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Abstract
Background  Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan 
metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption 
on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and 
explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation.

Results  Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, 
which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg 
inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test 
were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization 
technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third 
trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was 
positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated 
fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of 
Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively 
correlated to plasma serotonin concentration.

Conclusions  DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial 
diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma 
serotonin level.
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Introduction
Female hormonal, metabolic, and immunological status 
changes substantially during normal and healthy preg-
nancy [1, 2]. In mammals, insulin sensitivity increases 
progressively (30–70%) during the third trimester to 
meet the maternal metabolic needs and to provide suf-
ficient glucose for the growth and development of the 
fetus [3]. Reduced insulin sensitivity or increased insulin 
resistance (IR) is defined as a reduced biological response 
of the target tissue, such as adipose tissue, liver, or mus-
cle, to a given concentration of insulin [4]. IR is usually 
regarded as the primary pathological basis for reproduc-
tive dysfunction [5]. Moreover, previous studies showed 
that pregnant women with chronic or excessive IR are 
more likely to develop preeclampsia, causing short- and 
long-term neonatal and maternal morbidity and mortal-
ity [6, 7]. A study found that sows developed IR during 
late pregnancy, which was further exacerbated during 
lactation [8], resulting in prolonged farrowing dura-
tion, reduced lactation feed intake, and increased body 
weight loss during lactation, leading to a reduction in 
subsequent reproductive performance or even prema-
ture culling [9, 10]. Therefore, it is necessary to take mea-
sures to modulate insulin sensitivity in sows during late 
pregnancy.

Serotonin, an essential neurotransmitter, is a biogenic 
monoamine produced from tryptophan that plays an 
integral role in maintaining energy homeostasis and 
involved in numerous diseases such as gastrointestinal 
disorders, cardiac arrhythmia, and hypertension [11]. 
Watanabe et al. [12] demonstrated that increasing periph-
eral serotonin via intraperitoneal injection relieved high-
fat diet-induced IR. Moreover, activating the serotonin 
receptor (5-HTR) 5-HTR2B could enhance β cell prolif-
eration and promote insulin secretion during pregnancy 
[13, 14]. These results highlighted the important role of 
serotonin in glycaemic control. It was reported that the 
majority (>90%) of serotonin in the body is synthesized, 
stored, and released from a subset of enterochromaffin 
cells (ECs) in the intestinal mucosa, and its biosynthesis 
from ECs was regulated by the gut microbiota [15]. Gut-
derived serotonin can be transported to different parts 
of the body through serotonin transporter (SERT) and 
can regulate several physiological functions, including 
pancreatic secretion, appetite, and gastrointestinal motil-
ity [16]. Additionally, gut-derived short-chain fatty acids 
(SCFAs) were reported to promote the generation of 
colonic serotonin in colonic enterochromaffin cells (ECs) 
[17]. Dietary fibers (DF) are essential for human health 
and digestion [18]. Numerous studies have demonstrated 
that DF consumption can significantly reduce metabolic 
dysfunction and improve insulin sensitivity in mammals 
[19, 20], which is partially attributed to the production 
of SCFAs and alteration of the gut microbiota especially 

SCFA-producing bacteria [21]. Our recent study in sows 
showed that a DF-supplemented gestating diet increased 
colonic SCFAs (including acetate, propionate, and butyr-
ate) and promoted colonic serotonin generation [22]. 
However, it remains unclear that the role of serotonin 
in DF-induced regulation of insulin sensitivity during 
pregnancy.

In view of the above, we hypothesized that DF con-
sumption during gestating period could improve insulin 
sensitivity through increasing the peripheral serotonin 
concentration regulated by the gut microbiota in sows. 
Therefore, this study aimed to investigate the effects 
of DF consumption on insulin sensitivity, tryptophan 
metabolism, and gut microbiota composition in sows 
during the third trimester, and to explore the possible 
role of tryptophan metabolism in DF-induced regulation 
of insulin sensitivity.

