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Abstract
Background  Feed costs account for a high proportion of the variable cost of beef production, ultimately impacting 
overall profitability. Thus, improving feed efficiency of beef cattle, by way of determining the underlying genomic 
control and selecting for feed efficient cattle provides a method through which feed input costs may be reduced 
whilst also contributing to the environmental sustainability of beef production. The rumen microbiome dictates the 
feed degradation capacity and consequent nutrient supply in ruminants, thus potentially impacted by feed efficiency 
phenotype. Equally, liver tissue has been shown to be responsive to feed efficiency phenotype as well as dietary 
intake. However, although both the rumen microbiome and liver transcriptome have been shown to be impacted by 
host feed efficiency phenotype, knowledge of the interaction between the rumen microbiome and other peripheral 
tissues within the body, including the liver is lacking. Thus, the objective of this study was to compare two contrasting 
breed types (Charolais and Holstein-Friesian) divergent for residual feed intake (RFI) over contrasting dietary phases 
(zero-grazed grass and high-concentrate), based on gene co-expression network analysis of liver transcriptome data 
and microbe co-abundance network of rumen microbiome data. Traits including RFI, dry matter intake (DMI) and 
growth rate (ADG), as well as rumen concentrations of volatile fatty acids were also included within the network 
analysis.

Results  Overall, DMI had the greatest number of connections followed by RFI, with ADG displaying the fewest 
number of significant connections. Hepatic genes related to lipid metabolism were correlated to both RFI and DMI 
phenotypes, whilst genes related to immune response were correlated to DMI. Despite the known relationship 
between RFI and DMI, the same microbes were not directly connected to these phenotypes, the Succiniclasticum 
genus was however, negatively connected to both RFI and ADG. Additionally, a stepwise regression analysis revealed 
significant roles for both Succiniclasticum genus and Roseburia.faecis sp. in predicting RFI, DMI and ADG.

Conclusions  Results from this study highlight the interactive relationships between rumen microbiome and hepatic 
transcriptome data of cattle divergent for RFI, whilst also increasing our understanding of the underlying biology of 
both DMI and ADG in beef cattle.
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Background
Within beef production systems, feed costs alone account 
for up to 75% of the total variable cost of production [1], 
thus impacting overall profitability. Therefore, select-
ing and breeding cattle that are more feed efficient, for 
example through residual feed intake (RFI) phenotype, 
may increase production profitability by reducing feed 
input costs, whilst also contributing to the environmen-
tal sustainability of beef production. Moreover, feed 
intake (measured as average daily dry matter intake, 
DMI) and growth rate (measured as average daily gain, 
ADG) are important traits within the beef industry due 
to their direct and indirect effects on overall productivity 
and consequently profitability and sustainability. Thus, 
it is of interest for beef producers to rear faster growing 
animals with reduced dietary intake to optimise produc-
tivity of production systems [2]. Indeed, the aforemen-
tioned traits (DMI, ADG and RFI) have been shown to 
be moderately heritable [3–6], thus offering an opportu-
nity to reduce feed costs through breeding cattle that are 
more feed efficient through genomic selection breeding 
programs. However, despite the clear benefit of breeding 
cattle that are feed efficient, evaluations of the molecu-
lar control regulating feed efficiency in beef cattle are 
not conclusive, such that key genes or genomic regions 
contributing to the trait are yet to be identified [1]. The 
contrasting results from molecular and genomic based 
studies across the literature are undoubtedly due to the 
multifaceted nature of the feed efficiency trait as well 
as the various confounding experimental parameters 
employed across studies such as breed, dietary manage-
ment system and stage of development during which feed 
efficiency was evaluated. If reliable genomic selection 
processes are to be implemented for feed efficiency in 
beef cattle it is essential that genomic regions contribut-
ing to the trait are reliable across these various confound-
ing factors.

