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Abstract
Genetic selection has remarkably helped U.S. dairy farms to decrease their carbon footprint by more than doubling 
milk production per cow over time. Despite the environmental and economic benefits of improved feed and milk 
production efficiency, there is a critical need to explore phenotypical variance for feed utilization to advance the 
long-term sustainability of dairy farms. Feed is a major expense in dairy operations, and their enteric fermentation 
is a major source of greenhouse gases in agriculture. The challenges to expanding the phenotypic database, 
especially for feed efficiency predictions, and the lack of understanding of its drivers limit its utilization. Herein, 
we leveraged an artificial intelligence approach with feature engineering and ensemble methods to explore the 
predictive power of the rumen microbiome for feed and milk production efficiency traits, as rumen microbes play 
a central role in physiological responses in dairy cows. The novel ensemble method allowed to further identify 
key microbes linked to the efficiency measures. We used a population of 454 genotyped Holstein cows in the U.S. 
and Canada with individually measured feed and milk production efficiency phenotypes. The study underscored 
that the rumen microbiome is a major driver of residual feed intake (RFI), the most robust feed efficiency 
measure evaluated in the study, accounting for 36% of its variation. Further analyses showed that several alpha-
diversity metrics were lower in more feed-efficient cows. For RFI, [Ruminococcus] gauvreauii group was the only 
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Background
Over the last 60 years, the use of genetic selection has 
helped more than doubling the milk produced per cow 
and contributed to improving dairy farms’ sustainabil-
ity and environmental stewardship [1–4]. Genetically 
selecting cows that can decrease the dairy carbon foot-
print has been one of the most promising approaches to 
date among almost 100 strategies tested to reduce global 
warming and improve farm sustainability [5]. Initial stud-
ies show that retaining in the herd cows that are more 
efficient in converting feed into milk (e.g., feed efficient) 
could reduce total methane (CH4) emissions from 11 to 
26% in 10 years [3]. In another study that measured the 
potential CH4 reduction showed that including feed effi-
ciency in breeding programs could reduce 0.41-0.43  g 
of CH4 per kg of milk produced (e.g., ECM) [6]. How-
ever, even with the success of genomic selection and 
other feasible approaches, achieving the target of limit-
ing global warming to 1.5  °C by 2030 established by the 
Paris Agreement will only be possible with the full global 
implementation of these strategies [5, 7, 8]. Even then, 
the 1.5 °C for 2050 is not expected to be met due to the 
offsetting effects of rising CH4 emissions from increased 
meat and milk demands for human consumption [5]. 
Therefore, a parallel further development of effective mit-
igation approaches tied with a continuous optimization 
of animal productivity that contributes to achieving the 
established climate targets and ensuring the sustainabil-
ity of the dairy industry and global human population is 
urgently needed.

Although several feed and milk production efficiency 
traits have been explored for genomic selection, such as 
gross feed efficiency measures (kg milk produced/kg feed 
intake), residual feed intake (RFI) is a major contribu-
tor to the net merit of dairy cows and the feed efficiency 
metric used to calculate other traits, such as feed saved 
[9–11]. The importance of RFI relies on the robustness 
of the trait that corrects the gross feed efficiency to body 
weight, body energy changes over time, and parity of the 
cow, yielding an efficiency measure that more realistic 
represents the true feed efficiency of a cow [12]. In terms 
of RFI applicability, the trait has been reported to have 
heritability and repeatability across lactation of 0.14 and 
0.24, respectively, in U.S. Holstein cows, which suggests 
that there is potential for genetic selection [11]. However, 

the difficulty in collecting overall feed efficiency pheno-
types (i.e., the necessity to measure daily individual feed 
intake) is exacerbated for RFI that also requires indi-
vidual body weight and body energy changes over time, 
and so limits the speed by which the reference population 
can be expanded for genomic predictions and poses a 
challenge in the selection of feed-efficient cows [13–15]. 
Thus, tracing all sources of variation that can be used to 
improve RFI prediction and more quickly expand the ref-
erence population is paramount to reliably retain in the 
herd highly feed-efficient cows or even improve the feed 
efficiency status of less efficient ones [7].

Amongst RFI sources of variation, the rumen microbi-
ome plays a key role in converting plant polysaccharides 
into energy available to the animal, which accounts for 
up to 70% of cattle’s total caloric requirements [16–18]. 
However, ruminal fermentation of dietary nutrients 
also has some inefficiencies, and waste products such as 
ammonia, CO2, and CH4 are produced, which only the 
latter can represent 5.7 to 7.5% of the cow’s gross energy 
intake that is wasted [17, 19, 20]. These facts have made 
the rumen microbiome modulation a focal point for 
efforts to optimize dietary nutrient conversion into milk 
[16–18, 21–23]. Notably, cows that are naturally more 
feed efficient have been reported to potentially harvest 
more energy from the same nutrient intake [4, 21], sug-
gesting their rumen microbiome differs and together 
with an improved host metabolic activity, these could 
be key components of improved feed efficiency. Several 
studies support the hypothesis the rumen microbiome 
composition and activity of more feed-efficient dairy 
cattle differ from less efficient ones [22–25], suggesting 
this component of cow’s phenotypic variation should also 
be considered in RFI predictions. Studies suggesting the 
existence of heritable rumen microbes controlled by the 
host genetics [22, 26] indicate that predicting dairy cows 
with more efficient rumen microbiomes or identifying 
ruminal markers associated with RFI could contribute 
to improve the reference population challenges faced in 
genetic selection. However, quantifying the RFI varia-
tion from the rumen microbiome’s count-compositional 
data remains a formidable task since pioneering studies 
in microbiome predictions [27], given its high-dimen-
sional and complex nature [28]. In this context, artificial 
intelligence (AI) such as machine learning algorithms, 

genus positively associated with an improved feed efficiency status while seven other taxa were associated with 
inefficiency. The study also highlights that the rumen microbiome is pivotal for the unexplained variance in milk 
fat and protein production efficiency. Estimation of the carbon footprint of these cows shows that selection for 
better RFI could reduce up to 5 kg of diet consumed per cow daily, potentially reducing up to 37.5% of CH4. These 
findings shed light that the integration of artificial intelligence approaches, microbiology, and ruminant nutrition 
can be a path to further advance our understanding of the rumen microbiome on nutrient requirements and 
lactation performance of dairy cows to support the long-term sustainability of the dairy community.
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is uniquely equipped to manage the inherent multicol-
linearity of such datasets and discern intricate patterns 
from microbial compositions [28, 29]. Furthermore, har-
nessing AI approaches, such as feature engineering and 
ensemble methods, can be a first step to fully explore the 
potential variation in RFI coming from the microbiome. 
Thus, applying AI to microbiome datasets could pave the 
way for the exploration of biomarkers associated with 
such variation and refine genomic prediction for feed 
efficiency Fig. 1.

Therefore, we hypothesized that exploring the rumen 
microbiome composition with AI approaches such as 
feature engineering, that applies knowledge domain from 
bioinformatics to extract more information from vari-
ables, could be a path to quantify the feed and milk pro-
duction efficiency variation associated with the rumen 
microbiome composition. We further hypothesized that 
there is a portion of variation in gross feed efficiency 
(a.k.a. milk production efficiency) that is attributed 
to some rumen microbes independent of feed intake 

and milk production levels, body weight, body energy 
changes, and parity. Our objectives were to use feature 
engineering and develop a novel network analysis of 
ensemble methods to explore the rumen microbiome 
composition contribution to these feed and milk produc-
tion traits in a genotyped population of Holstein cows 
(n = 454) in the U.S. and Canada. Consequently, specific 
rumen microbes that support the core microbial commu-
nity structure contributing to RFI and milk production 
efficiency of dairy cows were highlighted. A final com-
parison of the potential selection based on measured RFI, 
microbiome predicted RFI, and genomic predicted trans-
mitting ability (PTA) RFI was performed to highlight 
the potential reduction in the carbon footprint of dairy 
cows through RFI selection. The findings from the study 
advance our understanding of the rumen microbiome’s 
contribution to predicting feed and milk production effi-
ciency in dairy cows and offer a new approach to explor-
ing microbiome contribution to related productive traits.

Fig. 1 The rumen microbiome signature as a path for predicting feed efficiency and improving the selection of dairy cows with a lower carbon footprint. 
1.A. Mechanism of how the prediction and selection for feed efficiency could be improved by adding the rumen microbiome signature for a trait or 
potential biomarkers. The illustration depicts the reliability issue of residual feed intake (RFI), one of the main feed efficiency traits under investigation. 
1Citation: B. Li, et al. Genomic prediction of residual feed intake in US Holstein dairy cattle. J. Dairy Sci. 103 (3): 2477–2486, https://doi.org/10.3168/jds.2019-
17332 (2020); 1.B. Scheme depicting an example of the proposed method to explore the potential variation from the rumen microbiome composition in 
production traits. The prediction was based on feature engineering and taking into account each taxonomy level and data structure may have additional 
explainability to model
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Methods
This experiment was conducted following all guidelines 
approved by the Institute of Animal Care and Use Com-
mittee from the University of California, Davis (protocol 
#21,864), University of Florida (protocol #201,910,673), 
and University of Guelph-Canada (Animal Utilization 
Protocol #4064).

Experimental design and data collection
This multi-site prospective study focused on lactat-
ing Holstein cows (n = 454) and was conducted in two 
research centers. The cows in the study were housed 
at the Dairy Unit (Alachua, FL, United States; n = 238) 
from the University of Florida (U.S.) and the Ontario 
Dairy Research Centre (Elora, ON, Canada; n = 216) of 
the University of Guelph, Canada (Canada). This study 
was conducted in parallel to 6 experiments that totaled 
19 treatments, which were accounted in our statistical 
models. Eligibility criteria for enrolled cows included no 
history of abortions, twins, cesarean sections, or anti-
microbial therapy within seven days preceding rumen 

sampling. Overall, this study had 221 primiparous and 
233 multiparous cows that met these criteria. Experimen-
tal diets and their chemical composition are reported in 
Table 1.