Materials and methods
Animals, diets, and management
Twelve Large White × Landrace crossbred sows (aver-
age body weight: 132.04 ± 1.87  kg and back fat thick-
ness: 13.96 ± 0.66 mm) were bred with Duroc boars and 
assigned randomly to two dietary treatment groups (six/
group) after artificial insemination: low-fiber (LF) group 
and high-fiber (HF) group. The LF group sows were fed 
a basal diet [1.10% soluble fiber (SF) and 9.14% insoluble 
fiber (ISF)], while the HF group sows were fed a high-
fiber diet (2.77% SF and 22.66% ISF) prepared from the 
basal diet supplemented with extra 22.60 g/kg inulin and 
181.60  g/kg cellulose. Inulin and cellulose used in this 
study were both commercial products, and purchased 
from ZTH tech (Beijing, China) and Guangxi Shangda 
Tech Co. (Nanning, China), respectively. The purity of 
inulin and cellulose was >90%. The basal diet (Table  1) 
was formulated in compliance with National Research 
Council (NRC, 2012) [23] to meet the nutrient require-
ments of gestating sows. The meals were provided once 
daily at 08:00 am with ad libitum access to water. The 
daily gestation diet intake in the LF group was 2.15  kg 
from day 1 to 89, 2.55 kg from day 90 to 112, and 1.90 kg 
from day 113 to parturition; and corresponding values in 
the HF group were 2.59, 3.07, and 2.29 kg.

Experimental design
The meal test, glucose tolerance test (GTT), and insu-
lin challenge test (ICT) were conducted via the percu-
taneous brachiocephalic vein catheterization technique 
to determine the effects of DF consumption on insulin 
sensitivity during the third trimester. At day 80 of preg-
nancy, a customized catheter (inner diameter: 0.96  mm 
and outer diameter: 1.68  mm), soaked successively in 
0.6% tridodecylmethylammonium chloride (CAS#7173-
54-8), 6.5% heparin sodium (CAS#9041-08-1), and 0.1% 
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chlorhexidine acetate (CAS#56-95-1), was fixed to the 
left brachiocephalic vein after the sow was anesthetized 
by intramuscular injection of Zoletil 50 (Virbac, Carros, 
France) [24]. The catheter was rinsed twice daily using 2% 
heparin sodium to remove any obstructions.

On the morning of days 85, 97, and 110 of pregnancy, 
blood samples were collected 15 and 5  min before and 
10, 30, 60, 90, 120, 180, and 240 min after the beginning 
of the meal (08:00 am, time 0) [25]. On the subsequent 
mornings (days 86, 98, and 111), the intravenous (i.v.) 
GTT was initiated at 08:00 am (time 0) and the blood 
samples were collected 15 min before and 5, 30, 60, 90, 
120, and 180  min after the infusion of 0.5  g of glucose/
kg BW (50% glucose injection; Kelun Pharmaceutical Co., 
Ltd., Xiantao, Hubei, China) for 5 min, through the jugu-
lar catheter [25]. Subsequently, the i.v. ICT was initiated 

at 2:00 pm (time 0) and the blood samples were collected 
15 min before and 5, 30, 60, 90, 120, and 180 min after 
infusion of 0.1 U of insulin/kg BW (40 IU/mL insu-
lin injection; Jiangsu Wanbang Biochemical Medicine 
Group Co., Ltd., Xuzhou, China) for 1 min, through the 
jugular catheter [8]. After the infusion and blood collec-
tion, 2 mL of 2% heparin sodium was injected to rinse 
the catheter immediately. During the test days, the sows 
were not fed before the i.v. GTT, but fed immediately 
after i.v. ICT. All the blood samples at each time point 
were collected in tubes containing heparin sodium after 
blood glucose (BG) measurement using a glucose meter 
(Sannuo, Changsha, China), and the obtained plasma 
samples were analyzed for insulin concentration. In the 
meal test, the insulin sensitivity index was calculated 
as 1/[fasting BG  (FBG) × fasting insulin (FIN)] and the 
insulin resistance index (HOMA-IR) was calculated as 
FBG×FIN/22.5, in which the FBG and FIN referred to 
the average fasting blood glucose and fast blood insulin, 
respectively [26]. In addition, the glucose disposal rate 
was calculated by the slope of glucose change against 
time from 5 to 30 min after the i.v. GTT and the half-life 
of glucose was calculated as described previously [27].

Sampling
On day 110 of pregnancy, fresh fecal samples were col-
lected from the rectum of the 12 sows, before feeding 
in the morning, and the outermost parts and the parts 
against the intestinal wall were discarded. The fecal 
samples were then divided into two sterile tubes for the 
determination of SCFA concentrations and microbial 
composition, respectively. The fecal samples were stored 
at −80 °C until the analysis.

Determination of blood glucose (BG) and insulin 
concentrations
The BG values were measured using the glucose meter 
(Sannuo), within 10 s after blood samples collection. The 
insulin concentration was detected by radioimmunoassay 
using guinea pig anti-porcine insulin serum (#R-C-02-01; 
3 V Bioengineering Group Co., Ltd., Weifang, China), as 
described previously [28].

