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Abstract
Background While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in 
relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of 
their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, 
and/or be involved in host recognition by parasites. Thus, host-parasite associations should now be considered as 
a tripartite interplay where the microbiota shapes the host phenotype and its relation to parasites. Monogeneans 
(Platyhelminthes) are direct life cycle ectoparasites commonly found on teleost skin and gills. The role of bacterial 
communities within skin and gill mucus which either pre-exist monogeneans infestation or follow it remain unclear. 
This is investigated in this study using the association between Sparidae (Teleostei) and their specific monogenean 
ectoparasites of the Lamellodiscus genus. We are exploring specificity mechanisms through the characterization of 
the external mucus microbiota of two wild sparid species using 16s rRNA amplicon sequencing. We investigated how 
these bacterial communities are related to constrated Lamellodiscus monogeneans parasitic load.

Results Our results revealed that the increase in Lamellodiscus load is linked to an increase in bacterial diversity in 
the skin mucus of D. annularis specimens. The date of capture of D. annularis individuals appears to influence the 
Lamellodiscus load. Correlations between the abundance of bacterial taxa and Lamellodiscus load were found in gill 
mucus of both species. Abundance of Flavobacteriaceae family was strongly correlated with the Lamellodiscus load 
in gill mucus of both species, as well as the potentially pathogenic bacterial genus Tenacibaculum in D. annularis gill 
mucus. Negative correlations were observed between Lamellodiscus load and the abundance in Vibrionaceae in gill 
mucus of D. annularis, and the abundance in Fusobacteria in gill mucus of P. acarne specimens, suggesting potential 
applications of these bacteria in mitigating parasitic infections in fish.

Conclusions Our findings highlight the dynamic nature of fish microbiota, in particular in relation with 
monogeneans infestations in two wild sparid species. More generally, this study emphasizes the links between hosts, 
bacterial communities and parasites, spanning from the dynamics of co-infection to the potential protective role of 
the host’s microbiota.
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Introduction
Any organism is likely to host one or more parasitic spe-
cies during its lifetime [1]. However, this does not mean 
that all hosts are equal face to parasitism: variability can 
be observed in the probability of infection (prevalence) 
and in the number of parasites within each host (parasitic 
load). Recently, among the avenues explored to explain 
these variations in host specificity, an increasing number 
of studies [2–4] suggest a role of the microbiota in host-
parasite interactions. Indeed, several studies have shown 
that parasitized hosts possess a specific microbiota that 
differs from non-parasitized hosts, emphasizing the 
putative involvement of the microbiota in host-parasite 
interactions [5–9]. However, it remains unclear whether 
some of these differences in host bacterial communities 
are a cause or a consequence of parasitic infections.

Certain bacteria have been shown to protect the host 
against parasitic infections. This is the case, for exam-
ple, in bumblebees, where several studies have shown 
a protective effect of the gut microbiota against a try-
panosomatid parasite [10, 11]. Conversely, bacteria pre-
existing the infection could favor the establishment and 
survival of parasite by creating favorable conditions. In 
2010, Hayes et al. [12] showed that reducing the num-
ber of bacteria in the large intestine of mice significantly 
reduced the number of hatched nematode eggs. Other 
authors have shown that the microbiota can be involved 
in the attraction of parasites toward their host via chemi-
cal cues. This has for example been shown for mosqui-
tos that are attracted by the skin microbiota of certain 
human hosts [13]. Another recent study has shown that 
cane toad skin secretions (i.e., substances produced by 
amphibians and their microbiota) attract lungworm 
larvae and enhance their infection success [14]. Inter-
estingly, these authors showed that, depending on the 
geographical area, these same skin secretions could also 
reduce the longevity and infection success of the parasite 
larvae.

Differences in bacterial communities also seems to be 
the result of parasite infestation. In the case of helminth 
infestation, it has been shown that parasites induce a 
change in the composition of the microbiota [15], reduc-
ing airway inflammation in mice to prevent their expul-
sion, and that this mechanism is suppressed in hosts that 
have received antibiotics [16, 17]. A recent study suggest 
that infection by a crustacean ectoparasite (Trachelias-
tes polycolpus) induced a shift of the fin microbiota in a 
freshwater fish (Leuciscus burdigalensis), and this shift 
was restricted to the fin where the parasite anchored [18]. 
Thus, microbiota has been shown to reflect the infection 
status of the host [3].

Deciphering the role of the microbiota in parasitic 
infection can be pertinent in fields such as aquaculture, 
where parasites are responsible for considerable annual 
economic losses [19]. This is the case for monogeneans 
[20], ectoparasites abundant on teleost skin and gills. 
Teleost skin and gills are covered with a mucus colonized 
by stable communities of microorganisms that form the 
external microbiota. Several studies have shown that 
monogeneans detect their hosts via cues emitted by fish 
mucus [21–24] such as mucosal macromolecules (IgM) 
[25] and glycoproteins [26, 27]. Recent work suggests that 
the molecules involved in the monogeneans’ host recog-
nition system are produced by the host microbiota [28]. 
Among the many roles assumed by the microbiota for its 
host fish [29–31], its link with pathogens and parasites 
is not well understood. One of the difficulties is to dis-
entangle causes from consequences, particularly in wild 
populations where the microbiota is under the influence 
of numerous biotic and abiotic factors [32–35].