All cows had their individual dry matter intake (DMI), 
body weight (BW), and production data recorded daily 
on average between 56 (SD ± 15) to 105 (SD ± 12) days in 
milk, following the principal of RFI repeatability reported 
by Connor et al. [30]. The DMI was measured in U.S. 
cows through individual feeding gates (Calan Broadbent 
Feeding System, American Calan Inc., Northwood, NH) 
and in Canada through automated feed bins (Insentec 
B.V., Hokofarm Group, Emmeloord, AX, Netherlands). 
Daily DMI was measured as the weight differences 
between the amounts of offered total-mixed ration and 
refusals multiplied by the dry matter content of the diet. 
The BW was recorded twice daily using a walk-through 
scale (AfiWeigh, SAE Afikim, Israel in the Florida herd; 
and DeLaval, Tumba, Sweden in the Canada herd) right 
after each milking, from which a mean daily meta-
bolic BW (MBW; BW0.75) was calculated and used for 

Table 1 Experimental summary and chemical composition of the diets used in the study (% of DM unless otherwise stated)1

United States
Item Mean ± SD CAN12 UF13 UF24 UF35 UF46 UF54

n 454 (total) 216 35 40 51 12 100
Rumen sampling, DIM 62 ± 3 64 60 60 60 66 60
First day, DIM 56 ± 15 42 50 50 50 85 61
Last day, DIM 105 ± 12 91 100 105 100 125 110
Total collection days 50 ± 3 49 51 56 51 40 49
DMI, kg/d 22.6 ± 2.60 24.2 22.2 23.9 20.9 21.3 23.1
Milk production, kg/d 40.4 ± 6.80 40.5 40.8 40.3 34.7 42.2 43.8
NESec, Mcal/d 27.1 ± 4.20 29.1 26.6 27.1 25.4 25.8 28.6
BW0.75, kg 127 ± 9.70 132 121 137 119 122 134
BEC, kg/d 2.60 ± 3.20 2.25 2.26 4.51 2.38 0.66 3.25
Chemical composition
OM 92.7 ± 0.61 93.4 92.1 92.5 92.4 93.7 92.8
CP 17.0 ± 0.88 15.8 16.8 17.7 18.4 16.3 16.9
 RDP1 10.9 ± 0.47 10.7 11.9 10.1 11.0 11.4 11.4
 RUP1 5.22 ± 0.13 5.10 5.40 4.90 5.20 5.00 5.20
NDF 28.6 ± 4.07 29.3 29.8 34.2 23.5 26.8 25.3
 Forage NDF 23.0 ± 2.63 25.6 18.4 19.3 21.6 18.2 22.5
Starch 30.5 ± 1.61 27.1 31.1 27.9 31.7 31.8 31.5
ADF 16.0 ± 3.02 19.4 16.6 18.3 15.7 10.7 15.1
NFC 43.1 ± 5.37 45.1 41.4 33.4 45.7 48.6 46.1
Ether extract 4.64 ± 1.59 3.63 4.10 7.27 5.44 4.26 4.26
NEL, Mcal/kg of DM 1.69 ± 0.03 1.68 1.67 1.74 1.70 1.73 1.65
1DIM = days in milk, DMI = dry matter intake, NESec = net energy secreted in milk, BW = body weight, BEC = body energy changes, OM = organic matter, CP = crude 
protein, RDP = rumen degraded protein, RUP = rumen undegraded protein, NDF = neutral detergent fiber, ADF = acid detergent fiber, NFC = non-fibrous carbohydrates, 
NEL = net energy required of lactation, kg = kilograms, and Mcal = megacalories, SD = standard deviation, CAN = Canada, UF = University of Florida (U.S.A.)
2Mion et al. (2023), DOI: https://doi.org/10.1093/jas/skad041
3Zimpel et al. (2021), DOI: https://doi.org/10.3168/jds.2021-20486
4Unpublished. Ingredient composition can be accessed in Supplementary Table 1
5Oyebade et al. (2023), DOI: https://doi.org/10.3168/jds.2022-22898
6Lobo et al. (2023), DOI: https://doi.org/10.3168/jds.2022-22583

https://doi.org/10.1093/jas/skad041
https://doi.org/10.3168/jds.2021-20486
https://doi.org/10.3168/jds.2022-22898
https://doi.org/10.3168/jds.2022-22583
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subsequent calculations. Body condition score (BCS) was 
assessed weekly by trained evaluators following a 1–5 
scale with increments of 0.25 units, as described in the 
Elanco BCS chart (Elanco Animal Health, 2009). Body 
energy changes (BEC) were calculated according to the 
following equation of the National Research Council 
(NRC), Nutrient Requirements of Dairy Cattle [31]:

BEC = [2.88 + (1.036 x BCS week)] x BW change (kg/d).

Cows were milked twice daily, with milk yield being 
recorded using electronic milk flow meters (AfiFlo, SAE 
Afikim, in the United States herd; and DeLaval, in the 
Canada herd). Milk samples were collected once (Can-
ada) or twice (U.S.) weekly from both milking times for 
the analyses of milk fat, true protein, and lactose. Milk 
composition for U.S. cows was analyzed at the Southeast 
Milk Inc. laboratory (Belleview, FL) that is part of the 
Dairy Herd Improvement Association, and in Canada at 
the Lactanet Guelph Analysis Center laboratory (Guelph, 
ON). The yields of milk fat, true protein, and lactose 
from each milking time were used to calculate the daily 
milk components’ yield from each cow. Unless other-
wise stated, milk production is presented throughout the 
manuscript as amount of NE secreted in milk or NESec 
(Mcal/d), which was calculated based on the energy val-
ues of milk fat, protein, and lactose according to the NRC 
equation:

NE secreted in milk (NESec) = [(9.29 x kg fat) + (5.47 x 
kg protein) + (3.95 x kg lactose)]

Feed efficiency calculations in linear mixed-models
The main feed efficiency measure of the study (RFI) was 
calculated by fitting linear mixed-effect model using the 
MIXED procedure in SAS (SAS Institute Inc.) and assess-
ing the difference between their measured DMI and the 
predicted one [12, 32]. The prediction of DMI was per-
formed for each cow after fitting a linear mixed-effect 
model using the MIXED procedure in SAS (SAS Institute 
Inc.) adjusting for the cohort and accounting for the feed 
intake and major energy sinks in a lactating cow, which 
are NESec, MBW, and BEC. The linear model included 
the fixed effects of parity, NESec, MBW, and BEC, and 
the random effects of treatment nested within the experi-
ment (cohort) and the residual error term, which is the 
RFI. A negative RFI value identified cows that were more 
efficient as they had lower DMI than predicted, whereas 
a positive RFI value identified cows that were less effi-
cient because they had greater DMI than predicted. Sta-
tistical significance was declared when P ≤ 0.05. The total 
coefficient of determination (R2) of the regression for 
DMI was 0.81. Consequently, the residuals of the model 
(RFI) accounted for 19% of the variation in DMI, which 
was later used for microbiome predictions. Based on 
Type III SS in order to evaluate the importance of each 
predictor, the R2 for parity (R2 = 0.02), MBW (R2 = 0.12), 
BEC (R2 = 0.05), NESec (R2 = 0.39), and treatment within 
experiment (R2 = 0.07) are presented in Table 2.

Beyond RFI measurement, as a feed efficiency trait, this 
study also focuses on the efficiency of producing milk fat 
and protein (MFE and MPE in g/kg d, respectively), as 
gross feed efficiency measures (Table 2). These were cal-
culated as the ratio between product and feed intake:

Table 2 Results from a linear mixed model for dry matter intake 
and gross feed efficiency traits in 454 lactating Holstein cows 
in the US and Canada. Individual parameters were tested using 
Type III sum of squares
Item R2 Estimate SE1 P-value
Dry matter intake, 
kg/d
 Parity2 0.02 0.87 0.22 < 0.001
 MBW, kg 0.12 0.09 0.01 < 0.001
 BEC, Mcal/d 0.05 0.17 0.02 < 0.001
 NESec, Mcal/d 0.39 0.37 0.02 < 0.001
 Treatment (random 
effect)

0.07

 Total R2of the 
regression3

0.81

 Residual feed intake 
(RFI)3

0.19

Milk fat efficiency, g/
kg DMI
 Parity2 0.01 -3.95 0.64 < 0.001
 MBW 0.01 0.05 0.03 0.04
 BEC 0.00 -0.03 0.07 0.63
 DMI 0.18 -2.97 0.13 < 0.001
 NESec 0.58 2.71 0.07 < 0.001
 Treatment (random 
effect)

0.07

 Total R2of the 
regression3

0.84

 Residual MFE3 0.16
Milk protein efficiency, g/
kg DMI
 Parity2 0.02 2.84 0.49 < 0.001
 MBW 0.00 -0.03 0.02 0.13
 BEC 0.00 0.01 0.05 0.82
 DMI 0.20 -1.80 0.10 < 0.001
 NESec 0.41 1.30 0.05 < 0.001
 Treatment (random 
effect)