Determination of plasma tryptophan, kynurenine, and 
serotonin concentrations
The fasting (5  min before the meal) plasma tryptophan 
and kynurenine concentrations of sows on day 110 of 
pregnancy were measured using high-performance liq-
uid chromatography (HPLC), as described by Veit et 
al. [29]. The pure compounds or internal standards for 
HPLC were purchased from Sigma-Aldrich (Darm-
stadt, Germany). The preprandial and postprandial 
plasma serotonin concentrations were determined using 
a commercially available ELISA kit (#EA602/96; DLD 

Table 1  Composition and calculated analysis of basal diets 
(as-fed basis)
Items Basal dieta

Ingredients, %
Corn 62.39
Dehulled soybean meal, 46% 13.10
Fish meal, 53.5% 2.00
Wheat flour 10.00
Corn starch 10.00
L-lysine HCl, 76.8% 0.10
L-threonine, 98% 0.02
Limestone 0.84
Monocalcium phosphate 0.46
Sodium chloride 0.40
Choline 0.14
Vitamin premix 0.05
Trace mineral premix 0.50
Total 100.00
Nutrients contentb

Digestible energy, MJ/kg 14.06
Crude protein, % 13.39
Crude fat, % 2.90
Crude fiber, % 1.41
Soluble fiber, % 1.10
Insoluble fiber, % 9.14
Total dietary fiber, % 10.21
Ca, % 0.60
Available P, % 0.27
Lysine, % 0.60
Methionine, % 0.21
Threonine, % 0.46
Tryptophan, % 0.14
aProvided per kilogram of complete diet: vitamin A 7500 IU, vitamin D3 5000 IU, 
vitamin E 37.5 IU, vitamin K3 5 mg, vitamin B1 5 mg, vitamin B2 12.5 mg, vitamin 
B6 7.5 mg, vitamin B12 0.05 mg, biotin 0.2 mg, niacin 50 mg, folic acid 2.5 mg and 
D-calcium pantothenate 25 mg, 10 mg of Cu as CuSO4, 100 mg of Fe as FeSO4, 
0.6 mg of I as KI, 100 mg of Zn as ZnSO4, 30 mg of Mn as MnSO4 and 0.25 mg of 
Se as Na2SeO3
bAll data were calculated according to the tables of Feed Composition and 
Nutrient Values in China (2023) in the basal diet
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Diagnostika GmBH, Hamburg, German), according to 
the manufacturer’s instructions [30].

Determination of fecal SCFA concentrations
The fecal SCFA concentrations of sows on day 110 of 
pregnancy were measured using gas chromatography 
(Varian CP-3800 GC, United States), as described in Li 
et al. [31]. Briefly, the fecal sample was suspended in 1.5 
mL of distilled water and the supernatant was obtained 
and mixed with metaphosphoric acid (CAS#37267-86-0), 
crotonic acid (CAS#107-93-7), and HPLC-grade metha-
nol (CAS#67-56-1). Finally, 1 µL of the supernatant was 
analyzed for acetate, propionate, and butyrate concentra-
tions, and total SCFAs was calculated as their sum.

Microbial composition and diversity analysis
The microbial genomic DNA was extracted from fro-
zen fecal samples of the 12 sows (6 sows per group) on 
d 110 of pregnancy using an E.Z.N.A. TM Stool DNA kit 
(#D4015-02; Omega Bio-Tek, Norcross, Georgia, USA) 
as described previously [32]. After DNA concentration 
and purity examination, the V4 hypervariable region 
of 16 S rDNA was amplified with the barcoded primers 
(515  F-806R; 5′-GTGCCAGCMGCCGCGGTAA-3′ and 
5′-GGACTACHVGGGTWTCTAAT-3′, respectively) 
[33]. Generated sequencing libraries were sequenced on 
the Illumina HiSeq PE2500 platform (Novogene, Bei-
jing, China). After paired-end reads assembly, data filtra-
tion, and chimera removal, the effective sequences were 
obtained, and sequences at 97% sequence similarity were 
clustered into the same operational taxonomic units 
(OTUs) using UPARSE pipeline [34]. Observed species, 
Simpson index (1-D form), Shannon index, Chao 1 index, 
and ACE index were calculated to assess the difference in 
alpha diversity. Bray_curtis distance and UPGMA phylo-
genetic tree were used for comparison of taxonomic data 
in beta diversity using the QIIME2 and displayed with 
R software (V3.1) [35, 36]. Significant differences in the 
microbial communities of the two groups were detected 
with the analysis of similarity (ANOSIM) test.