In the Mediterranean Sea, the association between 
the Sparidae (Perciformes) fish family and their specific 
monogeneans belonging to the Lamellodiscus genus is 
a relevant model to study fish-monogenean association. 
Lamellodiscus monogeneans are ectoparasites with a 
direct life cycle often abundant on the skin and gills of 
sparids. The establishment of monogeneans on their 
host is regulated at multiple levels, involving two critical 
stages: when the swimming larvae (oncomiracidia) seek 
out, reach and attach on fish skin, and when the larvae 
move, attach and establish in the gills. Previous stud-
ies have shown that certain highly specific monogenean 
larvae are able to parasitize fish species not recorded as 
their host species [24, 36]. Ohhashi and coll. [24] have 
proposed that these monogenean larvae could only sur-
vive for a few days and finally detach from their non-spe-
cific host, being unable to mature to the adult stage in the 
gills.

The aim of this study was to characterize the differ-
ences in bacterial communities patterns in the external 
mucus (skin and gill) of two Mediterranean sparid spe-
cies (Diplodus annularis and Pagellus acarne) with con-
trasting Lamellodiscus monogeneans parasitic loads. 
Lamellodiscus abundance and diversity were assessed 
to investigate their effect on the structure and diversity 
of bacterial communities in each individual’s external 
microbiota (i.e., the skin and gill mucus). The effect of 
sampling conditions (i.e., location and date of capture) on 
these two microbiota was also investigated. We focused 
our analysis on gill microbiota, where the parasites settle 
definitively as adults, to look for correlations between the 
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abundance of a given bacterial taxa and Lamellodiscus 
abundance in both sparid species.

Materials and methods
Fish sampling, DNA extraction, 16s RNA sequencing and 
processing
Details of the protocols for fish sampling, DNA extrac-
tion, 16S rRNA sequencing and sequence processing 
protocols can be found in [35]. Briefly, fish sampling of 
D. annularis individuals was conducted in June and July 
2021 in the bay of Banyuls-sur-Mer and fish sampling of 
P. acarne individuals was conducted in June, July 2021 
and March 2022 in both bays of Banyuls-sur-Mer and 
Argelès-sur-Mer (northwestern Mediterranean Sea, 
France) (Supplementary table S1). All fish were collected 
from a net with gloves and immediately taken to the lab-
oratory for dissection; skin mucus and gill mucus were 
collected with sterile spatula and immediately placed in 
sterile tubes and either frozen at -80 °C until DNA extrac-
tion. For convenience, we will refer to gills and skin in 
this study as “tissues”. A total of 28 fish individuals were 
sampled for their skin and gill mucus, all belonging to 
two sparid species: 12 individuals identified as Diplodus 
annularis and 16 individuals as Pagellus acarne (Table 1). 
For each fish sampling done in Banyuls-sur-Mer (4 sam-
pling dates), two liters of seawater were collected in a 
sterile container and filtered through a 0.2 μm nitrocel-
lulose filter which was stored at -80  °C prior to DNA 
extraction.

DNA was extracted by using the Quick-DNA Fecal/Soil 
Microbe MiniPrep Kit (Zymo Research, Orange, Califor-
nia). PCR amplification was carried out in triplicate and 
performed using primers targeting the hypervariable 
V3-V4 region of the 16S rRNA gene: 341  F (5’CCTAC-
GGGNGGCWGCAG-3′) and 805R (5′-GACTACH-
VGGGTATCTAATCC-3′) [37, 38]. A second PCR was 
performed to add barcodes to each amplified sample 
and the Illumina adapters. The concentration of all PCR 
products was normalized with a 96 well SequalPrep Nor-
malization Plate (Thermofisher, France). Amplicons were 
sequenced using Illumina 2 × 300  bp MiSeq sequencing 
(FASTERIS SA, Switzerland).

The analysis of the raw sequences was done using the 
QIIME2 software and the standard pipeline of DADA2 
[39–41]. Raw reads were demultiplexed, quality checked 
and trimmed to remove primer regions, paired ends 
were assembled, chimeric sequences were discarded, and 

reads were denoised. DADA2 generate a list of Ampli-
con Sequence Variants (ASVs). Sequences were aligned 
against the SILVA 138 reference database distributed by 
the Silva project [42, 43]. The MAFFT program was used 
to align the sequences and FastTree to build a phyloge-
netic tree. Based on the classification, ASVs matching 
“Archaea”, “Eukaryota” and “Unassigned” or represented 
by a single sequence in all samples were removed.

Characterization of gill parasites
To characterize Lamellodiscus species diversity and 
abundance, Lamellodiscus individuals were recovered 
from three outermost gill arches for each fish individual 
and counted under a dissecting microscope. In this study, 
we will consider the total Lamellodiscus load without 
considering their species affiliation. Based on our previ-
ous results [35, 44] we determined that the mean inten-
sity of Lamellodiscus in D. annularis specimens caught 
during the same season as ours was 13 Lamellodiscus 
per 3 gill arches. In P. acarne specimens caught during 
same seasons than ours, the mean intensity of Lamello-
discus was 21 per 3 gill arches. Consequently, for down-
stream analyses, individuals of each fish species were 
grouped into two categories: those with Lamellodiscus 
spp. intensity below the previously reported mean in the 
three dissected gill arches were classified as ‘lightly para-
sitized’ (LP); those with higher Lamellodiscus spp. mean 
intensity were classified as ‘heavily parasitized’ (HP). For 
simplicity, we will use the terms “heavily” or “lightly” par-
asitized to refer specifically to the parasite loads in Lam-
ellodiscus spp.