The availability of nutrients for both growth and main-
tenance purposes in ruminants is dependent on the func-
tionality of the rumen microbiome. Ruminants rely on the 
complement of bacteria, archaea and protozoa, amongst 
others, in the rumen microbiota for the degradation of 
feed and the production of microbial protein, vitamins 
and volatile fatty acids (VFAs), the latter of which provide 
up to 70% of the host’s energy requirements [7]. Research 
from our own group as well as others has identified links 
between the rumen microbiome and feed efficiency phe-
notype [8–13]. Moreover, Shabat et al. [14] reported 
that the rumen microbiome could predict variation in 
an animal’s feed efficiency phenotype and concluded 
that reduced rumen microbial community diversity may 

support a more feed efficient animal. However, similar 
to the identification of genomic regions associated with 
feed efficiency in beef cattle, results related to the con-
tribution of the rumen microbiome to the feed efficiency 
phenotype are inconsistent, again, most likely due to the 
aforementioned confounding experimental parameters 
employed. Thus, it is important that such factors are 
considered and examined together [13]. Determination 
of the relationship between the rumen microbiome and 
host feed efficiency phenotype has the potential to not 
only facilitate the selection of cattle with enhanced nutri-
ent utilisation, but also to enable the manipulation of 
the rumen microbiome to enhance its energy harvesting 
capacity [11, 14, 15].

The VFAs produced within the rumen following micro-
bial degradation of feed are responsible for a large pro-
portion of the host’s energy requirements. Furthermore, 
the liver, a highly metabolically active organ, has been 
shown to be responsive to dietary intake [16] as well as 
being affected by feed efficiency phenotype [2]. Thus, 
the objective of this study was to evaluate the interac-
tions between the rumen microbiome, VFA concentra-
tions and hepatic gene expression profiles with three 
production and efficiency traits of interest, namely DMI, 
RFI and ADG, through a network based systems biol-
ogy analysis. In order to account for the confounding 
effects of both breed and dietary source, data utilised in 
this study (rumen microbiome, liver transcriptome, VFA 
and phenotype data) were derived from two contrasting 
breed types (Charolais and Holstein-Friesian) divergent 
for RFI across contrasting dietary phases (high concen-
trate and zero-grazed grass).

Results
Animal performance
Descriptive results pertaining to growth, dietary intake 
and RFI values are outlined in full in Higgins et al. [17]. 
Groups selected as divergent for RFI were significantly 
different from one another (P < 0.05). Across all dietary 
phases for each breed, High-RFI steers consumed 
more feed on average than their Low-RFI counterparts 
(P < 0.001), whilst there was no difference (P > 0.05) in 
ADG across groups for each breed and each dietary 
phase.

Microbial sequencing analysis
Complete results related to microbial sequencing are 
presented in full in McGovern et al. [13]. Briefly an aver-
age of 272,460 (± 69,596) reads were generated from the 
rumen fluid samples. Following merging of sequences 
and quality filtering, an average of 217,817 (± 55,519) 
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reads were retained. The average number of counts per 
sample that were assigned to an open taxonomic unit 
(post filtering) was 175,304 ± 74,272. Microbial taxa iden-
tified within the rumen fluid samples and utilised within 
the current study are presented in Additional Table 1.

Liver gene expression
For the RFI, breed and diet contrasts, 12,161, 12,114 and 
12,581 genes, respectively, were identified as expressed 
of which 608, 605 and 629 were classified as differen-
tially expressed and used for subsequent co-expression 
network analysis. Of these differentially expressed genes, 
only 2 were common across the three contrasts, namely 
SPP1, which encodes a cytokine and ABHD2 which 

encodes an acylglycerol lipase protein. Genes identified 
as differentially expressed and included in the co-expres-
sion network analysis are presented in Additional Table 2.