Statistical analysis
The individual sow was considered the experimental 
unit for all the variables, and the SAS 9.4 ((Institute Inc., 
Cary, NC, USA) was used to compare the significance 
between LF group and HF group. Postprandial blood glu-
cose, insulin, and serotonin concentrations were analyzed 
using repeated-measures, and the fasting basal values 
were used as a covariate. The other values were analyzed 
using the t-test procedure. Normality of data distribution 
was assessed with a Shapiro-Wilk’s statistic (W > 0.05). 
Spearman’s correlations were used to examined the asso-
ciations between insulin sensitivity and plasma serotonin 
concentration as well as between bacterial abundance 

and plasma serotonin concentration. Values were 
expressed as mean ± standard error. The level of statisti-
cal significance was set at P < 0.05, and 0.05 < P < 0.10 was 
considered a trend toward significance.

Results
Effect of DF consumption on changes of BG and insulin 
concentrations during the third trimester
The meal test (Fig. 1A) results showed that the BG con-
centration decreased 10  min after the morning meal. 
Furthermore, on days 85 and 97 of pregnancy, the BG 
concentration in the LF and HF groups peaked at 60 and 
30  min after the initiation of the meal, respectively. On 
day 110 of pregnancy, the BG concentration peaked at 
60 min in both the groups. The range of glycemic fluctua-
tions in the HF group was reduced compared with that 
in the LF group. The blood insulin concentration peaked 
60 min after the initiation of the meal in both groups on 
days 85, 97, and 110 of pregnancy. On day 85 of preg-
nancy, the BG concentrations of the HF group were sig-
nificantly lower at 60 and 120 min (P < 0.05) and higher 
at 30 min (P < 0.10), compared to those of the LF group. 
Additionally, on day 85, the HF group showed higher 
blood insulin concentration at 10 (P < 0.05) and 90  min 
(P < 0.10) compared with the LF group. Moreover, on 
days 97 and 110 of pregnancy, the HF group showed sig-
nificantly decreased (P < 0.05) FBG and BG concentra-
tions at 60 and 90  min, respectively, and decreased BG 
concentration (P < 0.10) at 60 min on day 110, compared 
with the LF group.

The i.v. GTT results (Fig.  1B) demonstrated that glu-
cose injection resulted in hyperglycemia and that the BG 
and insulin concentrations reached the maximum val-
ues 5  min after the injection. Glycemia then decreased 
rapidly, especially in the HF group, leading to hypogly-
cemia after 60  min of glucose injection. Additionally, 
rapid plasma insulin release was observed in the HF 
group 5 min after the injection on days 86 (P < 0.10), 98 
(P < 0.05), and 111 (P < 0.05) of pregnancy, after the initia-
tion of the i.v. GTT. Moreover, on day 86 of pregnancy, 
compared with the LF group, the HF group had signifi-
cantly lower (P < 0.05) BG concentration after 30  min 
and lower (P < 0.10) BG concentration after 180  min of 
glucose injection. On day 98 of pregnancy, compared 
with the LF group, the HF group had significantly lower 
(P < 0.05) BG concentration 15  min before and during 
30–60  min of glucose injection and reduced (P < 0.10) 
plasma insulin concentration after 180  min of glucose 
injection. Moreover, on day 111 of pregnancy, FBG con-
centration decreased significantly (P < 0.05), while FIN, 
BG, and insulin concentrations deceased (P < 0.10) at 
90 and 180 min in the HF group, compared with the LF 
group.
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The i.v. ICT results (Fig.  1C) showed that the insulin 
concentration peaked after 5 min, while the BG concen-
tration decreased after 30  min of insulin injection. On 
day 86 of pregnancy, the HF group showed a decrease 
(P < 0.10) in the BG concentration at 5 and 180 min and 
an increase in the plasma insulin concentration at 60 
(P < 0.05) and 180 (P < 0.10) min, compared with the LF 
group. On day 98 of pregnancy, compared with the LF 
group, the HF group showed decreased (P < 0.10) BG 
concentrations 15  min before and 5  min after the insu-
lin injection and significantly decreased (P < 0.05) plasma 
insulin concentration 5  min after the insulin injection. 
On day 111 of pregnancy, compared to the LF group, the 
HF group showed significantly decreased (P < 0.05) BG 
concentrations at 120  min and decreased (P < 0.10) BG 
concentrations at 60, 90, and 180 min and plasma insulin 
concentration at 180 min.