Data analyses
The influence of location and date of capture on Lam-
ellodiscus abundance in the fish was assessed using 
a Mann-Whitney-Wilcoxon rank sum test in R, sup-
ported by permutation tests for robustness. α-diversity 
measures were estimated with Faith’s phylogenetic and 
Shannon indexes using the dataset normalized to the 
total number of sequences per samples and the function 
transform_sample_count in the phyloseq R package [45]. 
We performed one-way ANOVA (or non-parametric 
Kruskal-Wallis tests when data were not normally dis-
tributed) to compare alpha diversity between tissues (i.e., 
skin mucus, gill mucus and water) and species. When 
the ANOVA (or Kruskal-Wallis test) rejected the null 
hypothesis, we computed pairwise comparisons between 

Table 1 Total number of fish samples used in this study
Gill mucus Skin mucus Total
LP HP Total LP HP Total

Diplodus annularis 6 6 12 6 6 12 24
Pagellus acarne 8 8 16 8 8 16 32
Water - - - - - - 4
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group levels using Tukey post hoc tests (or post hoc 
Conover-Iman (CI) test) with Benjamini-Hochberg cor-
rection to detect significant differences between groups. 
Linear models (LM) or generalized linear model (GLM) 
(depending on the normal distribution of the data) were 
performed for each species to identify which fish-related 
factors (i.e. tissue, parasitism) or environment-related 
factors (collection date and capture location for P. acarne 
samples) influence fish bacterial diversity (lme4 package 
: lm/glm/glm.nb(Diversity ~ Tissue * Parasitism * Collec-
tion date * Capture location). For modeling Faith’s phy-
logenetic diversity obtained from D. annularis samples, a 
negative binomial regression was used (as the variance is 
larger than the mean). A GLM with Gamma distribution 
was used for Shannon diversity in P. acarne samples. Cor-
relations between Lamellodiscus parasitic load (i.e., total 
abundance) and gill mucus microbiota diversity (Faith’s 
and Shannon index) were computed and their signifi-
cance assessed using Pearson’s correlation tests. Finally, 
the number of shared ASVs among gill mucus microbiota 
of LP and HP individuals from both fish species and sur-
rounding water was calculated and represented using a 
Venn diagram [46] using a rarefied dataset (rarefaction 
performed to the minimum library size of D. annularis 
samples, 5691 reads).

Principal Coordinates Analysis (PCoA) using both 
Bray-Curtis, based on ASVs’ abundance, and weighted 
Unifrac distance, which takes into account both the 
ASVs’ abundance and their phylogenetic relationships, 
was used to assess the differences between the microbiota 
of the different fish species. Firstly, permutational multi-
variate analysis of variance (PERMANOVA (function 
adonis, vegan R package) and pairwise comparisons for 
Bray-Curtis and Weighted Unifrac indices (10,000 per-
mutations) were used to to test for differences of PCoA 
groups between tissues (i.e., gill mucus, skin mucus and 
water) and species. For each tissue and species, we have 
performed additional multifactorial PERMANOVAs 
and used the r2 value from PERMANOVA to estimate 
the relative effect size (% of variation explained) of fac-
tors tested (date of capture, capture location, level of 
parasitism, and the interactions date of capture × capture 
location, date of capture × parasitism level, and capture 
location × parasitism level) on skin and gill microbiota of 
both species. Given that bacteria from the surrounding 
water could appear as transient bacteria on gill and skin 
mucus of fish, these analyses were also performed with-
out considering sequences retrieved from water samples 
in D. annularis samples, for which surrounding water 
were available at each sampling date.

To assess how each bacterial taxon contributed to the 
dissimilarity between HP and LP gill or skin mucus bac-
terial communities, we performed a Linear discriminant 
analysis Effect Size (LEfSe) [47]. LEfSe provides Linear 

Discriminant Analysis (LDA) scores for the bacteria taxa 
contributing the most to the differences between bacte-
rial communities. We calculated relative abundances 
(i.e., total sum scaling) of bacterial taxa (i.e., phyla, class, 
order, family and genus) showing a significant contribu-
tion to the dissimilarity between HP and LP bacterial 
communities.

Spearman’s rank correlation was used to investigate 
the putative link between the abundance of Lamellodis-
cus spp. and the composition of gill and skin bacterial 
communities at family and genus taxonomic level. A 
correlation between the abundance of a Lamellodiscus 
spp. and the abundance of a bacterial taxa was consid-
ered to be significant when p-value < 0.05. Only taxa with 
abundance > 5% and present in at least 2 samples were 
considered.

Results
For this study, 12 individuals belonging to Diplodus 
annularis species were sampled between June and July 
2021. Between 0 and 90 Lamellodiscus spp. were found 
in the 3 dissected gill arches depending on the fish indi-
vidual; 6 were classified as “lightly parasitized” (LP) and 
the other 6 were classified as “heavily parasitized” (HP). 
We also collected 16 Pagellus acarne individuals between 
June 2021 and March 2022. We found between 0 and 189 
Lamellodiscus individuals in the 3 dissected gill arches, 8 
fish individuals were classified as LP and the 8 remain-
ing as HP (Supplementary Table S1). In total, 511 721 
sequences assigned to bacteria binned into 4299 ASVs 
were retrieved from 56 fish samples and 4 water samples.

General patterns of bacterial composition
For the two fish species, the predominant bacterial 
phylum in gill and skin microbiota was Proteobacteria 
(67.74 ± 14.48% in relative abundance (i.e., total sum scal-
ing method) in gill of D. annularis, 51.93 ± 22.39% for skin 
of D. annularis, 69.05 ± 20.74% for gills of P. acarne and 
51.07 ± 16.92% for skin of P. acarne) (Fig.  1; Table  2). In 
D. annularis, the second most abundant phylum for gills 
was Verrumicrobiota (12.23 ± 15.70%) and Actinobacteria 
(12.53 ± 10.23%) for skin (Fig.  1; Table  2). Bacteroidota 
was the third most abundant phylum for both tissue in 
this species (9.15 ± 12.26% for gills and 12.14 ± 9.58% for 
skin) (Fig.  1; Table  2). In P. acarne, Bacteroidota was 
the second most abundant phylum found on the gills 
(8.30 ± 8.93%) and the skin (16.76 ± 9.39%) and Firmicutes 
the third most abundant in both tissues (6.85 ± 15.02% in 
gill and 9.28 ± 7.48% in skin) (Fig. 1; Table 2).