Co-expression network analysis
Of the 2,017 nodes (1,842 differentially expressed genes, 
159 microbial taxa, 13 VFA and 3 phenotypes) used for 
network analysis, 1,534   displayed significant correla-
tions, resulting in a total of 35,549 significant (P < 0.05) 
connections between nodes (Fig.  1). Of the three phe-
notypes examined, DMI had the highest number of first 
neighbour connections, followed by RFI, with ADG dis-
playing the fewest number of first neighbour connections 
(Table 1). Connections between hepatic genes accounted 

Fig. 1  Gene co-expression network constructed using PCIT algorithm on 2,017 input nodes related to hepatic genes differentially expressed, rumen 
microbial taxa, volatile fatty acid concentrations and DMI, RFI and ADG phenotypes
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for the highest proportion of first neighbour connections 
for each of the three phenotypes, followed by micro-
bial interactions, and VFA connections (Table  2). The 
co-expression network pertaining specifically to direct 
connections of the DMI, RFI and ADG phenotypes is 
presented in Fig.  2 and a comparison of nodes directly 
connected to DMI, RFI and ADG is provided in Fig.  3 

and Additional Table 3. Direct connections between the 
phenotypes and microbial taxa revealed a lack of com-
monality between DMI and RFI, as well as DMI and 
ADG, with only the Succiniclasticum genus negatively 
connected to both RFI and ADG (Fig. 4). Details related 
to interactions of microbial taxa directly connected to 
DMI, RFI and ADG are presented in Table 3, along with 
enriched (P < 0.05) gene ontology and pathway analysis 
results. Full details related to interactions of microbial 
taxa connected to DMI, RFI and ADG are presented in 
full in Additional Table 4.

Stepwise regression and correlation analyses
When each phenotype and their associated micro-
bial connections were analysed separately through the 

Table 1  Proportion of first neighbour nodes and direct connections pertaining to the DMI, RFI and ADG phenotypes
Phenotype Number of first neighbour 

nodes
Number of direct 
connections

Percentage of first neighbour 
nodes from main network

Percentage 
of direct con-
nections from 
main network

DMI 180 811 11.7% 2.3%
RFI 49 131 3.2% 0.37%
ADG 37 66 2.4% 0.19%

Table 2  Proportion of first neighbour phenotype nodes that are 
microbes, genes, VFAs or phenotypes
Node type ADG DMI RFI
Number of interactions 37 180 49
Microbe 4 (10.8%) 10 (5.55%) 9 (18.4%)
VFA 2 (5.4%) 5 (2.8%) 0 (0%)
Phenotype 0 (0%) 1 (0.55%) 1 (2%)
Gene 31 (83.8%) 164 (91.1%) 39 (79.6%)

Fig. 2  Genes, microbial taxa and volatile fatty acids directly connected to the DMI, RFI and ADG phenotypes
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regression analysis, 83% of the variation was accounted 
for through the Pyramidobacter and Succiniclasticum 
genera for the RFI phenotype. Similarly, the Succiniclas-
ticum genus, together with the CW040 order explained 
73% within the ADG trait, whilst the Butyrivibrio and 
Prevotella genera, together with S.copri sp. and R.faecis 
sp. explained 89.9% of the variation within the DMI trait. 
When all microbes directly connected to the phenotypes 
examined were analysed together, 90% of the variation 
for RFI, DMI and ADG was explained by the follow-
ing microbial taxa: the Planctomycetes phylum; CW040 
order; the Prevotella, Roseburia, Succiniclasticum, Meth-
anobrevibacter, Pyramidobacter, Butyrivibrio genera and; 
S.copri sp., R.faecis sp., L.ruminis sp., C.aminophilum sp. 
and D.D168 sp. (Table 4). Of the significantly correlated 
microbes, only the  Succiniclasticum genus and R.faecis 
sp. were commonly contributing to variation across the 
three traits examined.

Results of the correlation analysis undertaken in SAS 
are presented in Fig.  5. Correlation results followed the 
same pattern as per the co-expression network results 
for RFI (Fig.  4), with negative correlations (P < 0.05) 

apparent between RFI and the Succiniclasticum and Pyr-
amidobacter genera, the Synergistetes and Planctomycetes 
phyla, Planctomycetia and Synergistia classes and Syner-
gistales and Pirellulales orders. In addition to the positive 
connections evident through the co-expression network 
analysis, through the CORR procedure in SAS, negative 
associations (P < 0.05) were also apparent between DMI 
and the Succiniclasticum and Methanobrevibacter gen-
era and the CW040 order. Similar to both RFI and DMI, a 
negative association (P < 0.05) was also apparent between 
the Succiniclasticum genus and ADG, representing the 
only significant association between ADG and the micro-
bial taxa from the correlation analysis.