Effect of DF consumption on parameters related to insulin 
sensitivity during the third trimester
As shown in Table  2, compared with the LF group, the 
HF group showed significantly increased (P < 0.05) 
insulin sensitivity indexes and significantly decreased 
(P < 0.05) HOMA-IR indexes on days 97 and 110 of preg-
nancy. Additionally, compared with the LF group, the HF 
group showed a significant increase (P < 0.05) in glucose 
disposal rate and a significant decrease (P < 0.05) in half-
time of glucose on day 98 of pregnancy.

Effect of DF consumption on tryptophan metabolism on 
day 110 of pregnancy
As shown in Fig. 2A, after the morning meal, the plasma 
serotonin levels in the HF and LF groups peaked at 
60 and 120  min, respectively. Additionally, compared 
with the LF group, the HF group showed significantly 
increased (P < 0.05) plasma serotonin concentrations 

Fig. 1  Blood glucose and insulin concentrations following the meal test, the i.v. glucose tolerance test, and the i.v. insulin challenge test. (A) Blood 
glucose and insulin concentrations before and after the morning meal on d 85, 97, and 110 of pregnancy; (B) Blood glucose and insulin concentrations 
before and after the i.v. glucose tolerance test on d 86, 98, and 111 of pregnancy; (C) Blood glucose and insulin concentrations before and after the i.v. 
insulin challenge test on d 86, 98, and 111 of pregnancy. LF sows fed a basal diet, HF sows fed with the basal diet added with extra 22.60 g/kg inulin and 
181.60 g/kg cellulose. n = 6 per group. Values are mean ± standard error. The level of statistical significance was set by *P < 0.05 and and **P < 0.01, and 
+0.05 < P < 0.10 was considered a trend toward significance
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5  min before and 60, 120, 180, and 240  min after the 
meal. Moreover, compared with the LF group, the HF 
group showed significantly lower (P < 0.05) kynurenine 
(Fig. 2C) and lower (P < 0.10) tryptophan concentrations 
(Fig.  2B) and significantly higher (P < 0.05) serotonin/

tryptophan ratio  (Fig.  2D)  in fasting plasma. However, 
there was no significant difference (P > 0.05) in the fast-
ing plasma kynurenine/tryptophan ratio between the two 
groups (Fig. 2E).

Effect of DF consumption on fecal SCFA concentrations on 
day 110 of pregnancy
The fecal SCFA concentrations on day 110 of pregnancy 
are shown in Table 3. The HF group showed significantly 
higher (P < 0.05) concentrations of acetate, butyrate, and 
total SCFAs and higher (P < 0.10) concentration of pro-
pionate, compared to the LF group.

Table 2  Effects of dietary fiber supplementation on insulin 
sensitivity index, HOMA-IR, glucose disposal rate and half-time of 
glucose in gestating sows
Items Groups

LF HF
Insulin sensitivity index
d 85 0.019 ± 0.002 0.022 ± 0.006
d 97 0.015 ± 0.003 0.021 ± 0.003*
d 110 0.018 ± 0.002 0.034 ± 0.005*
HOMA-IR
d 85 2.55 ± 0.31 2.50 ± 0.61
d 97 3.63 ± 0.74 2.26 ± 0.29*
d 110 2.84 ± 0.55 1.43 ± 0.18*
Glucose disposal rate
d 86 0.58 ± 0.03 0.63 ± 0.04
d 98 0.56 ± 0.02 0.67 ± 0.01**
d 111 0.60 ± 0.06 0.57 ± 0.08
Half-life of glucose
d 86 1.21 ± 0.05 1.13 ± 0.08
d 98 1.25 ± 0.05 1.03 ± 0.01**
d 111 1.22 ± 0.12 1.34 ± 0.14
n = 6 per group. Values are mean ± standard error

LF sows fed a basal diet, HF sows fed with the basal diet added with extra 
22.60 g/kg inulin and 181.60 g/kg cellulose

The level of statistical significance was set by *P < 0.05 and and **P < 0.01

Table 3  Effect of dietary fiber consumption on short-chain fatty 
acids (SCFAs) concentrations in fresh feces on d 110 of pregnancy
Items Groups

LF HF
Acetate, µmol/g 28.71 ± 2.97 40.65 ± 2.63**
Propionate, µmol/g 17.52 ± 2.45 24.94 ± 2.58+