Figure  1: Relative abundance of bacterial phyla within 
lightly parasitized (LP) and heavily parasitized (HP) gill 
mucus or skin mucus of Diplodus annularis and Pagellus 
acarne.
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Bacterial diversity of gill mucus and skin mucus
Two alpha diversity metrics were used to measure diver-
sity within communities: the Faith’s phylogenetic index 
(phylogenetic richness) and the Shannon diversity index 
(taxonomic richness and evenness). When compar-
ing diversity metrics, we found significant differences 
between the bacterial community of the P. acarne skin 
mucus, gill mucus and the surrounding water with both 
statistical tests (ANOVA; KW test, p < 0.05). This results 
from a highest bacterial diversity in skin mucus (Supple-
mentary figure S1) but for both alpha diversity metrics, 
there was no significant differences in diversity between 
water and gill mucus (ANOVA; KW test, p < 0.05; CI 
tests, p > alpha/2 = 0.025, Post hoc Tukey p < 0.05) (Sup-
plementary figure S1). In D. annularis, significant differ-
ences between bacterial communities in skin mucus, gill 
mucus and water were found only when considering the 
Faith index (KW test, p < 0.05) also explained by higher 

bacterial diversity in skin mucus (Supplementary figure 
S1).

When considering only fish samples, the LM and GLM 
results showed that, for both species, tissue (i.e., gill 
mucus and skin mucus) significantly influences Shan-
non diversity (Supplementary Table S2). HP and LP P. 
acarne bacterial communities were significantly differ-
ent from each other when considering Faith’s index (LM, 
p < 0.05) with a higher bacterial diversity in HP individu-
als (Fig. 2). For D. annularis, collection date significantly 
influenced diversity when considering the Faith index 
(GLM, p < 0.05), with fish caught in July 2021 displaying 
a greater bacterial diversity (Fig.  2). In both species, no 
significant interaction between tissues and parasitism 
(i.e., HP vs LP) or collection date was found, regardless 
the diversity index considered (LM or GLM, p > 0.05). For 
P. acarne, collection site significantly influenced Shan-
non diversity (GLM, p < 0.05) and a significant interaction 

Table 2 Relative abundance (percentage) of the 7 more represented bacterial phyla in Diplodus Annularis, Pagellus acarne and water 
microbiota (%)

Diplodus annularis Pagellus acarne
Gill Skin Gill Skin Water

Actinobacteriota 2.70 12.53 4.18 7.76 5.80
Bacteroidota 9.15 12.14 8.30 16.76 23.99
Cyanobacteria 2.07 4.17 1.83 4.59 8.04
Firmicutes 2.59 7.30 6.85 9.28 0.057
Planctomycetota 1.61 4.45 2.11 2.70 0.59
Proteobacteria 67.74 51.93 69.05 51.07 59.04
Verrumicrobiota 12.23 3.56 4.25 4.85 1.82

Fig. 1 Relative abundance of bacterial phyla within lightly parasitized (LP) and heavily parasitized (HP) gill mucus or skin mucus of Diplodus annularis 
and Pagellus acarne
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between tissue and collection site was also observed 
(GLM, p < 0.05), meaning that the collection site impacts 
differently each external fish tissue. In addition, the date 
of collection seems to have an influence on the parasitic 
load in D. annularis individuals (Mann-Whitney-Wil-
coxon rank sum test, p < 0.01). On the contrary, place and 
date of capture did not significantly influence Lamellodis-
cus abundance (Mann-Whitney-Wilcoxon rank sum test, 
p = 0.11, p = 0.83 respectively) in P. acarne individuals.

Factors explaining the dissimilarity of bacterial 
communities
To determine the factors explaining the variability 
between and within skin mucus, gill mucus and water 
microbiota, we used the Bray-Curtis dissimilarity index 
(BC), and the weighted Unifrac distance (WU). Principal 
coordinate analysis (PCoA) was used to plot both BC and 
WU distances.

First, significant differences between bacterial com-
munities from gill mucus, skin mucus and surround-
ing water were obtained when considering all samples 
together (PERMANOVA on BC and WU distances, 
p < 0.05, R2 = 0.10 and R2 = 0.15 respectively). An effect of 
host species within gill and skin mucus on bacterial com-
munities based on BC dissimilarities can be observed 
(PERMANOVA on BC distances, p < 0.01, 0.07 < R²<0.09) 
(Table 3).

For each species and each tissue, additional PERMA-
NOVAs were performed to identify factors that influence 
the composition of the external microbiota. Due to the 
relatively close sampling of Diplodus annularis individu-
als over time, no significant effect of collection date on the 
variability of gill mucus bacterial communities was found 
based on BC and WU dissimilarities (PERMANOVA, 
p > 0.05). However, a significant effect of collection date 
was found on skin mucus based on BC dissimilarities 
(PERMANOVA, p < 0.05, R2 = 0.16) (Table 3). Significant 
differences between bacterial communities from LP and 
HP D. annularis gill and skin mucus were found (PER-
MANOVA on BC and WU distances, p < 0.05; for BC dis-
tances R²=0.16, R²=0.24 respectively; for WU distances 

R²=0.41, R²=0.68) (Table  3, Supplementary figure S2). 
The same significant results were obtained without con-
sidering sequences from water samples in D. annularis 
samples, with a small decrease in influence of the level of 
parasitism on gill and skin mucus microbiota dissimilari-
ties (PERMANOVA on BC and WU distances, p < 0.05, 
R2 = 0.15 and R2 = 0.34 respectively for HP and LP gill and 
R2 = 0.21 et R2 = 0.56 for skin mucus).