Hierarchical clustering of the phenotypes and first 
neighbour microbial connections is presented in Fig.  6. 
From Fig.  6, it is evident that the RFI and DMI pheno-
types were clustered with the Roseburia and Butyrivibrio 
genera, as well as with L.Salivarius sp. and R.Faecis sp. 
The ADG phenotype was separately clustered together 
with the Lachnobacterium and Prevotella genera, whilst 
also clustered with S.Copri sp., C.Aminophilium sp. and 
L.Ruminis sp. Hierarchical clustering also revealed a 

Fig. 3  Venn diagram depicting commonality of first neighbour connections of the DMI, RFI and ADG phenotypes
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relationship between members of the same clade, for 
example the Pyramidobacter genus, Synergistetes phy-
lum, Synergistia class and Synergistales order were all 
clustered together, with the Planctomycetia class, Planc-
tomycetes phylum and Pirellulales order also clustered 
together separately.

Discussion
Within the published literature, biological processes 
related to immune function and lipid metabolism have 
been attributed to the underlying biology governing the 
RFI phenotype [17–21]. Indeed, results from the cur-
rent study further corroborate that finding, where lipid 
metabolism related genes pertaining to the RFI differen-
tial expression contrast were connected to the RFI phe-
notype, whilst also connected to both DMI and ADG too. 
For example, RFI was positively connected to CYP26B1, 
whilst also negatively related to both PDK4 and OSBPL11. 
Indeed, all three of these differentially expressed genes 
were pertaining to the RFI contrast, whilst CYP26B1 was 
related to both RFI and diet contrasts, indicating a role 
for this gene in mediating the intersection of RFI with 
diet. CYP26B1 encodes a member of the cytochrome 
P450 superfamily which are responsible for catalysing 
reactions involved in the synthesis of cholesterol, steroids 
and other lipids. Additionally, CYP26A1, which functions 
similarly to CYP26B1 was also positively connected to 
the DMI phenotype. OSBPL11 encodes an intracellular 

lipid receptor, which plays a role in regulating ADIPOQ 
and FABP4 levels in differentiating adipocytes and is 
also involved in regulating adipocyte triglyceride stor-
age. Whilst PDK4 encodes a mitochondrial protein which 
functions in the regulation of both glucose and fatty acid 
metabolism. The relevance of the PDK4 gene towards 
the RFI phenotype is further apparent through previous 
reports of this gene in relation to RFI, specifically PDK4 
was down-regulated in skeletal muscle tissue of efficient 
Holstein-Friesian bulls following a high-concentrate fin-
ishing diet [21], as well as in the liver tissue of efficient 
Charolais steers [17]. Of the lipid related genes connected 
to the DMI phenotype, all were pertaining specifically to 
the RFI differential expression contrast, whilst also being 
directly connected to the DMI phenotype, suggesting a 
role for these genes towards both RFI and DMI pheno-
types. Moreover, a number of these genes have previously 
been implicated with variation in RFI, including ASCL1 
[20, 22]; APOA1 [19, 23], ELOVL2 [19] and FADS1 [20]. 
The FADS1 gene, which encodes a desaturase enzyme 
and regulates the unsaturation of fatty acids was also 
connected to ADG. Interestingly of the lipid metabo-
lism genes connected to ADG (HMGCS1, FDFT1, SQLE 
and FADS1), all were pertaining to the diet differential 
expression contrast, with the exception of FADS1, high-
lighting the influence of contrasting diets with growth 
rates in beef cattle.

