifuged at 13,200 × g for 10 min before the 
supernatant was discarded and the pellet re-suspended 
in 245 µL of buffer AL. 5 µL of lysozyme (50  mg/mL; 
ThermoFisher Scientific, Waltham, MA) and 150 µL of 
mutanolysin diluted to 1000 Units/mL from Streptomy-
ces globisporus ATCC 21553 (Sigma-Aldrich, Saint Louis, 
MO,) were added to each sample before incubating at 
37℃ for one hour. DNA extraction was performed as 
specified by QIAamp DNA minikit protocol. To ensure 
adequate purity for DNA sequencing, eluted DNA was 
purified according to the Zymo Genomic DNA Clean & 
Concentrator kit (Zymo Research, Irvine, CA). After sub-
sequent DNA extraction and purification, DNA quantifi-
cation was conducted for all samples using a NanoDrop 
 OneC (Thermo Fisher Scientific, Wilmington, DE).

Library prep and metagenomic sequencing
Illumina DNA libraries were prepared using the 
seqWell plexWell LP384 Library Preparation kit 
(seqWell, Beverly, MA) using 10  ng of genomic DNA. 
The prepared libraries were amplified with 8 PCR 
cycles, analyzed using Bioanalyzer 2100 (Agilent, 
Santa Clara, CA), quantified with Qubit (Life Tech-
nologies, ThermoFisher Scientific, USA), and combined 
into one pool at equimolar ratios. The library pool 
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was quantified by qPCR with the Kapa Library-Quant 
kit (Kapa Biosystems/Roche, Basel, Switzerland) and 
sequenced on an Illumina NovaSeq system (Illumina, 
San Diego, CA) with paired-end 150-bp reads.

Bioinformatics
Raw sequence data were trimmed (Nextera adapters 
and low-quality sequence) using Trimmomatic (ver-
sion 0.39; command: trimmomatic PE [input] [output] 
ILLUMINACLIP:[adapters]:2:40:15 LEADING:2 TRAIL-
ING:2 SLIDINGWINDOW:4:15 MINLEN:50) [62] and 
reads assessed for quality at each step using FastQC 
(version 0.11.9). Trimmed and quality filtered reads 
were sorted into bovine and non-bovine reads using 
the sorting function “classified-out” in Kraken2 (version 
2.0.8) [24], with bovine genome reference (USDA ARS-
UCD1.2; RefSeq assembly accession: GCF_002263795.1). 
Microbial reads were identified from non-bovine reads 
using the classification function in Kraken2, using kraken 
database of microbes from RefSeq, built [May 5, 2021] 
using standard Kraken 2 database module reference 
libraries (archaea, bacteria, viral, fungi, protozoa, Uni-
Vec_Core), as previously described [63]. Microbial reads 
were calculated to form phyla, genus, and species level 
taxa abundances using Bracken (version 2.6.1; Bracken 
database compiled from microbial Kraken2 database 
used, constructed for k-mer size 35nt and read length 
150nt) [25].

Shotgun metagenomics sequence data and availability
Sequencing resulted in a total of 1,385,735,271 raw 
paired-end reads. After quality trimming, removal of 
bovine sequence, and assignment of microbial reads 
to genera, 95 samples resulted in a total of 24,616,858 
reads prior to CSS normalization. The mean number 
of genus-level reads per sample was 256,425 (95% CI: 
124,471–388,379). After CSS normalization, 95 samples 
resulted in a total of 135,190 reads. The mean number of 
genus-level reads per sample was 1,408 (95% CI: 1,265–
1,551). Sequencing reads for all samples analyzed in this 
project have been deposited under NCBI Bioproject 
PRJNA186441.

When compared to prior uterine microbial charac-
terization using a metataxonomic approach such as 16S 
rRNA gene sequencing, a metagenomic approach like 
shotgun metagenomic sequencing (SMS), 16S rRNA may 
reveal only part of a microbial community discovered by 
SMS, and therefore SMS results in a novel data that has 
more power to identify less abundant taxa, which can be 
biologically meaningful, especially when comparing dis-
ease and healthy microbial communities [63].

Diversity analysis
Cumulative Sum Scaling (CSS) was used to normalize 
reads via metagenomeSeq (version 1.42) in RStudio (ver-
sion 4.2) at the genus-level [64, 65]. To facilitate diversity 
analyses, prior to the creation of a phyloseq object, Taxa-
llnomy was used to create a hierarchical taxa table  [66]. 
Phyloseq objects were created using both CSS-normal-
ized and non-normalized read counts [67]. Using non-
normalized data, α diversity metrics (Shannon index and 
Chao1) were calculated at the genus level. After testing 
for normality via Shapiro–Wilk test, significant differ-
ences between clinical groups was tested using the Wil-
coxon Sum Rank test for Chao1 and Simpson values and 
the Tukey–Kramer HSD test for Shannon values in JMP 
Pro 16. The α diversity metrics were graphed using the 
“alpha_boxplot” function of the Amplicon package from 
microbiome using RStudio (Fig. 1) [68]. P ≤ 0.05 was con-
sidered a significant difference.