In P. acarne, sampling conditions had a significant 
effect on variability of bacterial communities in gill and 
skin mucus when considering BC dissimilarities. If we 
consider the differences of diversity between July 2021 
and March 2022 (as a single individual was captured in 
June 2021), sampling date seems to have a stronger effect 
(PERMANOVA, p < 0.001, R²=0.19, R²=0.26 respectively) 
compared to the sampling location (PERMANOVA, 
p < 0.001, R²=0.11, R²=0.2) on gill and skin mucus bac-
terial communities (Table  3). A significant effect of the 
interaction between collection date and sampling loca-
tion was found for gill and skin microbiota of P. acarne 
individuals (PERMANOVA, p < 0.05, R2 = 0.09 and 
R2 = 0.11 respectively) and a small effect of the interac-
tion between sampling location and parasitism (i.e., LP 
or HP) for gill microbiota considering BC dissimilari-
ties (PERMANOVA, p < 0.05, R2 = 0.07) (Table 3). When 
phylogenetic relationships between ASVs were taken into 
account (WU dissimilarities), no significant differences 
were found in the skin microbiota of P. acarne fish over 
time (p > 0.05) in contrast to the gills where sampling date 
seemed to have a strong significant effect on microbiota 
(p < 0.05, R²=0.71).

Moreover, P. acarne individuals captured at both sites 
harbor a closely related gill microbiota (PERMANOVA, 
WU dissimilarities p > 0.05) but a significative effect 
of the location was found on skin microbiota (p < 0.05, 
R²=0.37) (Table  3). In P. acarne, parasitism (i.e., LP or 
HP) does not seem to explain the dissimilarity of bacte-
rial communities from skin mucus (PERMANOVA on 
BC and WU distances, p > 0.05). However, a significant 
difference was observed in gill microbiota only when 

Fig. 2 Faith’s phylogenetic or Shannon diversity index for date of collection of D. annularis (left); for lightly parasitized (LP, green) and heavily parasitized 
(HP, red) of P. acarne (center); for capture location of P. acarne (right)
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WU distances were considered (PERMANOVA, p < 0.05, 
R²=0.12) (Table 3).

Gills of HP or LP D. annularis and HP or LP P. acarne 
harbor specific bacterial taxa (14.9%, 7.9%, 8.3%, 20.5% 
of ASVs respectively) (Fig. 3). These four compartments 
shared 2.5% of ASVs, mainly composed of Proteobac-
teria (Alpha and Gammaproteobacteria), followed by 
Bacteroidota as many Firmicutes as Cyanobacteria. The 
greatest compositional similarity was observed between 
LP and HP D. annularis (14.9%). It can be noted that LP 
individuals of both species share 118 ASVs (12.4%), of 
which 23 are shared solely between them, while HP indi-
viduals of both species share 91 ASVs (8.8%), of which 17 
are shared solely between them (Fig.  3). 12.2% of ASVs 
are found only in water samples (corresponding to 55% of 
total ASVs retrieved from water samples) and are mainly 
composed by Proteobacteria (Alpha and Gammaproteo-
bacteria) and Bacteroidota (Fig. 3).

Correlations between bacterial communities and parasitic 
load in gills
The microbiota diversity assessed using Faith phylo-
genetic index in the skin mucus of D. annularis was 
positively correlated with Lamellodiscus load (Pearson 
correlation test, p < 0.05, R = 0.885) (Supplementary fig-
ure S3). However, at gill level, no correlation was found 
between changes in parasite load and microbiota diver-
sity for D. annularis or P. acarne (p > 0.05).

Then, we quantified how the relative abundance of bac-
terial taxa in gill mucus microbiota was related to parasite 
abundance. The abundance of all ASVs was aggregated to 
family or genus rank and then tested using Spearman’s 
rank correlation with the proportion of Lamellodiscus 
sp. found in the gills (parasitic load). The abundances of 
parasitic load of Lamellodiscus spp. displayed significant 
positive or negative correlations with the relative abun-
dance of given bacterial taxa (Fig.  4). Significant differ-
ences in relative abundances of bacterial ASV among LP 
and HP fish were found (in both species and both tissues 
(linear discriminant analysis (LDA) effect size (LEfSe), 
Fig. 5).

Firstly, we observed that HP D. annularis gill micro-
biota was significantly more enriched in Bacteroidota 
(15.99% mean relative abundance (i.e., total sum scal-
ing method) vs average of 2.32% in other LP fish) (LEfSe 
analysis, Fig.  5) and this proportion increased with 
parasite load in gill microbiota of both species (positive 
Spearman rank correlation, p = 0.001, ρ = 0.844 for D. 
annularis and p = 0.0132, ρ = 0.604 for P. acarne) (Fig.  4, 
Supplementary table S3). A medium positive correlation 
was found between the bacterial order Flavobacteria-
les, the bacterial family Flavobacteriaceae and the para-
sitic load of Lamellodiscus sp. in gills of P. acarne hosts 
(p = 0.021, ρ = 0.571 for both taxonomic rank) and a strong Ta
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positive correlation in gills of D. annularis host (p = 0.001, 
ρ = 0.826; p = 0.003, ρ = 0.779) (Fig. 4, Supplementary table 
S3). In addition, this family was found in higher propor-
tion in HP D. annularis gill microbiota (14.11% vs 1.28%) 
and HP P. acarne gill microbiota (9.99% vs 2.23%) (LEfSe 
analysis, Fig. 5).

The bacterial families Rhodobactereaceae and Puni-
ceicoccaceae were positively correlated with the abun-
dance of Lamellodiscus sp. in the gills of D. annularis 
(p = 0.001, ρ = 0.829 and p = 0.002, ρ = 0.803 respectively) 
as well as one unidentified Rhodobactereaceae genus in 
gill microbiota (p = 0.003, ρ = 0.769 respectively) of D. 
annularis (Fig. 4, Supplementary table S3).