Fig. 4  Microbial taxa directly interacting with (a) RFI, (b) DMI and (c) ADG. Orange lines depict positive connections, whist green lines indicate negative 
connections
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A role for altered immune response towards the 
RFI phenotype across various tissues throughout the 
body including the liver, has already been established 
[17–21]. Interestingly within the current study we did 
not observe such a relationship between the RFI phe-
notype and immune response genes, with the excep-
tion of, C1QTNF7 which was negatively connected to 
RFI. However, although not strongly apparent within 

the RFI phenotype, a more pronounced relationship of 
immune response genes was evident with the DMI phe-
notype. This was apparent through connections between 
DMI and the following genes: A2M, C1QBP, C7, CCL21, 
CD19, CD22, CRP, FCER2, FCRL5, FNDC4, HMCN1, 
IFNLR1 and IRF2BP2. Indeed, A2M, CCL21 and CRP 
were previously reported as differentially expressed 
between cattle divergent for RFI [22, 23], suggesting 

Table 3  Connections of microbial taxa directly interacting with DMI, RFI and ADG phenotypes
Microbe Connections Microbe VFA Gene Enriched term
DMI
  -C.aminophilum sp. 60 6 5 48 Steroid biosynthesis

Proteasomal processes
  -Butyrivibrio 69 24 4 40 Nucleic acid binding
  -S.copri sp. 57 12 4 40 Cholesterol biosynthesis
  -R.faecis sp. 186 83 9 93 Cholesterol homeostasis
  -Lachnobacterium 53 6 2 44 Transcription
  -Prevotella 73 6 66 Carbohydrate metabolism
  -Roseburia 187 86 9 91 Steroid biosynthesis

Metabolic pathways
  -L.ruminis sp. 65 19 4 41 Retinoid binding
  -L.salivarius sp. 160 74 4 81 Steroid biosynthesis

Metabolic pathways
  -Succinivibrio 42 20 1 20 Plasma membrane
RFI
  -Methanobrevibacter 426 78 2 346 Metabolic pathways

MAPK signaling
Lipid transporter activity
Catabolic processes

  -Pirellulales 331 72 5 253 Ras signaling pathway
Interferon signaling
Steroid catabolic process
Inflammatory response

  -Planctomycetes 323 72 5 245 Interferon signaling
  -Planctomycetia 331 72 5 253 Ras signaling pathway

Interferon signaling
Steroid catabolic process
Inflammatory response

  -Pyramidobacter 89 21 67 B-cell receptor signaling
Chemokine signaling
T-cell receptor signaling
Immunodeficiency

  -Succiniclasticum 43 16 25 Plasma membrane
  -Synergistales 185 33 151 Hippo signaling

Immunodeficiency
  -Synergistetes 185 33 151 Hippo signaling

Immunodeficiency
  -Synergistia 185 33 151 Hippo signaling

Immunodeficiency
ADG
  -CW040 217 72 6 138 Steroid biosynthesis

Metabolic pathways
Citrate cycle

  -D.D168 sp. 26 5 20 Ras signaling pathway
  -Desulfovibrio 27 4 22 Endoplasmic reticulum
  -Succiniclasticum 43 16 25 Plasma membrane
Taxonomic levels for all microbes listed are presented in Additional Table 1
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the importance of these genes to both the RFI and DMI 
traits. The relationship between the DMI phenotype 
and immune response is further established through the 
connection between the Prevotella genus and S.copri sp. 
(Segatella copri sp. formerly Prevotella copri sp.) of bac-
teria within the rumen microbiome, both of which have 
been implicated in immune function. For example, high 
abundance of P.copri sp. was correlated with increased 
concentrations of serum metabolites related to chronic 
inflammation in the gut of pigs in the data of Chen et 
al. [24]. Whilst the Prevotella genus was reported to be 
associated with gut mucosal inflammation in mice [25]. 
Moreover, a positive relationship was apparent in the 
current study between the Prevotella genus and DMI, 
whilst Jiang et al. [26] and Carberry et al. [8] both con-
versely reported negative correlations between relative 
abundance of ruminal Prevotella genus. Moreover, both 
Prevotella genus and S.copri sp. have been related to RFI 