0.07

 Total R2of the 
regression3

0.69

 Residual MPE3 0.31
1Standard error of the estimate
2Primiparous were used as the reference for the parameter parity, meaning the 
estimate is in regard to the multiparous Holstein cow effect
3These R2 were calculated based on the REML default PROC MIXED model in 
SAS 9.4 and used to derive the residual of feed intake (RFI), residual of MFE, and 
residual of MPE. These values are not the sum of each parameter R2 reported in 
this table as those are based on the Type III sum of squares method chosen for 
hypothesis testing on each parameter
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(1) MFE =

g of milk fat produced
kg of DMI

,

and

 
(2) MPE =

g of milk protein produced
kg of DMI

and later fitted in a similar linear mixed model as in the 
previously described model for RFI to assess the por-
tion of variation in gross feed efficiency that is not attrib-
uted to intake and production levels, body weight, body 
energy changes, and parity beyond of previous treatment. 
Similar to how the digestibility of the diet could affect 
gross feed efficiency metrics, we explored how the 16 S 
rRNA rumen microbial composition would affect these 
efficiency metrics as well. The model contained the fixed 
effects of parity, DMI, NESec, MBW, and BEC and the 
random effect of treatment nested within experiment as 
well as the residual error on the traits of interest. The R2 
of the full model [MFE (R2 = 0.84) and MPE (R2 = 0.69)] 
and the importance of each parameter to the predictions 
are also reported in Table  2. The NESec accounted for 
58% of the variation on MFE while accounting for 41% on 
MPE, which is a similar variation to that observed on the 
predicted DMI for RFI. A concern on the use of gross effi-
ciency measures is the fact that they do not account for 
body size and composition, which is relevant for mainte-
nance requirements and nutrient or energy partitioning 
[13]. In this study, little to no effect was observed from 
MBW and BEC on MFE and MPE, respectively, suggest-
ing that in certain conditions these gross efficiency mea-
sures can be used as a proxy of efficiency for these cows. 
The residual MFE (R2 = 0.16) and residual MPE (R2 = 0.31) 
were later also used for subsequent microbiome predic-
tions, as this portion of variation in these efficiency met-
rics would not be affected by the levels of feed intake, 
energy outputs, parity, and previous treatments these 
cows were undergoing. In these cases of residual milk 
production efficiency, a cow with greater residual MFE or 
MPE represents a cow that was more efficient than the 
parameters in the model could predict.

Rumen content collection
Rumen contents were collected from all 454 cows in the 
study at 62 (SD ± 3) days in milk. An oro-esophageal tub-
ing procedure was used at 2 to 6 h after the morning feed-
ing time, as described by Monteiro, et al. [25] and Cunha, 
et al. [33]. The procedure consisted of a vacuum pump 
equipped with a glass container that was connected to a 
probe of 200 cm long and 2.5 cm of diameter. The probe 
was carefully inserted orally through the esophagus until 
it reached the rumen compartment. The first 150 mL of 
rumen contents were discarded, and the subsequent 250 

mL were immediately separated for pH measurement 
and storage in 15 mL conical tubes for further microbi-
ome analysis. Rumen content pH was measured using a 
portable pH meter and samples were snap-frozen in liq-
uid nitrogen to preserve microbial DNA. Later, rumen 
samples were transferred to a -80 °C freezer until further 
microbial DNA extraction and sequencing.

DNA extraction, library preparation, and sequencing
The DNA extraction and library preparation were all pro-
cessed through a 96-channel portable robot pipette to 
improve pipetting precision. On the day of DNA extrac-
tion, rumen content samples were thawed in ice, and 
DNA was extracted using a Mag-Bind Universal patho-
gen 96 Kit (Omega Bio-Tek Norcross, GA) according 
to manufacturer instructions. Library preparation was 
performed according to the standard protocol from the 
Earth Microbiome Project [34]. Briefly, the goal was to 
amplify prokaryotes (mostly bacteria) by targeting the 
V4 region of the 16  S rDNA of the isolated microbial 
genomic DNA. The forward and reverse primers used 
were GTGYCAGCMGCCGCGGTAA (515  F - Parada) 
and GGACTACNVGGGTWTCTAAT (806R - Apprill), 
respectively, as described by Parada et al. [35] and Apprill 
et al. [36]. After DNA amplification, the presence and 
size of amplicons were verified through gel electrophore-
sis using a 1.2% (wt/vol) agarose gel stained with 0.5 mg/
mL ethidium bromide. Purification of amplified DNA 
was performed through magnetic Mag-Bind TotalPure 
Next Generation Sequencing (Omega Bio-Tek, Norcross, 
GA, USA) following manufacturer instructions. The 
DNA concentration and purity were assessed through 
spectrophotometry, considering that the concentration 
of pure DNA with an A260 of 1.0 was 50  µg/ mL. Then, 
DNA samples were diluted to the same concentration 
using ultrapure distilled water, and an equal volume of 
each sample were pooled together for sequencing. A 
final accurate and precise DNA quantification was per-
formed in a Qubit® fluorometric machine. For sequenc-
ing, the pooled library was diluted to 4 nM, denatured, 
and combined with a PhiX Control 3 following the MiSeq 
System Denature and Dilute Libraries Guide (Illumina, 
San Diego, CA, USA). A MiSeq Reagent Kit v2 of 300 
cycles (Illumina, San Diego, CA, USA) was used in an 
Illumina MiSeq platform set for a 16  S Metagenomics 
Workflow. All sequences were deposited in the Sequence 
Read Archive of the National Center for Biotechnol-
ogy Information under the BioProject accession number 
PRJNA962991.

Bioinformatic analysis of 16S rRNA sequences
The first step in our analysis was the creation of metadata 
containing all information from each cow (n = 454). These 
cows were within the eligibility criteria for enrollment 
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described earlier, they were not repeated in more than 
one lactation, and they had enough sequencing depth 
based on the rarefaction curve (> 3000). Then, amplicon 
sequences were processed in R through the dada2 pipe-
line version 1.8, first described by Callahan, et al. [37]. 
Briefly, denoising analysis was performed by demultiplex-
ing sequencing reads, and inspecting them for quality and 
errors. Based on that, sequences were trimmed and fil-
tered, chimeras were removed, and an amplicon sequence 
variant (ASV) table was created. Taxonomy assignment 
was performed using the 16  S rRNA SILVA v138 data-
base (date accessed: 26-Jan-2022. https://www.arb-silva.
de/documentation/release-138/) up to the genus level 
[38–40]. Using the phyloseq package [41], total ASVs 
representing microbial counts were split into taxonomy 
levels (phylum, class, order, family, and genus). Two nor-
malization methods were performed in the microbial 
counts within each taxonomy level. The first normaliza-
tion was to relative abundance, which represented the 
direct proportion of microorganisms to the total num-
ber of reads in the sample (0 to 100%). The second nor-
malization was to centered-log ratio (CLR), which first 
applies a log transformation to the ratio between the 
microbial taxa counts and the geometric mean of micro-
bial counts in a sample, and then centers it by subtract-
ing them from the mean of the natural log values for each 
sample (-15 to + 15), as first described by Aitchison [42] 
and more recently reported to capture more patterns in 
compositional-count datasets [43–45]. The datasets con-
taining microbial counts, relative abundances, and CLR 
normalized data were each used in the model in order 
to identify all potential patterns in the contribution of 
microorganisms to the production traits evaluated in 
the study. Twenty-two alpha-diversity indexes (observed 
sequences, chao1, diversity_inverse_simpson, diver-
sity_gini_simpson, diversity_shannon, diversity_fisher, 
diversity_coverage, evenness_camargo, evenness_pielou, 
evenness_simpson, evenness_evar, evenness_bulla, 
dominance_dbp, dominance_dmn, dominance_absolute, 
dominance_relative, dominance_simpson, dominance_
core_abundance, dominance_gini, rarity_log_modulo_
skewness, rarity_low_abundance, rarity_rare_abundance) 
were calculated to further extract all possible variation in 
the data through knowledge domain using the microbi-
ome and vegan packages in R [46, 47], which were subse-
quently added to the final dataset.

Machine learning with feature engineering
All analyses were performed in Python using the pack-
ages NumPy, Seaborn, Pandas, Scikit-learn, mlxtend, 
TensorFlow, and Keras. Several methods were investi-
gated for the predictions of production traits using the 
rumen microbiome, such as traditional linear regres-
sion models, dimension reduction analyses, machine 

learning algorithms, and deep neural networks. Similar 
to Wallace et al. [22], a Ridge regression had the best fit 
among evaluated methods. For feature engineering, all 
taxonomy levels (phylum, class, order, family, and genus) 
in three data structures (count, relative abundance, and 
CLR), and alpha-diversity indexes were used for variable 
selection, totaling 2,194 ASVs. In order to better deal 
with multicollinearity and improve regularization, the 
model was fitted with a feature selection approach based 
on the lowest mean squared error (MSE) loss function in 
a 10-fold cross-validation. A final model was considered 
to include the most associated variables with the pro-
duction trait of the study. The final model coefficient of 
determination (R2), MSE, and root of the MSE (RMSE) 
were calculated based on the validation sets from the 
cross-validation. Because the main evaluated efficiency 
metrics were based on residuals, those values were split 
between positive and negative, and a confusion matrix 
was created following their predictions. Whenever the 
efficiency metric was in the same status of the observed 
value (observed positive or negative phenotype), observa-
tions were assigned a true positive or negative category. 
The opposite was also used to create false positive and 
false negative predicted values.