In both tissues of D. annularis, a strong positive cor-
relation was observed between parasitic load and the 
family Pseudoalteromonadaceae and more specifically 
with the genus Pseudoalteromonas (p = 0.001, ρ = 0.802 
for both taxonomic rank in gill and p = 0.001, ρ = 0.811 
for both taxonomic rank in skin) (Fig. 4, Supplementary 

table S3). Indeed, this bacterial family and genus were 
totally absent in gill microbiota of LP individuals (3.72% 
vs. 0% for both taxonomic rank) (LEfSe analysis, Fig. 5).

In contrast, the gill mucus microbiota of LP D. annu-
laris contained significantly higher abundances of Vib-
rionaceae (32.9%), whereas this family was much less 
represented in other HP fish (9.95%) (LEfSe analysis, 
Fig.  5). These results were supported by strong nega-
tives correlations between the abundance of Lamellodis-
cus sp. and the bacterial family Vibrionaceae or with the 
genus Photobacterium (p = 0.001, ρ=-0.890 and p = 0.028, 
ρ=-0.631 respectively) (Fig.  4, Supplementary table S3). 
Negative correlations were found with the genus Entero-
vibrio in gills (p = 0.016, ρ=-0.674) and skin (p = 0.038, 
ρ=-0.603) microbiota of D. annularis (Fig. 4, Supplemen-
tary table S3).

Another negative correlation was found between 
Lamellodiscus abundance and the Micrococcales order 
(p = 0.025, ρ =-0.638) and more specifically with the 

Fig. 3 Venn diagram representing representing percentage of shared ASVs between lightly parasitized (LP) P. acarne gill mucus (green), heavily parasit-
ized (HP) P. acarne gill mucus (purple), LP D. annularis gill mucus (green), HP D. annularis gill mucus (yellow) and water (blue). PA = P. acarne, DA = D. an-
nularis. Based on 0.005% abundance cutoff
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Microbacteriacea family (p = 0.011, ρ =  -0.699) in D. 
annularis gills (Fig.  4, Supplementary table S3). In this 
family, the abundance of a non-identified genus is cor-
related with the parasitic load in both tissue of D. annu-
laris (p = 0.007, ρ = -0.727 in gill and p = 0.05, ρ = -0.581 in 
skin) (Fig. 4, Supplementary table S3). This genus appears 
to be significantly more abundant in the gill microbiota 
of LP fish (LEfSe analysis, Fig. 5). The abundance of the 
genus Blastopirellula also decreased with parasitic load 
in D. annularis gill microbiota (p = 0.035, ρ =  -0.609) 
(Fig. 4, Supplementary table S3).

In P. acarne individuals with low parasite load, gill 
microbiota appeared enriched with Fusobacteria (0.69% 
vs 0.05%), Fusobacteriaceae family (0.69% vs 0.05%) and 
Propionigenium genus, which is absent in HP gill micro-
biota (0.32% vs 0%) (LEfSe analysis, Fig.  5). A negative 
correlation was in particular observed for the family 
Fusobacteriaceae (Spearman’ rank order correlation, 
p = 0.048, ρ =  -0.501) in P. acarne gill microbiota (Fig. 4, 
Supplementary table S3). A medium correlation between 
the parasitic load and the abundance of the family Sap-
rospiraceae was found in the gills of P. acarne (p = 0.03, 
ρ = 0.54 and p = 0.002, ρ = 0.716 respectively) (Fig. 4, Sup-
plementary table S3).

Fig. 4 Significant correlations (Spearman rank correlation) between each taxonomic rank and parasitic load in gills. Only taxa with abundance > 5% and 
present in at least 2 samples are shown. DA, Diplodus annularis; PA, Pagellus acarne. LP, lightly parasitized; HP, heavily parasitized
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Discussion
In this study, we examined the associations between gill 
and skin mucus bacterial communities of two wild sparid 
species, D. annularis and P. acarne, with contrasting par-
asitic loads of Lamellodiscus monogeneans.

Regarding general trends, Proteobacteria largely domi-
nates the external microbiota of all individuals, which is 
consistent with previous studies [33–35]. If some bacte-
ria could appear only transiently in the external mucus 
microbiota, our analysis with D. annularis samples with-
out considering sequences retrieved from water samples 
indicated that the majority of bacterial communities are 
not reflections of the microbial assemblage of the sur-
rounding water but result from selective mechanisms, 
such as suggested by previous studies [33, 34, 44, 48]. 
In consequence, even though these comparisons could 
not be done with P. acarne samples in the present study, 

it is likely that external mucus of these individuals har-
bor their own bacterial communities that differ from 
surrounding water. For one of the species we detected 
a significant effect of sampling date and location on the 
external microbiota, suggesting that the microbiota is 
variable and dynamic, shaped by environmental condi-
tions. Gill and skin mucus also contain tissue-specific 
and species-specific assemblages. These results are con-
sistent with previous studies that shown that both envi-
ronmental [49, 50] and host-associated factors shape fish 
microbiota [29, 34, 48, 51].