Butyrate, µmol/g 9.48 ± 1.24 16.12 ± 2.11*
Total SCFAs, µmol/g 55.71 ± 4.88 81.71 ± 6.23**
n = 6 per group. Values are mean ± standard error. Total 
SCFAs = Acetate + Propionate + Butyrate

LF sows fed a basal diet, HF sows fed with the basal diet added with extra 
22.60 g/kg inulin and 181.60 g/kg cellulose

The level of statistical significance was set by *P < 0.05 and **P < 0.01, and 
+0.05 < P < 0.10 was considered a trend toward significance

Fig. 2  Effect of dietary fiber consumption on tryptophan metabolism on d 110 of pregnancy. (A) Plasma serotonin concentration before and after the 
morning meal; (B) Plasma tryptophan concentration; (C) Plasma kynurenine concentration; (D) Plasma serotonin/ tryptophan ratio; (E) Plasma kynuren-
ine/ tryptophan ratio. LF sows fed a basal diet, HF sows fed with the basal diet added with extra 22.60 g/kg inulin and 181.60 g/kg cellulose. n = 6 per 
group. Values are mean ± standard error. The level of statistical significance was set by *P < 0.05 and **P < 0.01, and +0.05 < P < 0.10 was considered a trend 
toward significance
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Effect of DF consumption on fecal microbial composition 
and diversity on day 110 of pregnancy
As displayed in Fig.  3, the species accumulation curves 
(Fig.  3A), which present cumulative counts of spe-
cies with sampling number, flattened as the number 
of sequences increased to 12, demonstrating that the 
sequencing was deep enough to cover the species rich-
ness and diversity of the samples. As seen in the species 
rank curve (Fig.  3B), which represents the diversity of 
samples within a group, the HF group had a higher spe-
cies richness and a more homogeneous species distribu-
tion. The Venn diagram (Fig. 3C) also indicated that the 
HF group had more unique sequences than the LF group. 
Moreover, the Simpson (Fig. 3E) and Shannon  (Fig. 3F) 
indexes were significantly higher (P < 0.05) in the HF 
group than in the LF group; however, no significant dif-
ferences (P > 0.05) were noted in the observed species 
(Fig. 3D), Chao 1 (Fig. 3G), and ACE  (Fig. 3H) indexes 
between the two groups.

In the current study, the bray_curtis distance (Fig. 4A) 
and UPGMA clustering analysis with bray_curtis dis-
tance (Fig.  4B) were used to evaluate similarities in the 
bacterial communities between the samples. The results 
showed that the majority of the LF samples formed the 
first group, while the majority of the HF samples formed 
the second group, suggesting that the phylogenetic rela-
tionship of the LF group was relatively far from the HF 
group. The principal coordinate analysis (PCoA) profile 
of bray_curtis distance (Fig. 4C) also revealed that the LF 
samples dispersed far apart from the HF samples, indicat-
ing a clear separation between the two groups. In addi-
tion, the analysis of similarities (ANOSIM) test (Fig. 4D) 
demonstrated that the two groups had significantly 

different (R = 0.304, P = 0.009) microbial community 
structures on day 110 of pregnancy.

The relative abundances of the fecal microbiota at the 
phylum (top 10) level are shown in Fig.  4B. Firmicutes 
and Bacteroidetes were the most predominant phyla 
in the fecal samples, accounting for 57.3% and 27.4% 
abundance, respectively. The phylogenetic tree based on 
the sequences of the top 60 genera (Fig. 5) showed that 
Chostridium_sensu_stricto_1, Lactobacillus, Streptococ-
cus, and Treponema_2 were the most abundant genera 
in the LF group, while Chostridium_sensu_stricto_1, Lac-
tobacillus, Treponema_2, and Rikenellaceae_RC9_gut_
group were the dominant genera in the HF group.

Moreover, the HF group had significantly lower 
(P < 0.05) abundances of Firmicutes and Euryar-
chaeota and significantly higher (P < 0.05) abun-
dance of Bacteroidetes compared to the LF group 
(Fig.  6A). Among the top 60 genera, the relative 
abundances of Chostridium_sensu_stricto_1, Metha-
nobrevibacter, Ruminococcaceae_NK4A214_group, Ter-
risporobacter, Ruminococcaceae_UCG-002, Romboutsia, 
Christenellaceae_R-7_group, and Family_XIII_AD3011_
group were significantly decreased (P < 0.05), while the 
relative abundances of Rikenellaceae_RC9_gut_group, 
Prevotellaceae_UCG-003, Alloprevotella, Parabacteroi-
des, Roseburia, and Sphaerochaeta were significantly 
increased (P < 0.05) in the HF group, compared with the 
LF group (Fig. 6B).