Ensemble method of differential abundance analyses
To avoid the previously reported bias of lack of con-
sistency across differential abundance analysis (DAA) 
methods [48], we aimed to build an ensemble method to 
report microbial taxa that would be consistently different 
across several approaches [49]. Given the large number 
of experimental units in this study, the ensemble method 
could be built in two parts. The first and unique part 
for the large number of experimental units, consisted 
of using all observations in the study (n = 454) to have a 
broader overview of microbial taxa importance to the 
trait of interest. Thus, a linear regression model contain-
ing all the engineered variables were fit in a STEPWISE 
selection (P ≤ 0.05; and lowest AICC) to determine the 
variables that were associated with the total variation that 
could be explained by the microbiome on the respective 
traits. Still in the first part, the taxa deemed significant 
for our AI predictions were extracted and also fed to the 
ensemble analysis. The second part and more commonly 
done for DAA analysis, consisted of comparing pheno-
type extremes within the study population. For that, the 
cows within the extremes of each trait of interest (most: 
n = 50; least: n = 50 cows) were selected for microbial 
community composition differences. Four methods were 
used for these analysis: ALDEx2 [50–52], ANCOM-BC 
[53], MaAslin2 [54], and LinDA [55]. The first three were 
some of the most consistent methods and with low false 
discovery rate across different datasets tested in Nearing 
et al. [48] while LinDA is a newer method reported to 

https://www.arb-silva.de/documentation/release-138/
https://www.arb-silva.de/documentation/release-138/
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have potentially even lower false discovery rate compared 
to the other three methods but that can capture compo-
sitional bias using the mode of all regression coefficients 
[55]. Whenever not set in the default, the methods were 
set to use microbial taxa with more than 10% prevalence 
across samples and centered-log ratio (CLR) transfor-
mation. Microbial taxa that had P [ALDEx2 (wi.eBH), 
ANCOM-BC, and LinDA] or Q (MaAslin2) values ≤ 0.05 
after false discovery rate correction were considered 
significant and added to the network analysis. The taxa 
significant in each method were fed to the ensemble 
method. A final network analysis was performed to iden-
tify the microbial taxa that was consistently significant 
across different statistical tests; this way, less noise and 
a greater level of relevance could be achieved amongst 
identified different microorganisms. A final correlation of 
the identified microbial taxa was performed with the trait 
of interest using the extreme phenotype cows to express 
the positive or negative correlation of the microbial taxa 
with the trait.

Methane production, yield, and intensity calculations
An analysis was performed investigating the selection of 
the most efficient cows instead of the least efficient ones 
using feed and milk production efficiency strategies and 
their effects on the daily performance and carbon foot-
print of current lactating dairy cows. Analyses were per-
formed using the extremes of each group (least efficient: 
n = 50; most efficient: n = 50) to resemble the potential 
differences we would find in carbon footprint reduc-
tion using these methods. Methane production (g/d per 
cow) was assessed to all 454 cows based on the predictive 
model (Eq. 27) from Nielsen, et al. [56] validated for cows 
in North America [57]. The equation was as follow:

CH4 (g/d per cow) = ([1.23 x DMI (kg/d)– 1.45 x dietary 
fatty acid content (% of DM) + 0.120 x neutral detergent 
fiber content (NDF; % of DMI)]/0.05565)

The corrections for CH4 yield (g/kg DMI) and inten-
sity (g/kg NESec) were calculated based on measured 
production traits. A correction of CH4 production (g/d) 
for gross feed efficiency (GFE; g of milk produced per 
g DMI) was performed to access the CH4 production 
reduction potential when considering both CH4 yield and 
intensity. Then, all 454 cows were ranked from most to 
least RFI efficiency status, and the top 50 most efficient 
cows were compared to the bottom 50 least efficient ones 
when these were ranked based on the measured RFI, 
microbiome predicted RFI, and genomic PTA RFI.

Results
Potential rumen microbiome contribution to residual feed 
intake
The rumen microbiome improved DMI prediction 
when integrated with standard variables used in DMI 

predictive equations (R2 = 0.89, Fig.  2.A.). When used 
to predict DMI and feed efficiency, the rumen microbi-
ome composition explained a significant portion of DMI 
(R2 = 0.55, Fig.  2.B.) and RFI (R2 = 0.36, Fig.  2.C) varia-
tions. After performing the prediction of RFI based on 
the rumen microbiome, all cows were ranked based on 
the microbiome predicted RFI and classified into two 
groups: positive (not efficient) and negative (efficient) 
RFI status. The model harmonic mean of precision and 
true positive rate (F1 Score) shows the prediction was 
75% accurate at discriminating whether a cow was more 
or less feed efficient (Fig.  2.D.). Regarding the variation 
in RFI that could be potentially modulated by the rumen 
microbiome, we further conducted a network analysis of 
ensemble differential abundance methods to identify key 
microbial players linked to differences in the core micro-
biome (microbes statistically associated with the trait in 
at least four statistical tests) (Fig. 3). Consequently, alpha 
and beta-diversity indexes differed among RFI groups in 
the extreme of feed efficiency (Fig. 3.B. and 3.C.). From 
those, the Shannon index that provides more robust 
information for the sample distribution regarding micro-
bial richness and evenness was lower in most efficient 
cows when compared to least efficient ones (5.26 vs. 5.55; 
P < 0.01). Our ensemble networks analysis showed that 
when contrasting microbial differences in RFI pheno-
type extremes and expanding it to the total population, 
a total of 8 microbes were deemed consistently different 
in at least 4 statistical tests, indicating that these micro-
bial taxa might be important players for cows in the RFI 
extremes for the overall population of the study. Of those 
8 microbes, most had a positive relationship with RFI, 
and only [Ruminococcus] gauvreauii group, that is, from 
the Lachnospiraceae family, was negatively correlated, 
which means only this last genus was positively associ-
ated with an improved efficiency of the cow (a nega-
tive RFI represents a cow had a lower DMI intake than 
expected).

Potential rumen microbiome contribution to gross feed 
efficiency measures
The potential rumen microbiome contribution to the 
efficiency to produce milk fat (Fig. 4 and 5) and milk 
protein (Fig. 6 and 7) are shown below. Integrating the 
rumen microbiome with the known sources of variation 
of gross feed efficiency measures also improved the pre-
diction of milk fat production efficiency (MFE; R2 = 0.92, 
Fig.  4.A.) and milk protein production efficiency (MPE; 
R2 = 0.84, Fig.  6.A.). Similar to RFI, the rumen microbi-
ome explained most of the variation in MFE and MPE 
(R2 = 0.53 and 0.44, respectively, Fig. 4.B. and 6.B.). Given 
that MFE and MPE are highly modulated by the level 
of net energy secreted in milk (NESec) and DMI level 
(Table 1), these findings reinforce the hypothesis that the 
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Fig. 2 Machine learning prediction using feature selection and Ridge regression with 10-fold cross-validation on the residual feed intake (RFI) of lactat-
ing dairy cows. 2.A. Model used for the prediction of dry matter intake (DMI) containing the main energy sinks in a lactating dairy cow (NESec, MBW, 
and BEC), the effect of parity, the effect of previous treatment plus the effect of the rumen microbiome; 2.B. Prediction of DMI using only the rumen 
microbiome (pMicrobiome) to explore the overall contribution of the rumen microbes to feed intake; 2.C. Prediction of the residual DMI, also known 
as RFI, using only the rumen microbiome composition; and 2.D. Summary of RFI prediction with the rumen microbiome, from which confusion matrix 
was derived from comparing extracted observed vs. predicted residuals. The loss function for the AI model was the mean squared error (MSE) and the 
scoring metric was R2
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Fig. 3 (See legend on next page.)
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rumen microbiome may contribute to the modulation of 
some traits previously documented to be modulated by 
host genetics [2, 9]. To avoid this possible host-microbi-
ome confounding effect on the modulation of MFE and 
MPE, we aimed at isolating these effects and investigated 
the residuals of MFE and MPE instead, as these would 
have a greater potential to be primarily modulated by 
the rumen microbiome. Our analysis showed that from 
the 16 and 31% of residuals in MFE and MPE (Table 1), 
respectively, the rumen microbiome explains 57 and 48% 
of that variation (Fig. 4.C. and 6.C.). When evaluating the 
precision and accuracy for the prediction of these residu-
als, the predictive models were good at discriminating 
whether a cow was more or less efficient in producing 
milk fat and protein beyond what is modulated by those 
known sources of variation, such as DMI and NESec 
(F1 Score: residual MFE = 0.81 and residual MPE = 0.74, 
Fig. 4.D. and 6.D.).

Different than RFI, the core microbial community 
of these potentially modulating portions (residuals) 
of MFE and MPE were highly complex (Figs.  5 and 7). 
For the residual MFE, 55 microbial taxa were deemed 
to be the core microbiome of this trait, as they were 
found to be important to the trait in 4 or more statisti-
cal analyses used in this study. In this scenario, the gen-
era Butyrivibrio and Saccharofermentans were deemed 
key microbial players from the core microbiome as these 
were significantly different in more analysis than all other 
microorganisms. Overall, most genera in the core micro-
biome were positively correlated with MFE. For the resid-
ual MPE, 30 microbial taxa were deemed to be the core 
microbiome of this trait. The key microbial players from 
the core microbiome in this case were Christensenellceae 
R-7 group, Prevotella 7, and Saccharofermentans genera, 
that were different in 6 differential analyses, and Diali-
ster, which was in 7 analyses. Interestingly, most genera 
in this case were negatively correlated with MPE, which is 
the opposite that was found to MFE. These relationships 
may be because residuals of MFE and MPE have a -71.3% 
correlation, suggesting an increase in the production effi-
ciency of one trait mediated by the microbiome may be at 
the expense of the other milk component’s efficiency. On 

the other hand, RFI had a 0.1% and 0.2% correlation with 
residual MFE and residual MPE, respectively, which may 
explain the distinct microbes associated with RFI. Fur-
thermore, we observed the almost negligible correlation 
of RFI with residual MFE and MPE was a consequence of 
the correction of these residuals to observed DMI, since 
DMI was considered in the model. Contrarily, RFI was a 
residual derived from the difference between predicted 
and observed DMI, thus, this residual is a consequence of 
correcting for the parameters in the model (Parity, MBW 
BEC, NESec, and cohort) but not DMI level. Overall, 
these findings suggest that microbes associated with the 
residuals of MFE and MPE are likely not a consequence 
of feed intake level and is more closely related to special-
ized end-product supply to the host, while those associ-
ated with RFI can be directly or indirectly associated with 
a digestion efficiency that changes feed intake level.