We identified differences in the diversity of the micro-
biota between LP and HP of P. acarne, with the HP mucus 
appearing to be richer and more diverse than the LP 
mucus. In D. annularis, we did not identified any differ-
ences in the diversity of the microbiota between HP and 
LP gill or skin mucus. However, we identified a positive 

Fig. 5 Most contributing taxa to differences between HP gill (red) and LP gill (green) bacterial communities. Left, Diplodus annularis. Right, Pagellus 
acarne. LDA scores were calculated using Linear discriminant analysis Effect Size (LEfSe), only bacterial taxa that raised an LDA score > 3 are shown
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correlation between parasitic load and microbiota diver-
sity in skin mucus. This is not in line with the results 
of [35] who found that an increase of parasite diversity 
is linked to a decrease of gill microbiota diversity. Nev-
ertheless, other studies highlighted that an increase 
in alpha diversity indices follows parasitic infestation. 
Llewellyn and coll. [52] showed that the experimental 
infection of Atlantic salmon with salmon lice resulted in 
an increased diversity of the skin microbiota in infected 
fish. Zhang and coll. [53] showed that a group of rainbow 
trout experimentally parasitized by Ichthyophthirius mul-
tifiliis presented higher values for alpha diversity in skin 
microbiota than a control group. Overall, these results 
suggest that the relation between parasites and diversity 
of the external microbiota greatly varies depending on 
the host and parasite species.

The effect of the sampling date on parasitic load is not 
the same depending on the host species considered. In 
the case of D. annularis, sampling date had a significant 
effect on the parasite load in Lamellodiscus, even though 
the sampling period was limited in time (2 summer 
months). In the case of P. acarne, sampling was carried 
out over two months in different seasons, but without 
any effect on the parasite load in Lamellodiscus. These 
results suggest that several factors are involved in the 
occurrence and abundance of monogeneans in fish, such 
as environmental factors like salinity [54] or water tem-
perature [55, 56]. However, the effect of water tempera-
ture does not seem to be the same for all monogenean 
species. Some authors have shown that some Dactylogy-
rus species seem to prefer warm temperatures (D. vasta-
tor, D. ctenopharyngodonis) while others seem to prefer 
colder temperatures (D. lamellatus, D. extensus) [57, 58].

Using the analysis of bacterial communities, we iden-
tified bacterial families and genera that correlated 
positively or negatively with the parasite load in Lamello-
discus. We found a strong correlation between the abun-
dance of Flavobacteriaceae and the parasite load in the 
gill mucus of both species. Similar results have already 
been reported: this family of bacteria is often found after 
a parasitic infection. For example, Zhang and coll. [53] 
showed that experimental infection with Ichthyophthirius 
multifiliis (ciliate) reduced the abundance of skin com-
mensals and increased the intensity of Flavobacteriaceae 
in rainbow trout skin. Similarly, an in vivo study showed 
that Atlantic salmon infected with sea lice, the ectopara-
sitic copepod Lepeophtheirus salmonis, were suscep-
tible to skin colonization by known pathogenic bacteria 
genera, belonging in particular to the Flavobacteriaceae 
family [52]. Among these bacterial genera was Tenacibac-
ulum sp., a genus that we found correlated with the para-
sitic load in the gills of D. annularis. Unfortunately, we 
could not identify the nature of all the bacteria belong-
ing to the Flavobacteriaceae family from our dataset as 

most remain unidentified at the species or even the genus 
level. As a result, it remains difficult to speculate on the 
pathogenicity of these bacteria associated with fish with 
high parasitic loads. However, numerous studies have 
shown that fish infected with ectoparasites [59, 60] and 
especially with monogeneans are more susceptible to 
numerous pathogenic bacteria [61, 62]. It is therefore 
likely that the increase in Flavobacteriaceae abundance 
with the parasitic load observed in our samples involves 
potentially pathogenic bacteria belonging in particular 
to this family. Several hypotheses have been proposed 
to explain the increased susceptibility of parasitized fish 
to bacterial infections. Firstly, the artificial abrasion cre-
ated by the attachment and feeding mode of parasite can 
induce histopathological changes in host tissues, which 
are likely to create a gateway for secondary infections 
[22, 53, 63, 64]. Thus, skin and gill injuries caused by 
monogeneans would increase the adhesion of pathogenic 
bacteria. It is also possible that primary infection by a 
pathogen induces immune stress in the host, reducing its 
resistance to opportunistic bacterial infections [65]. This 
could also be the result of the modulation of the immune 
system by the parasite. Several studies have shown that 
a variety of strategies can be implemented to circum-
vent and/or reduce the host immune response, leading 
to reduced resistance to secondary bacterial infections 
[66–70]. It has been shown for the monogenean Eudip-
lozoon nipponicum’s excretory-secretory products (cyste-
ine peptidase inhibitors) lead to a down-regulation of two 
cytokines produced by macrophages which may prevent 
inflammation at the invasion site and increased suscep-
tibility to concomitant bacterial infections [71]. Another 
example of immunomodulation was identified during an 
infestation of the gilthead sea bream (Sparus aurata) by 
the monogenean Sparicotyle chrysophrii. The parasite 
was found to inhibit the humoral immune system, slow-
ing down the assembly process of its host’s complement 
complex [72] and a splenic down-regulation of genes 
implicated in inflammation or apoptosis [73], which may 
result in a delayed response to secondary infections. 
Finally, an experimental study showed that a primary 
infection of Carassius auratus by Dactylogyrus inter-
medius induced the down-regulation of two immune-
related factors (TGF beta and C3). The same study also 
found that parasitized fish exhibited significantly higher 
loads of Flavobacterium columnare, suggesting that 
parasitic infection can enhance bacterial invasion [64]. 
Taken together, these studies suggest that the effects of 
Lamellodiscus monogeneans on the epithelium and host 
immunity can be responsible for the observed changes 
in bacterial communities and the increase in potentially 
pathogenic bacterial taxa. However, other bacterial fami-
lies and genera that were positively correlated with the 
parasite load in Lamellodiscus monogeneans could not 
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be attributed to any known pathogen and their associa-
tion with parasitism remains difficult to determine. One 
hypothesis is that these bacteria could attract parasites in 
particular through their metabolites. For example, an in 
vitro experiment with Strongyloides nematodes showed 
that several isolated bacteria act as key chemosensory 
cues to guide parasite movement but further studies are 
needed to characterize the metabolites involved [74].