Correlation analysis between insulin sensitivity, plasma 
serotonin concentration, and bacterial abundances
As shown in Fig.  7A, there was a significant positive 
correlation (P < 0.05) between insulin sensitivity and 
plasma serotonin concentration on day 110 of pregnancy. 

Fig. 3  Effect of dietary fiber consumption on fecal microbial community diversity and richness on pregnancy d110. (A) Species accumulation curves; (B) 
Species rank curves; (C) Venn diagram generated to depict shared and unique sequences between the two groups; (D) Rarefaction curve; (E–H) Alpha 
diversity indexes, containing Simpson (1-D form), Shannon, Chao 1, and ACE indexes. LF sows fed a basal diet, HF sows fed with the basal diet added with 
extra 22.60 g/kg inulin and 181.60 g/kg cellulose. n = 6 per group. The level of statistical significance was set by *P < 0.05
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However, the plasma serotonin concentration was 
significantly negatively correlated (P < 0.05) with the 
abundances of Chostridium_sensu_stricto_1, Terrispo-
robacter, Romboutsia, Christenellaceae_R-7_group, and 
Family_XIII_AD3011_group and significantly positively 
correlated (P < 0.05) with the abundances of Roseburia, 
Alloprevotella, Rikenellaceae_RC9_gut_group, Parabacte-
roides, and Sphaerochaeta (Fig. 7B).

Discussion
During late pregnancy, the female body undergoes vari-
ous physiological and metabolic changes to support the 
dramatic increase in nutritional needs (particularly glu-
cose requirement) of the fetuses, leading to a decrease in 
insulin sensitivity [8, 37]. Studies in human and animal 
models have shown that DF intake improves insulin sen-
sitivity and glucose homeostasis during pregnancy [18, 
38]. Sows fed high ISF- or SF-supplemented diets exhib-
ited significantly lower BG concentration in the portal 
vein, before and after the meal, compared to those fed 

high starch-supplemented diets [39]. Consistently, our 
study also indicated that DF consumption decreased FBG 
in sows during the third trimester. Besides, significantly 
improved insulin sensitivity index and HOMA-IR by DF 
consumption were not found on d 85 of pregnancy, but 
were found on d 97 and 110 of pregnancy in this study. 
That might because insulin sensitivity decrease began to 
occur in sows after 85 d of pregnancy [25].

Previous studies have mostly attributed the effect of 
DF on improving insulin sensitivity to the production of 
SCFAs via gut microbiota fermentation [19–21]. In this 
study, we also found that DF consumption promoted the 
generation of sow fecal SCFAs, including acetate, pro-
pionate, butyrate, and total SCFAs. Interestingly, some 
researches indicated that gut-derived SCFAs could pro-
mote the production of colonic serotonin [15, 17]. Sero-
tonin is an end product of tryptophan metabolism, which 
have been suggested in many diseases, such as diabetes, 
obesity, inflammatory bowel diseases, etc. [40]. Gut-
derived serotonin could be transported into platelets 

Fig. 4  Beta diversity of fecal microbial community analysis on d 110 of pregnancy. (A) Heat-map of beta diversity for each two samples by bray_curtis 
distance; (B) The principal coordinate analysis (PCoA) profile of bray_curtis distance; (C) Unweighted pair-group method with arithmetic mean (UPGMA) 
clustering analysis with bray_curtis distance; (D) Analysis of ANOSIM. LF sows fed a basal diet, HF sows fed with the basal diet added with extra 22.60 g/kg 
inulin and 181.60 g/kg cellulose. n = 6 per group. The level of statistical significance was set at P < 0.05, and 0.05 < P < 0.10 was considered a trend toward 
significance
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through SERT and released into the bloodstream, to 
prime the body for energy storage by promoting insulin 
secretion in the liver and white adipose tissue by inter-
acting with its receptors [41]. A previous study in rats 
showed that increased peripheral serotonin caused a 
decrease in circulating hyperglycemia and hyperinsu-
linemia [42]. The hypoglycemic effect of serotonin may 
be related to its promotion of glucose utilization and 
conversion to glycogen [43, 44]. Moreover, serotonin 
signaling during pregnancy is required for adaptive 

proliferation of β cells. Kim et al. [45] found that blocking 
5-HTR2B signaling inhibited the expansion of maternal 
insulin-producing beta cells, causing glucose intoler-
ance in pregnant rats. Another study also indicated that 
serotonin could also act via the 5-HTR3A Na-K-selective 
ion channel receptor to promote insulin exocytosis, and 
mice deficient for 5-HTR3A developed glucose intoler-
ance during pregnancy [46]. In this study, DF intake 
increased preprandial and postprandial serotonin con-
centrations, which was in accord with Watanabe et al. 