Potential effects on carbon footprint when selecting more 
feed efficient cows
A hypothetical cow selection analysis performed on the 
evaluated feed and milk production indexes indicates 
that selection for RFI is a promising approach to reduc-
ing carbon footprint of dairy cows (Fig.  8.A.). Besides 
not affecting daily cows’ lactation performance, meta-
bolic body weight, and body energy changes, the selec-
tion based on extreme RFI animals has the potential to 
decrease almost 5  kg of diet DM that is consumed by 
each cow per day, based on the measured phenotypic 
RFI (Fig.  8.A.). Furthermore, an absolute decrease of 
20.7% of daily CH4 produced was observed to be pos-
sible, while CH4 production corrected for yield (g/kg 
DMI) and intensity (g/Mcal NESec) could have a reduc-
tion of 37.5% when selecting the most efficient cows in 
the cohort. Selection for the most efficient cows based on 
rumen microbiome and genomic PTA predictions of RFI 
decreased CH4 production at about half of the potential 
reduction from using directly measured RFI. The use of 
the residual for MFE and MPE did not affect the daily 
cow’s performance, RFI, or carbon footprint. Finally, the 
outcomes of the rumen microbiome and genomic PTA 
predictions for RFI interplay were explored by splitting 

(See figure on previous page.)
Fig. 3 An ensemble method to depict the rumen microbiome signature of residual feed intake (RFI) in lactating dairy cows. The method consisted of 
summarizing the differential abundance analyses of some of the most robust methods available in the literature. 3.A. Distribution of RFI means among 
dairy cows in the studied cohort depicting differences between US and Canadian cows. 3.B. Shannon index, as a representation of alpha-diversity dif-
ferences between the extremes of least and most efficient cows of the RFI phenotype, showing that the rumen microbial community diversity is lower 
among the most efficient cows. 3.C. Principal coordinate analysis (PCoA) of the rumen microbiome showing that the extremes of least and most efficient 
cows of the RFI phenotype in the study have a set of different microorganisms that could potentially modulate this trait. 3.D. Summary of all statistically 
significant microbial taxa (P < 0.05) in the RFI phenotype that have greater potential to not be affected by the sources of variation evaluated in the study. 
Ensemble analysis was performed using a STEPWISE selection (lowest AICC) in linear regression analysis (microbial taxa tested as microbial count, relative 
abundance, and centered-log ratio), machine learning regression (microbial taxa tested as microbial count, relative abundance, and centered-log ratio), 
and four independent differential abundance analyses tests: ALDEx2, ANCOM-BC, MAaslin2, and LinDA (contrast of phenotypic extremes; least efficient 
n = 50 cows vs. most efficient n = 50 cows). Microorganisms are ranked according to their significant prevalence across tests and represent potential key 
microbial taxa contributing to the trait of interest. 3.E. Correlation between normalized (CLR) key microbial players and RFI in the extreme population of 
least and most efficient cows. Only microbial taxa different in at least 4 statistical tests are displayed in these results
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the dataset into three categories (efficient, average, and 
not efficient; Fig. 8.B.). Prediction outcomes revealed that 
in order for a cow to obtain an efficient RFI, a combina-
tion of the either average and efficient microbiome and 

genomic PTA prediction for RFI was needed. Whenever 
the microbiome or genomic PTA prediction of RFI of the 
cow was defined as not efficient RFI, then phenotypic RFI 
was never efficient.

Fig. 4 Machine learning prediction using feature selection and Ridge regression in 10-fold cross-validation on the milk fat efficiency (MFE) of lactating 
dairy cows. 4.A. Model used for the prediction of MFE containing the main energy input and sinks in a lactating dairy cow (DMI, NESec, MBW, and BEC), 
the effect of parity, the effect of previous treatment plus the effect of the rumen microbiome; 4.B. Prediction of MFE using only the rumen microbiome 
to explore the overall contribution of the rumen microbes to the trait; 4.C. Prediction of the residual MFE, using only the rumen microbiome composition 
to depict the contribution of the rumen microbiome to the unexplained variance in the trait; and 4.D. Summary of the residual MFE prediction with the 
rumen microbiome, from which confusion matrix was derived from comparing extracted observed vs. predicted residuals. The loss function for the AI 
model was the mean squared error (MSE), and the scoring metric was R2
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Discussion
These results reinforce the possibility that other non-
genetic factors should be identified to better retain feed 
efficient cows in a herd. In this context, the study high-
lights the importance of the rumen microbiome as a 
phenotypic trait of lactating dairy cows. Long pointed 
to play a major role in the supply of energy, protein, vita-
mins, and bioactive compounds to the host [16–18], the 
rumen microbiome in our study considerably improved 
DMI prediction when integrated with previous standard 
variables or even alone. These findings suggest that the 
unexplained variance in DMI found with linear mixed 

models (RFI index; Table  2) comes in part from the 
rumen microbiome composition, which promotes the 
degradation of dietary nutrients and supply of end-prod-
ucts of fermentation to dairy cows [58]. Given that the 
rumen microbiome composition explained most of the 
variation in DMI, which is highly heritable by host-genet-
ics [59], there might be certain traits in ruminants that 
could be modulated by an inter-play between the rumen 
microbiome and host-genetics instead. The findings from 
this study also shows that the rumen microbiome com-
position explained 36% of RFI variation, which makes 
it a major source of variation for this feed efficiency 

Fig. 5 An ensemble method to depict the rumen microbiome signature for milk fat production efficiency (MFE). 5.A. Distribution of MFE means among 
dairy cows in the studied cohort depicting differences between US and Canadian cows. 5.B. Shannon index, as a representation of alpha-diversity differ-
ences between extremes of least and most efficient cows of the MFE phenotype, showing that the rumen microbial community diversity is higher among 
the most efficient cows. 5.C. Principal coordinate analysis (PCoA) of the rumen microbiome showing that the extremes of least and most efficient cows 
of the MFE phenotype in the study have a set of different microorganisms that could potentially modulate this trait. 5.D. Summary of all statistically sig-
nificant microbial taxa (P < 0.05) in the residual MFE phenotype that have greater potential to not be affected by the sources of variation evaluated in the 
study. Ensemble analysis was performed using a STEPWISE selection (lowest AICC) in linear regression analysis (microbial taxa tested as microbial count, 
relative abundance, and centered-log ratio), machine learning regression (microbial taxa tested as microbial count, relative abundance, and centered-log 
ratio), and four independent differential abundance analyses tests: ALDEx2, ANCOM-BC, MAaslin2, and LinDA (contrast of phenotypic extremes; least effi-
cient n = 50 cows vs. most efficient n = 50 cows). Microorganisms are ranked according to their significant prevalence across tests and represent potential 
key microbial taxa contributing to the trait of interest. 5.E. Correlation between normalized (CLR) key microbial players and residual MFE in the extreme 
population of least and most efficient cows. Only microbial taxa different in at least 4 statistical tests are displayed in these results
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Fig. 6 Machine learning prediction using feature selection and Ridge regression in 10-fold cross-validation on the milk protein efficiency (MPE) of 
lactating dairy cows. 6.A. Model used for the prediction of MPE containing the main energy input and sinks in a lactating dairy cow (DMI, NESec, MBW, 
and BEC), the effect of parity, the effect of previous treatment plus the effect of the rumen microbiome; 6.B. Prediction of MPE using only the rumen 
microbiome to explore the overall contribution of the rumen microbes to the trait; 6.C. Prediction of the residual MPE, using only the rumen microbiome 
composition to depict the contribution of the rumen microbiome to the unexplained variance in the trait; and 6.D. Summary of the residual MPE predic-
tion with the rumen microbiome, from which confusion matrix was derived from comparing extracted observed vs. predicted residuals. The loss function 
for the AI model was the mean squared error (MSE) and the scoring metric was R2
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trait. The difference in the coefficient of determinations 
(R2) between the linear mixed model DMI regression 
(R2 = 0.81), the RFI prediction with the rumen microbi-
ome (R2 = 0.36), and the full DMI prediction model con-
sidering all of these variables (R2 = 0.89) also suggests an 
interaction of the rumen microbiome with DMI predic-
tive variables that further contributed to the explained 
variability of the model.

Besides accounting for 36% of the variation in RFI, 
the rumen microbiome was 75% accurate at indicating 
whether a cow was ranked according to their least or 
most efficiency status. The reliability of RFI prediction is 
a current challenge in genetic selection [15]; however, the 
consistency of RFI during and across lactation, and of the 

rumen microbiome from at least early to mid-lactation 
of dairy cows [25, 30, 60] suggest that the microbiome 
can be a tool to improve the prediction of traits currently 
only performed with genomic information. Although 
rumen microbiome assessment is not feasible in large 
scale, proxies such as through buccal, nasal, and fecal 
microbiomes, or even blood, urine, and milk biomark-
ers could be alternatives to capture gastrointestinal con-
tribution to RFI phenotypic variation [25, 61]. Another 
alternative beyond genetic selection would be to provide 
an early efficiency assessment per lactation for these 
cows so better grouping strategies could be elaborated 
based on their efficiency statuses. Grouping cows into 
more homogenous RFI groups, especially based on feed 

Fig. 7 An ensemble method to depict the rumen microbiome signature for milk protein production efficiency (MPE). 7.A. Distribution of MPE means 
among dairy cows in the studied cohort depicting differences between US and Canada cows. 7.B. Shannon index, as a representation of alpha-diversity 
differences between extremes of least and most efficient cows of the MPE phenotype, showing that the rumen microbial community diversity is lower 
among the most efficient cows. 7.C. Principal coordinate analysis (PCoA) of the rumen microbiome showing that the extremes of least and most ef-
ficient cows of the MPE phenotype in the study have a set of different microorganisms that could potentially modulate this trait. 7.D. Summary of all 
statistically significant microbial taxa (P < 0.05) in the residual MPE phenotype that have greater potential to not be affected by the sources of variation 
evaluated in the study. Ensemble analysis was performed using a STEPWISE selection (lowest AICC) in linear regression analysis (microbial taxa tested as 
microbial count, relative abundance, and centered-log ratio), machine learning regression (microbial taxa tested as microbial count, relative abundance, 
and centered-log ratio), and four independent differential abundance analyses tests: ALDEx2, ANCOM-BC, MAaslin2, and LinDA (contrast of phenotypic 
extremes; least efficient n = 50 cows vs. most efficient n = 50 cows). Microorganisms are ranked according to their significant prevalence across tests and 
represent potential key microbial taxa contributing to the trait of interest. 7.E. Correlation between normalized (CLR) key microbial players and residual 
MPE in the extreme population of least and most efficient cows. Only microbial taxa different in at least 4 statistical tests are displayed in these results
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and milk production efficiency, could have a profound 
impact on reducing dietary nutrient waste (thus, the 
carbon footprint) and feed costs in dairy farms, as previ-
ously reported to other production traits [62, 63]. If less 
feed efficient cows can be identified, dietary modification 
strategies, such as through supply of microorganisms 
associated with improved efficiency or supplementation 
of bioactive molecules protected from rumen degrada-
tion, might become a possibility to improve their effi-
ciency status.