The origin of the bacteria linked to parasitic infection 
remains unclear; they could be opportunistic bacteria 
naturally present in the marine environment or belong 
to the parasite’s microbiota. Parasite could act as a vector 
for bacteria, carrying them directly to the host. A recent 
study showed that the microbiota of infected Leuciscus 
burdigalensis fins was highly similar to that of the adult 
and larval crustacean ectoparasite Tracheliastes polycol-
pus [18]. The authors suggested that the bacteria shared 
between the infected fin and the crustacean ectoparasite 
result from a co-infection dynamic between the parasite 
and its associated microbiota. It has also been shown that 
the parasite Ichthyophthirius multifiliis can transmit the 
bacterial pathogen Edwardsiella ictaluri to channel cat-
fish [75]. To our knowledge, microbiota associated with 
monogeneans is not yet known, although the presence of 
bacteria on their surfaces has long been observed [76]. 
Several studies on ectoparasitic copepods have reported 
the presence of Flavobacteriaceae in their microbiota. 
For example, a study in 2020 showed that the microbi-
ota of the Atlantic salmon ectoparasite Lepeophtheirus 
salmonis was dominated by the order Flavobacteriales 
[77]. Similar results were found in the microbiota of the 
copepod Caligus rogercresseyi, which is also known to 
parasitise the Atlantic Salmon [78]. Interestingly, these 
authors identified several taxa with the ability to secrete 
bioactive compounds, such as the genus Pseudoaltermo-
nas, on the copepod microbiota. In the present study, we 
found that this bacterial genus was positively correlated 
with parasite load in the skin and gills of D. annularis. 
These microorganisms are known to secrete bioactive 
compounds with antialgae and antimicrobial properties 
[79]. A possible role of this bacterial genus could be to 
increase their resistance and persistence in the fish host. 
However, it is difficult to determine their exact role in the 
infestation process as all the bacterial species present in 
our samples could not be identified. Whether the change 
in microbiota between parasitized and non-parasitized 
hosts is due to opportunistic bacteria in the environ-
ment or to the contribution of the parasite’s microbiota, 
it is crucial to understand the dynamics of co-infection 
between bacterial pathogens and monogeneans. Indeed, 
these co-infections are often associated with greater 
damage than that resulting from the isolated presence of 
just one of either pathogen alone [61, 64, 80, 81].

Interestingly, we found that Vibrionaceae were signifi-
cantly enriched and negatively correlated to the parasitic 
load in gills of LP D. annularis fish and the same results 
were obtained with Fusobacteria in gills of LP P. acarne. 
Similar result was already reported in 2020, who found 
higher abundance of Fusobacteria and Vibrionaceae 
in gill mucus of unparasitized butterflyfish Chaetodon 
lunalatus compared to other Chaetodon species parasit-
ized by Haliotrema monogeneans [28]. The authors pro-
posed that Fusobacteria increase the mucus production 
in fish, possibly leading to a thicker layer of mucus on 
their gills. This thickening could lead to lower oxygen lev-
els, potentially promoting higher hemoglobin levels. Fur-
thermore, a positive correlation was identified between 
Fusobacteria and three hemoglobin-derived peptides, 
which may act as antimicrobial and antiparasitic agents 
and could be produced by extracellular protease microbes 
that specifically cleave hemoglobin. Similarly, it has been 
shown that the bogue (Boops boops), a sparid species 
never parasitized by Lamellodiscus monogeneans, had 
a higher abundance of Fusobacteria and Vibrionaceae 
in their gill mucus microbiota than parasitized sparids 
[35]. Similarly, a study of three tropical fish species - Epi-
nephelus fuscoguttatus, Epinephelus sexfasciatus and 
Atule mate - have reported negative correlations between 
intestinal endoparasites (such as digeneans, nematode 
or cestodes) and the abundance of Vibrio and Photobac-
terium [82]. We also found a strong negative correlation 
between the Photobacterium genus and the parasitic load 
in D. annularis gill microbiota. Interestingly, particularly 
high relative abundances of Photobacterium spp. were 
found in the only four individuals without Lamellodiscus 
in their gills.

To date, Vibrionaceae have primarily been investigated 
due to their pathogenic potential to humans and aquatic 
animals but some members of this family are known to 
display antibacterial effects via secondary metabolites 
[83, 84]. Little is known on their effect on eukaryotic 
organisms such as monogeneans. In a 2014 study, a lethal 
effect of two Vibrionaceae species, Photobacterium halo-
tolerans and Vibrio coralliilyticus, have been observed on 
two eukaryotic species (Artemia sp. and Caernorhabi-
tis elegans) [85]. However, the secondary metabolites or 
specific mechanisms involved in this toxicity could not 
be determined. Finally, Vibrionaceae have already been 
described as being able to inhibit the settlement and 
attachment of cyprids in macroalgae, but the mecha-
nisms involved have not yet been deciphered [86]. These 
studies suggest that members of the Vibrionaceae family 
are capable of secreting potentially host-protective bio-
active compounds. Future studies are needed to test the 
effect of these bioactive compounds on the host specific-
ity of monogeneans.
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Conclusion
In conclusion, our findings highlight the dynamic nature 
of fish microbiota in response to parasitic infestations, 
emphasizing the need for a comprehensive understand-
ing of co-infections dynamics. The observed correlations 
between specific bacterial families or genera and para-
sitic load highlight the complex interplay between host, 
parasite and bacterial communities. Future investigations 
should explore the specific mechanisms underlying these 
interactions and the potential applications of bacteria in 
mitigating parasitic infections in fish.
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