Fig. 5  The phylogenetic tree constructed based on the sequence of the top 60 genera. The stacked column chart in the outer circle shows the relative 
abundance of each genus in different treatments, while the branches with various hues in the inner circle depict their respective phylum. LF sows fed a 
basal diet, HF sows fed with the basal diet added with extra 22.60 g/kg inulin and 181.60 g/kg cellulose. n = 6 per group
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[12]. Moreover, spearman’s correlation analysis showed 
that plasma serotonin concentration was positively cor-
related with the insulin sensitivity index in this study. 
In general, tryptophan is metabolized via serotonin and 
kynurenine pathways, resulting in the production of bio-
logically active compounds, such as serotonin, melatonin, 
and kynurenine [47]. However, increased kynurenine 
production reduces tryptophan availability for serotonin 
synthesis. It was reported that increased dietary fiber 

intake reduced the production of indole [48]. In this 
study, DF intake increased serotonin/tryptophan ratio, 
and decreased serum kynurenine level in sows, suggest-
ing that DF consumption promoted serotonin synthesis 
from tryptophan. Intriguingly, it was reported that sys-
temic serotonin inhibition benefited to improve glucose 
homeostasis and insulin sensitivity in adipose tissues 
[49], and one possible reason might be that serotonin 
inhibited their uptake of glucose from the blood when it 

Fig. 6  The species of significant differences at phylum (A) and genus (B) levels. The left picture shows the diversity of species abundance, each of which 
indicates the mean value of species with significant differences in the abundance, and the right picture shows the difference confidence between the 
two groups. LF sows fed a basal diet, HF sows fed with the basal diet added with extra 22.60 g/kg inulin and 181.60 g/kg cellulose. n = 6 per group. The 
level of statistical significance was set at P < 0.05
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acted on tissues other than the liver [42]. Above all, our 
findings suggesting that DF consumption improved insu-
lin sensitivity during late pregnancy in sows, partially by 
regulating tryptophan metabolism.

On the other hand, dramatic changed in microbial 
composition and abundance by DF consumption were 
found in sow feces in this study. Gut microbiota dysbio-
sis has been linked to the occurrence of IR in hosts [50]. 
Numerous studies showed that DF regulated glucose and 
lipid metabolism by altering the gut microbiota [18, 51]. 
Moreover, studies have demonstrated that gut microbiota 
is involved in the regulation of tryptophan metabolism 
[15, 52]. In the current study, DF consumption increased 
Simpson and Shannon indexes used to measure com-
munity diversity and altered microbial community struc-
tures, respectively. It was reported that germ-free mice 
with low gut microbial diversity showed a decreased pro-
duction of biologically active serotonin compared with 
specific pathogen-free mice [52]. The microbial metabo-
lites, such as propionate, butyrate, cholate, and deoxy-
cholate, could promote the release of serotonin from ECs 
[15]. In the present study, DF consumption during late 
pregnancy increased abundances of fiber-degrading and 
SCFA-producing bacteria, including Rikenellaceae_RC9_
gut_group, Prevotellaceae_UCG-003, Alloprevotella, 
Parabacteroides, Roseburia, and Sphaerochaeta in sow 
feces [53–55]. Furthermore, the abundances of Rikenel-
laceae_RC9_gut_group, Alloprevotella, Parabacteroides, 
Roseburia, and Sphaerochaeta were positively correlated 
to plasma serotonin concentration. Therefore, our results 
suggested that DF promoted beneficial microbiome and 
increased SCFAs which may have impacted the periph-
eral serotonin level during late pregnancy in sows. How-
ever, full-length 16  S rRNA gene amplicon sequencing 
need be used to reveal the relationship between bacterial 
flora and serotonin concentration at the species level in 
the further study.

Conclusion
Altogether, our results suggest that DF consumption 
improved insulin sensitivity during late pregnancy in 
sows, which improved microbial diversity in fecal sam-
ples and increased fecal SCFA concentrations, result-
ing in a positive correlation with plasma serotonin level. 
Therefore, our findings provide new insights into the reg-
ulation of insulin sensitivity in sows.
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