The lower alpha-diversity indexes represented here 
through Shannon index show that, the more efficient 
cows have a more homogenous and less diverse micro-
biome community composition than those least efficient 
one’s, as previously reported [21]. The decrease in micro-
bial diversity might represent a more consistent micro-
biome that is specialized in producing key microbial 
enzymes to degrade complex nutrients (e.g., CA-zymes) 
[64, 65]. In a previous study evaluating the enzyme activ-
ity of rumen microbes from Angus bulls diverging in feed 
efficiency [64], more efficient animals were reported to 
have greater relative abundance of key ruminal CAZ-
zymes, such as endo-β- 1,4-xylanase, endoglucanase, and 
carbohydrate-binding modules (CBMs) involved in cel-
lulose degradation beyond of a greater capacity to utilize 
cellulose and xylose. Furthermore, feed efficient animals 
in the aforementioned study also had greater relative 

abundance of ammonia assimilation functions in rumen 
microbes, suggesting that at least the rumen of more effi-
cient beef cattle have more specialized enzymes for lig-
nocellulosic biomass degradation and utilization beyond 
of an increased demand for nitrogen assimilation. Inter-
estingly, in lambs, the [Ruminococcus] gauvreauii group 
that was a major microbe associated with improved RFI, 
has been reported to have a strong association with total 
ruminal volatile fatty acids concentration, specifically 
acetate, propionate, butyrate, and valerate, and to be 
positively associated with rumen microbial protein syn-
thesis [66], which support the hypothesis of less diverse 
yet more efficient rumen microbiome. In environments 
outside ruminants, a study has reported that isolates of 
[Ruminococcus] gauvreauii group from human bile could 
later be cultured under end-products of starch fermen-
tation, especially formate, while producing acetate [67], 
showing these microbes coming from such conditions 
may also employ the Wood Ljungdahl pathway. Despite 
the difference in environments, the findings from that 
study and our study deserves further investigation given 
that formate is a major substrate linked to methanogen-
esis [68], and perhaps this microbe may turn metabolites 
that would otherwise be wasted during ruminal fermen-
tation (e.g., formate as a source for CH4 synthesis) into 
valuable precursors of milk synthesis. Overall, these 
results indicate that the observed microbial differences 

Fig. 8 Hypothetical selection of feed efficient cows for residual feed intake (RFI) and the interplay of the rumen microbiome, genomic predicted trans-
mitting ability (PTA), and phenotypic RFI. 8.A. Comparison of daily performance and carbon footprint between the most efficient cows (n = 50) and 
the least efficient cows (n = 50) based on residual feed intake and gross feed efficiency. Methane production (g/d per cow) was assessed based on the 
predictive model (Eq. 27) from Nielsen, et al. (70) validated for cows in North America (71). The equation was as follow: CH4 (g/d per cow) = ([1.23 x DMI 
(kg/d)– 1.45 x dietary fatty acid content (% of DM) + 0.120 x neutral detergent fiber content (NDF; % of DMI)]/0.05565). The corrections for CH4 yield (g/kg 
DMI) and intensity (g/kg NESec) were calculated based on measured production traits. A correction of CH4 (g/d) for gross feed efficiency (GFE; g of milk 
produced per g DMI) was performed to access the CH4 production reduction potential when considering both CH4 yield and intensity. Numeric values 
are significant differences in selecting the most efficient cows when P ≤ 0.05; Methane results, including group means, SEM, and P-values are shown in 
Supplementary Table 2. 8.B. Outcome of the rumen microbiome and genomic PTA predictions for RFI showing their potential interplay in determining 
the phenotypic RFI of the studied lactating dairy cows
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may be another indication of improved fiber fermenta-
tion and rumen nitrogen metabolism in the most efficient 
cows. Despite the interesting potential of each microbe in 
changing ruminal fermentation, the moderate correlation 
of these key microbial players suggests the collective con-
tribution of different microorganisms to RFI is a critical 
factor determining their association with the trait instead 
of their independent contribution.

When evaluating the association of the rumen micro-
biome composition with gross efficiency to produce milk 
fat, most genera in the core microbiome were positively 
correlated with the residual MFE, and contrary to RFI, 
most efficient cows had an increase in microbial alpha-
diversity. Given that acetic acid is the most common 
end-product of fermentation in the rumen and a major 
contributor to milk fat synthesis in dairy cows [18, 68], 
the increase in alpha-diversity may represent a greater 
likelihood of increasing microbes that are generalists 
and produce acetate, increasing the capacity to produce 
milk fat from the fermented nutrients. The greater abun-
dance of Butyrivibrio in more MFE cows may be a fur-
ther example of the increase in alpha-diversity. Using 
metatranscriptomics [65], a study has recently reported 
that this genus is one of the major bacteria in the rumen 
to produce enzymes that degrade degradable fiber (cel-
lulose, hemicellulose, and pectin) and starch, suggest-
ing greater Butyrivibrio abundance may be associated 
with cross-feeding. Furthermore, the main short-chain 
fatty acid from Butyrivibrio fermentation is butyric 
acids, which together with acetic acid are the major end-
products of fibrolytic fermentation and primary precur-
sors of milk fat synthesis [16, 18, 68]. Thus, the positive 
linear association of rumen Butyrivibrio with cows that 
are more efficient in producing milk fat, along with the 
greater spectrum of microorganisms growing in the 
rumen of these cows, suggest that Butyrivibrio might be 
key organisms to MFE. Studies employing more detailed 
approaches (e.g., shotgun sequencing and metatranscrip-
tomics) would contribute by evaluating which species or 
even genomes within Butyrivibrio and other highlighted 
genera may be exactly contributing to these effects, as 
these genera has vast genetic diversity.

In regard to MPE, the diversity followed a similar dis-
tribution as that observed in RFI groups, which alpha-
diversity was lower in the rumen of the most efficient 
cows. Milk protein synthesis is associated with the vol-
ume of milk produced (r = 0.91 in the current study) [69]; 
thus, there is a possibility that the decrease in rumen 
microbial diversity in most efficient cows represents a 
dominance of microorganisms that more closely produce 
gluconeogenic precursors for milk synthesis, such as pro-
pionic acid-producing bacteria. In the current study, the 
dominance variable that measures the abundance of most 
abundant microbial taxa was greater for most efficient 

cows (P < 0.05), suggesting that a more homogenous and 
less diverse ruminal microbial fermentation may once 
again be the key to more efficient microbiomes. In rumi-
nants, the Firmicutes genera Dialister that was one of 
the main organisms associated with MPE efficiency and 
in greater concentration in most efficient cows, have also 
been reported to be positively associated with increased 
milk yield [23] and milk production efficiency [70] in pre-
vious studies. One potential explanation is that rumen 
Dialister in sheep has been reported to be positively 
associated with total ruminal volatile fatty acids and 
negatively associated with lactic acid and lipopolysac-
charides (LPS), which suggests positive association with 
fermentation efficiency and improved ruminal health [71, 
72]. Another possibility to explain this association is that 
rumen microbes may produce bioactive metabolites with 
the potential to modulate the cow’s physiology, such as 
tryptophan derivatives and other metabolites with the 
neuromodulation potential, gut barrier integrity, hor-
monal changes, and others explored in human gut micro-
biome studies [73]. Considering the rumen microbiome 
is strategically placed in the cow prior to their main 
absorption sites, and so bioactive metabolites have even 
greater chances to be absorbed in cows than in humans, 
there is a vast field of bioactive metabolite exploration in 
dairy cows and ruminants overall that deserves further 
investigation.

Interestingly, Prevotella 7 was one of the most associ-
ated with both MFE (r = -0.60) and MPE (r = 0.56), but in 
opposite ways. The opposite relationship of microbes and 
efficiency traits was also observed for Butyrivibrio and 
Saccharofermentans, which were positively associated 
with MFE but negatively associated with MPE. Prevotella 
has long been reported to have a broad enzymatic capac-
ity and to be one of the main proteolytic organisms in the 
rumen. However, recent metagenomics deep sequencing 
analysis shows that rumen Prevotella in goats are also 
some of the most active lignocellulosic organisms, with 
the potential to degrade starch, cellulose, hemicellulose, 
and pectin [74]. In the entire population of this study, the 
abundance of Prevotella was negatively associated with 
both Butyrivibrio (r = -0.44) and Saccharofermentans 
(r = -0.23), suggesting the dominance of Prevotella may 
bring benefits to overall dietary nutrient digestion and 
milk synthesis when compared to more fiber degrading 
microbes as Butyrivibrio. Important to note, the function 
of organisms within these genera can be highly diverse, 
suggesting the exploration of these results with species 
or even genome-level approaches (e.g., shotgun metage-
nomics and metatranscriptomics) is fundamental to elu-
cidate the mechanisms utilized by these microbes.