β diversity was visualized at the genus-level using 
Bray–Curtis dissimilarity distances calculated from CSS 
normalized read count data using nonmetric multidi-
mensional scaling (NMDS) using the “ordinate” function 
of phyloseq (version 1.40) in RStudio [67]. Ordination 
fit was assessed using stress values and when stress val-
ues ≥ 0.2 were obtained, NMDS was repeated with an 
increased trymax of up to 200 until stress values < 0.2 
were obtained. Two NMDS ordinations were created, 
Fig.  2A analyzing β diversity between clinical groups of 
cows sampled (CT = 31, MET = 34, and PUS = 30) and 
Fig.  2B analyzing β diversity between the same clinical 
groups, but with samples from MET cows separated by 
whether cows sampled received antimicrobial treatment 
within fourteen days prior to intrauterine swab collec-
tion (CT = 31, MET_No_Treatment = 25, MET_Treat-
ment = 9, and PUS = 30). Colored ellipses were added 
to represent the 95% confidence interval for the various 
clinical groups. Three-dimensional scatterplots of both 
NMDS ordinations (Additional file 1: Fig. 3) were created 
using the “beta_diversity_3d” function of plotly_microbi-
ome (version 0.0.9) [69].

For both NMDS ordinations, significant differences 
were tested by performing permutational multivari-
ate analysis of variance (PERMANOVA) using 999 per-
mutations and by analysis of similarities (ANOSIM) via 
the “adonis2” function of the vegan package (version 
2.6–4) within RStudio. For PERMANOVA, differences 
were considered significant when p-adjusted < 0.01. For 
ANOSIM, differences were considered significant when 
p-adjusted < 0.01. For PERMANOVA, post hoc pair-
wise comparisons between groups (Additional file  2: 
Table 4–1) were conducted using “pairwise.adonis” with 
P values adjusted using Benjamini–Hochberg [70]. Fol-
lowing PERMANOVA, the “betadisper” function was 
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used to test for homogeneity of multivariate dispersion 
for NMDS of clinical groups for cows sampled and for 
NMDS of clinical groups, but with samples from MET 
cows separated by antimicrobial treatment. Pairwise 
ANOSIM between clinical groups of cows sampled and 
between clinical groups, but with samples from MET 
cows separated by antimicrobial treatment was also con-
ducted with P values adjusted using Benjamini-Hochberg 
(Additional file 2: Table 2).

Taxa distribution outputs, from analysis with Kraken2/
Bracken, were graphed for supplemental figures by a 
python script using the following packages: Pandas (ver-
sion 2.0.1, dataframe functions), Seaborn (version 0.12.2, 
heatmap function), Matplotlib (version 3.7.1, figure alter-
ations), and are presented as a heatmap in Additional 
file 1: Fig. 3.

Venn diagram
To discern both the common and distinct organisms 
across the three treatment groups—metritis (Met), pus 
(Pus), and control (CT)—we constructed a Venn dia-
gram. This diagram visually highlights the intersections 
and distinctions in organism presence among the treat-
ment groups. Each segment of the Venn diagram corre-
sponded to a specific treatment, with overlapping areas 
indicating organisms shared between treatments. In 
contrast, non-overlapping portions indicate organisms 
unique to a single treatment (Additional file 1: Fig. 1).

Comparison plots
Read counts of genus level, derived from Bracken analy-
sis, were normalized to ascertain relative abundance val-
ues. This was achieved by dividing the raw abundance 
of each organism by the total abundance within its cor-
responding sample. This normalized data allowed us to 
compute average abundances across three distinct treat-
ment groups: control (CT), metritis (Met), and pus (Pus). 
The dataset was then segmented for three pairwise group 
comparisons: CT vs. Met, CT vs. Pus, and Met vs. Pus 
(Fig. 3). To facilitate a comprehensive visual representa-
tion of these comparisons, log2 transformed scatter plots 
were generated using R. Several genera, namely "Bacte-
roides", "Porphyromonas", "Fusobacterium", "Escheri-
chia", and "Trueperella", were designated as "Disease 
associated (Lit.)", based on existing literature linking 
these genera to disease conditions.

Differential abundance testing
Analysis of Compositions of Microbiomes with Bias 
Correction (ANCOM-BC) (version 2.0.2) was used to 
detect differences in microbial compositions between 
clinical groups [71]. CSS normalized read count data 
was input into ANCOM-BC, which was selected as 

it provides P values and confidence intervals for each 
taxon, controls the false discovery rate, and is rela-
tively computationally simple to implement. ANCOM-
BC utilizes the Wilcoxon rank-sum test for identifying 
taxa that are differentially abundant and includes mul-
tiple hypothesis corrections by the Holm-Bonferroni 
method. It is a useful tool for comparing relative abun-
dance between groups due to its capacity to control the 
false discovery rate at nominal levels while maintain-
ing power. An ANCOM-BC detection q value < 0.05 
was considered significant (q values are the P values 
adjusted for the optimized false discovery rate).

ANCOM-BC computes natural log fold changes 
(LFC) between groups and this data was used to cre-
ate heatmaps to compare significant changes between 
clinical groups for various taxa either by using native 
ANCOM-BC code or by the “heatmap” function in 
RStudio. Figure 4 presents a heatmap of natural LFC of 
phyla abundance in MET_No_Treatment, MET_Treat-
ment, and PUS clinical groups compared to CT. Figure 5 
presents a heatmap of natural LFC of the abundance 
of 10 genera for which all three clinical group pair-
wise comparisons (MET_No_Treatment, MET_Treat-
ment, and PUS when compared to CT) were significant 
(p-adjusted < 0.05). Figure 6 presents a heatmap of natural 
LFC in the abundance of 31 selected genera for MET_No 
Treatment and MET_Treatment clinical group pairwise 
comparisons when compared to CT. Data used to create 
Fig.  6 is presented in Additional file  2: Table  3. Table  1 
displays the natural LFC in abundance, along with the 
mean percent relative abundance within MET samples, 
of the top 12 most abundant genera when MET (regard-
less of treatment) was compared to CT.
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