These results also highlight the genetic selection for RFI 
as a critical determinant for the carbon footprint of the 
dairy sector. By showcasing that selection based on RFI 
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has the potential to significantly reduce diet consumption 
without compromising vital parameters like lactation 
performance, the study opens avenues for more sustain-
able dairy farming practices, which is currently needed in 
ruminant production systems [5]. By taking advantage of 
traits that are would not affect the long-term productivity 
and health of dairy cows, as RFI and the residuals of MFE 
and MPE that were used in this study and are less prone 
to be affected by the levels of DMI, NESec, MBW, BEC, 
and Parity, greater are the chances of holistically secur-
ing the sustainability goals of the sector. Despite mixed 
results in previous studies evaluating methane emissions 
in cows differing in RFI [6, 75], the substantial potential 
decline in daily CH4 production in a large population of 
dairy cows from this work suggests selection of animals 
with a lower carbon footprint is likely viable and can con-
tribute to global efforts in methane reduction previously 
described per the Paris Agreement [7]. The potential syn-
ergistic role of the rumen microbiome and host genet-
ics in determining the phenotypic RFI also reinforces 
the multifaceted nature of feed efficiency. This research 
underscores the need for a holistic approach for the use of 
feed efficiency measures in the field in order to improve 
milk production and dairy farm sustainability. By inte-
grating genomic information with the methodologies of 
artificial intelligence and bioinformatics and synergizing 
them with contemporary findings in microbiology and 
ruminant nutrition or even biomarkers that can improve 
the predictability of these traits, our research proposes a 
new overview to handle complex endeavors in this trajec-
tory of advancing the dairy sector.

Conclusions
In summary, by using an artificial intelligence approach, 
this study shows that the rumen microbiome compo-
sition explains a significant portion of the variation in 
RFI, presenting a promising site of exploration for future 
improvements in predictive models to decrease the dairy 
sector’s carbon footprint. The associations of RFI as well 
as MFE, MPE, and their residuals with the rumen micro-
biome, unraveled through an ensemble method, further 
indicates key microbial players that could be targeted 
to further evaluate their effect on the efficiency of dairy 
cows. Additionally, the predictability of heritable traits by 
the rumen microbiome underscores the need for future 
research to dissect host-microbiome interactions in shap-
ing feed and milk production efficiency. This explora-
tion, and consequently further validation studies with 
complementary results from digestive parameters (e.g., 
digestibility) to more detailed microbiome approaches 
(shotgun metagenomics, metatranscriptomics, and 
metabolomics), is vital to pioneer advances in rumi-
nant nutrition and fortify sustainable dairy production 
pathways.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s42523-024-00289-5.

Supplementary Material 1

Supplementary Material 2

Acknowledgements
The authors would like to thank all farm crew from the University of Florida 
(U.S.A.) and the Ontario Dairy Research Centre (Canada), the graduate 
students, and interns from Drs. Ribeiro’s, Bisinotto’s, and Santos’ research 
groups, and the personnel of experiments from which cows were enrolled 
in the study for all their help in animal handling, sample collection, and 
data acquisition. We also would like to thank Drs. Delaine de Melo and Erika 
Bonsaglia for their help in sample processing. The authors are also thankful 
for all other collaborations in this project, including the access and coding 
mentoring for the use of the HPC cluster hypercomputers at the University of 
California, Davis (U.S.A.) from Dr. Titus Brown.

Author contributions
The study was designed by FSL, JEPS, ESR, FP, RSB, and HM. Samples and 
data were collected by HFM, CCF, BM, MNM, RZ, ACS, AO, RRL, PMGP, MBUM, 
WMCJ, SGUS, TDGR, and MEH. Data mining and bioinformatics analysis were 
performed by HFM under the supervision of FSL, BW, ESR, FP, RSB, FSS, JEPS, 
and TB. Machine learning and artificial intelligence were performed by HFM 
under the supervision of FL, FP, BW, and TB. The carbon footprint was assessed 
by HFM, EK, and FSL. Figures and tables were prepared by HFM and FSL. 
Manuscript preparation was performed by HFM under the supervision of FSL. 
All authors revised the final draft of the manuscript.

Funding
This project was sponsored by the United States Department of Agriculture 
(USDA), National Institute of Food and Agriculture, Foundational Program, 
Animal Growth, Nutrition, and Lactation area under the contract/agreement 
number 2019-67015-32114. Other funding sources include Dr. Lima’s startup 
funding from the School of Veterinary Medicine at the University of California, 
Davis (U.S.A.) and Dr. Ribeiro’s funding from the Ontario Agri-Food Innovation 
Alliance (project #030277) and the Food From Thought Thematic Research 
Fund (project #499121). The feed efficiency phenotypes and genotypes 
of Canadian cows were provided by contributions fromthe Resilient Dairy 
Genome Project (Genome Canada, Genome Alberta, and organizations 
listedat http://www.resilientdairy.ca/funders-and-partners/) as well as the 
Dairy Research Cluster 3 (Lactanet andAgriculture and Agri-Food Canada).

Data availability
All rumen microbiome sequences of this study are current available on 
the Sequence Read Archive of the National Center for Biotechnology 
Information under the BioProject accession number PRJNA962991. Scripts 
from this work can be accessed on https://github.com/hugofmonteiro/
rumen-microbiome-feed-efficiency.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1Department of Population Health and Reproduction, School of 
Veterinary Medicine, University of California, 95616 Davis, CA, USA
2Department of Veterinary Clinical Sciences, Washington State University, 
Pullman, WA, USA
3Department of Large Animal Clinical Sciences, University of Florida, 
Gainesville, FL, USA
4Department of Animal Biosciences, University of Guelph, Guelph, ON, 
Canada
5Department of Animal Sciences, University of Florida, Gainesville, FL, USA
6Department of Animal and Dairy Sciences, University of Wisconsin, 
Madison, WI, USA

https://doi.org/10.1186/s42523-024-00289-5
https://doi.org/10.1186/s42523-024-00289-5
http://www.resilientdairy.ca/funders-and-partners/
https://github.com/hugofmonteiro/rumen-microbiome-feed-efficiency
https://github.com/hugofmonteiro/rumen-microbiome-feed-efficiency


Page 19 of 20Monteiro et al. Animal Microbiome             (2024) 6:5 

7Department of Animal Sciences, College of Agriculture and Life Sciences, 
University of California, 95616 Davis, CA, USA

Received: 22 August 2023 / Accepted: 17 January 2024

References
1. Peñagaricano F, Bazer FW, Lamb GC, Wu G. Academic Press. 2020;101–19.
2. Wiggans GR, Carrillo JA. Genomic selection in United States dairy cattle. Front 

Genet. 2022;13:994466.
3. de Haas Y, et al. Genetic parameters for predicted methane production and 

potential for reducing enteric emissions through genomic selection. J Dairy 
Sci. 2011;94(12):6122–34.

4. Waghorn GC, Hegarty RS. Lowering ruminant methane emissions 
through improved feed conversion efficiency. Anim Feed Sci Technol, 
2011;166–7:291–301.

5. Arndt C, et al. Full adoption of the most effective strategies to mitigate meth-
ane emissions by ruminants can help meet the 1.5 degrees C target by 2030 
but not 2050. Proc Natl Acad Sci U S A. 2022;119(20):e2111294119.

6. Manzanilla-Pech CIV, et al. Selecting for feed efficient cows will help to 
reduce methane gas emissions. Front Genet. 2022;13:885932.

7. UNFCCC, The Paris Agreement. Paris Climate Change Conference, 2015.
8. GLEAM, Global Livestock Environmental Assessment Model. Assessment of 

greenhouse gas emissions and mitigation potential. F.A.O., United Nations, 
2022.

9. CDCB, Individual Traits in Genetic Selection. 2023.
10. VanRaden PM, Neupane CJB, Toghiani M, Gaddis S, K.L., and, Tempelman 

RJ. Net merit as a measure of lifetime profit: 2021 revision. NM$8: USDA AIP 
Research Report; 2021.

11. VanRaden PM, Connor OCJR, VandeHaar EE, Tempelman MJ, R.J., and, Weigel 
KA. Including feed intake data from U.S. Holsteins in genomic prediction. 
In 11th World Congress on Genetics Applied to Livestock Production 2018. 
Auckland, New Zealand.

12. Nehme Marinho M, Santos JEP. Association of residual feed Intake with Blood 
metabolites and Reproduction in Holstein cows. Front Anim Sci, 2022;3.

13. VandeHaar MJ, et al. Harnessing the genetics of the modern dairy cow to 
continue improvements in feed efficiency. J Dairy Sci. 2016;99(6):4941–54.

14. Tempelman RJ, et al. Heterogeneity in genetic and nongenetic variation and 
energy sink relationships for residual feed intake across research stations and 
countries. J Dairy Sci. 2015;98(3):2013–26.

15. Li B, et al. Genomic prediction of residual feed intake in US Holstein dairy 
cattle. J Dairy Sci. 2020;103(3):2477–86.

16. Soest PJV. Nutrtitional Ecology of the ruminant. Vol. Second Edition 1994, 
Ithaca and London: Cornell University Press.

17. Bergman EN. Energy contributions of volatile fatty-acids from the gastrointes-
tinal-tract in various species. Physiol Rev. 1990;70(2):567–90.

18. Russell JB. Rumen Microbiology and its role in Ruminant Nutrition. ARS-USDA: 
eBook; 2002.

19. Climate CIPo. Climate change and land: an IPCC special report on climate 
change, desertification, land degradation, sustainable land management, 
food security, and greenhouse gas fluxes in terrestrial ecosystems. Cam-
bridge: Cambridge University Press; 2019.

20. Beauchemin K, McAllister T. and S. McGinn. Dietary mitigation of enteric 
methane from cattle in CABI International. 2009.

21. Shabat SKB, et al. Specific microbiome-dependent mechanisms underlie the 
energy harvest efficiency of ruminants. ISME J. 2016;10(12):2958–72.

22. Wallace RJ et al. A heritable subset of the core rumen microbiome dictates 
dairy cow productivity and emissions. Sci Adv, 2019;5(7).

23. Jami E, White BA, Mizrahi I. Potential role of the Bovine Rumen Micro-
biome in modulating milk composition and feed efficiency. PLoS ONE. 
2014;9(1):e85423.

24. Wallace RJ, et al. The rumen microbial metagenome associated with high 
methane production in cattle. BMC Genomics. 2015;16(1):839.

25. Monteiro HF, et al. Rumen and lower gut microbiomes relationship with feed 
efficiency and production traits throughout the lactation of Holstein dairy 
cows. Sci Rep. 2022;12(1):4904.

26. Sasson G et al. Heritable Bovine Rumen Bacteria Are Phylogenetically Related 
and Correlated with the Cow’s Capacity To Harvest Energy from Its Feed. 
mBio, 2017;8(4).

27. Ross EM, et al. Metagenomic predictions: from microbiome to complex 
health and environmental phenotypes in humans and cattle. PLoS ONE. 
2013;8(9):e73056.

28. Hernández Medina R, et al. Machine learning and deep learning applications 
in microbiome research. ISME Commun. 2022;2(1):98.

29. Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001;16(3):199–215.
30. Connor EE, et al. Use of residual feed intake in Holsteins during early lactation 

shows potential to improve feed efficiency through genetic selection. J Anim 
Sci. 2013;91(8):3978–88.

31. Council NR. Nutrient requirements of dairy cattle: seventh revised Edition, 
2001. Washington, DC: The National Academies Press; 2001;405.

32. Koch RM, et al. Efficiency of feed use in beef cattle. J Anim Sci. 
1963;22(2):486–94.

33. da Cunha LL et al. Characterization of rumen microbiome and metabolome 
from oro-esophageal tubing and rumen cannula in Holstein dairy cows. Sci 
Rep, 2023;13(1).

34. Thompson LR, et al. A communal catalogue reveals Earth’s multiscale micro-
bial diversity. Nature. 2017;551(7681):457–63.

35. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small 
subunit rRNA primers for marine microbiomes with mock communities, time 
series and global field samples. Environ Microbiol. 2016;18(5):1403–14.

36. Apprill A, et al. Minor revision to V4 region SSU rRNA 806R gene primer 
greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 
2015;75:129–37.

37. Callahan BJ, DADA2, et al. High-resolution sample inference from Illumina 
amplicon data. Nat Methods. 2016;13(7):581–3.

38. Pruesse E, Peplies J, Glöckner FO. Accurate high-throughput mul-
tiple sequence alignment of ribosomal RNA genes. Bioinformatics. 
2012;28(14):1823–9.

39. Quast C, et al. The SILVA ribosomal RNA gene database project: improved 
data processing and web-based tools. Nucleic Acids Res. 2013;41(Database 
issue):D590–6.

40. Yilmaz P, et al. The SILVA and all-species living Tree Project (LTP) taxonomic 
frameworks. Nucleic Acids Res. 2014;42(Database issue):D643–8.

41. McMurdie PJ, Holmes S. Phyloseq: an R Package for Reproducible Inter-
active Analysis and Graphics of Microbiome Census Data. PLoS ONE. 
2013;8(4):e61217.

42. Aitchison J. The Statistical Analysis of Compositional Data. J Royal Stat Soc Ser 
B (Methodological). 1982;44(2):139–77.

43. McMurdie PJ, Holmes S. Waste not, want not: why rarefying Microbiome Data 
is inadmissible. PLoS Comput Biol. 2014;10(4):e1003531.

44. Gloor GB, et al. Microbiome datasets are compositional: and this is not 
optional. Front Microbiol. 2017;8:2224.

45. Weiss S, et al. Normalization and microbial differential abundance strategies 
depend upon data characteristics. Microbiome. 2017;5(1):27.

46. Oksanen J. vegan: Community Ecology Package. 2022.
47. L., L. and S. S., Tools for microbiome analysis in R. 2017, http://microbiome.

github.com/microbiome.
48. Nearing JT, et al. Microbiome differential abundance methods produce differ-

ent results across 38 datasets. Nat Commun. 2022;13(1):342.
49. Lahti L et al. Orchestrating Microbiome Analysis with Bioconductor. 2023.
50. Fernandes AD, et al. Unifying the analysis of high-throughput sequenc-

ing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and 
selective growth experiments by compositional data analysis. Microbiome. 
2014;2(1):15.

51. Fernandes AD, et al. ANOVA-Like Differential expression (ALDEx) analysis for 
mixed Population RNA-Seq. PLoS ONE. 2013;8(7):e67019.

52. Gloor GB, Macklaim JM, Fernandes AD. Displaying variation in large data-
sets: plotting a visual Summary of Effect sizes. J Comput Graphical Stat. 
2016;25(3):971–9.

53. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias cor-
rection. Nat Commun. 2020;11(1):3514.

54. Mallick H, et al. Multivariable association discovery in population-scale meta-
omics studies. PLoS Comput Biol. 2021;17(11):e1009442.

55. Zhou H, et al. LinDA: linear models for differential abundance analysis of 
microbiome compositional data. Genome Biol. 2022;23(1):95.

56. Nielsen NI, et al. A prediction equation for enteric methane emission from 
dairy cows for use in NorFor. Acta Agriculturae Scandinavica Section A — 
Animal Science. 2013;63(3):126–30.

57. Appuhamy J, France, Kebreab E. Models for predicting enteric methane 
emissions from dairy cows in North America, Europe, and Australia and New 
Zealand. Glob Change Biol. 2016;22(9):3039–56.

http://microbiome.github.com/microbiome
http://microbiome.github.com/microbiome


Page 20 of 20Monteiro et al. Animal Microbiome             (2024) 6:5 

58. Van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Ithaca: Comstock 
Pub. xii; 1994;476.

59. Vallimont JE, et al. Genetic parameters of feed intake, production, body 
weight, body condition score, and selected type traits of Holstein cows in 
commercial tie-stall barns. J Dairy Sci. 2010;93(10):4892–901.

60. Potts SB, et al. Residual feed intake is repeatable for lactating Holstein dairy 
cows fed high and low starch diets. J Dairy Sci. 2015;98(7):4735–47.

61. Young J, et al. Validating the use of bovine buccal sampling as a Proxy for the 
Rumen Microbiota by using a time course and Random Forest classification 
Approach. Appl Environ Microbiol. 2020;86(17):e00861–20.

62. Kalantari AS, et al. Economic impact of nutritional grouping in dairy herds. J 
Dairy Sci. 2016;99(2):1672–92.

63. St-Pierre NR, Thraen CS. Animal grouping strategies, sources of variation, 
and economic factors affecting nutrient balance on dairy farms. J Anim Sci. 
1999;77(Suppl 2):72–83.

64. Neves ALA, et al. Accelerated discovery of novel glycoside hydrolases using 
targeted functional profiling and selective pressure on the rumen microbi-
ome. Microbiome. 2021;9(1):229.

65. Badhan A, et al. Mechanistic insights into the digestion of complex dietary 
fibre by the rumen microbiota using combinatorial high-resolution glycom-
ics and transcriptomic analyses. Comput Struct Biotechnol J. 2022;20:148–64.

66. Yin X et al. Age-related changes in the Ruminal Microbiota and their relation-
ship with Rumen Fermentation in lambs. Front Microbiol, 2021;12.

67. Molinero N, et al. Survival strategies and metabolic interactions between 
Ruminococcus gauvreauii and Ruminococcoides Bili, isolated from human 
bile. Microbiol Spectr. 2022;10(4):e0277621.

68. Russell JB, Rychlik JL. Factors that alter Rumen Microbial Ecology. Science. 
2001;292(5519):1119–22.

69. Schingoethe DJ. Dietary influence on protein level in milk and milk yield in 
dairy cows. Anim Feed Sci Technol. 1996;60(3):181–90.

70. Mu Y, et al. High-production dairy cattle exhibit different rumen and fecal 
bacterial community and rumen metabolite profile than low-production 
cattle. Microbiologyopen. 2019;8(4):e00673.

71. Su M et al. Yeast products mediated Ruminal Subenvironmental Microbiota, 
and abnormal metabolites and Digestive enzymes regulated Rumen Fer-
mentation function in Sheep. Anim (Basel), 2022;12(22).

72. Monteiro HF, Faciola AP. Ruminal acidosis, bacterial changes, and lipopolysac-
charides. J Anim Sci, 2020;98(8).

73. Sasso JM, et al. Gut microbiome–Brain Alliance: A Landscape View into 
Mental and Gastrointestinal Health and disorders. ACS Chem Neurosci. 
2023;14(10):1717–63.

74. Dao TK et al. Understanding the Role of Prevotella Genus in the Digestion of 
Lignocellulose and Other Substrates in Vietnamese Native Goats’ Rumen by 
Metagenomic Deep Sequencing. Anim (Basel), 2021;11(11).

75. Flay HE, et al. Hot topic: selecting cattle for low residual feed intake did not 
affect daily methane production but increased methane yield. J Dairy Sci. 
2019;102(3):2708–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿An artificial intelligence approach of feature engineering and ensemble methods depicts the rumen microbiome contribution to feed efficiency in dairy cows
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Experimental design and data collection
	﻿Feed efficiency calculations in linear mixed-models
	﻿Rumen content collection
	﻿DNA extraction, library preparation, and sequencing
	﻿Bioinformatic analysis of 16S rRNA sequences
	﻿Machine learning with feature engineering
	﻿Ensemble method of differential abundance analyses
	﻿Methane production, yield, and intensity calculations

	﻿Results
	﻿Potential rumen microbiome contribution to residual feed intake
	﻿Potential rumen microbiome contribution to gross feed efficiency measures
	﻿Potential effects on carbon footprint when selecting more feed efficient cows

	﻿Discussion
	﻿Conclusions
	﻿References