within various species too. For example, Jiang et al. [27] 
reported that P.copri sp. was one of the most abundant 
microbes in low-feed efficiency pigs and also noted the 
importance of that particular species to feed efficiency 
during daily-phase feeding strategies in pigs [28]. Fur-
thermore, in cattle, Brooke et al. [29] suggested that 
P.copri sp. may be a potential microbial marker for the 
identification of cattle with improved feed efficiency in 
their life-span and in the production cycle. Additionally, 
Carberry et al. [8] reported an effect of RFI phenotype on 
ruminal abundance of Prevotella genus, irrespective of 
the varied diets offered in that study, but did note greater 
abundance of Prevotella genus when cattle were offered 
a low forage diet compared to a high forage diet. Con-
versely though, Lopes et al. [30] reported that the cor-
relation between the Prevotella genus and feed efficiency 
was dependent on the diet offered as well as the specific 
Prevotella spp. Indeed, different Prevotella spp. have been 
associated with both higher and lower feed efficiency 
in cattle and sheep [29, 31–35]. Furthermore, Zhou et 
al. [36] reported that the Prevotella genus was the most 
abundant genus in both rumen content-associated and 
epithelial tissue-attached bacterial communities suggest-
ing a role for this genus in serving as a marker for host 
RFI classification. Additionally, Jewell et al. [9] reported 
that the abundance of specific Prevotella spp. is host spe-
cific, with Yang et al. [37] suggested that Prevotella may 
be a key microbe increasing host feed intake, suggesting 
that Prevotella spp. could promote the host’s appetite and 
decrease feed efficiency. Overall, results indicate that the 
role of varied immune response in relation to RFI may 
also be attributed to variation in DMI. 

Table 4  Stepwise regression analysis results of RFI, DMI and ADG 
phenotypes with significantly correlated microbial taxa. For each 
phenotype the microbes listed account for 90% of the variation
RFI DMI ADG
Prevotella Butyrivibrio Succiniclasticum
Roseburia Prevotella Methanobrevibacter
Succiniclasticum Succiniclasticum C.aminophilum
Methanobrevibacter Planctomycetes R.faecis sp.
Pyramidobacter Aminophilum D.D168 sp.
S.copri sp. S. copri sp. CW040
R.faecis sp. R.faecis sp.
Ruminis
Taxonomic levels for all microbes listed are presented in Additional Table 1

Fig. 5  Results from correlation analysis between the RFI, DMI and ADG phenotypes and microbial taxa directly connected to the phenotypes examined. 
Green cells represent negative correlations, with positive correlations in red. Cells in bold font represent significant associations (P < 0.05)

 



Page 9 of 16Keogh et al. Animal Microbiome            (2024) 6:52 

Despite the known relationship between RFI and DMI, 
namely RFI being computed after accounting for DMI, 
results from the current study highlight differential con-
nections between these two phenotypes and ruminal 
microbiome taxa, whereby microbial taxa directly con-
nected to RFI were different to those directly connected 
to DMI. For the DMI phenotype all direct connections 
between DMI and microbial taxa were positive, with 
interactions amongst these specific taxa also positive. 
Conversely though, for the RFI trait, all connections 

between RFI and microbial taxa were negative, whilst 
connections between the RFI taxa were positive. Overall 
suggesting differential microbial responses, despite the 
relationship between the two traits.

The Butyrivibrio genus, which was positively related 
to DMI in the current study, is involved in a number of 
ruminal functions in addition to butyrate production 
including fibre degradation, protein breakdown, bio-
hydrogenation of lipids and the production of micro-
bial inhibitors. Of particular importance to ruminant 

Fig. 6  Heatmap of the hierarchical cluster analysis conducted in PermutMatrix between the ADG, RFI and DMI phenotypes with their first neighbour 
microbial connections derived from the PCIT results
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digestion, and therefore productivity is the contribution 
of this bacteria to the degradation of plant structural 
carbohydrates, principally hemicellulose. Together with 
the  Prevotella genus, both Butyrivibrio and Prevotella 
genera are among the most abundant bacteria found 
within the rumen and have important functions in the 
metabolism of proteins and peptides [34]. Both of these 
genera breakdown protein and carbohydrates in feed, 
undertake de novo peptide synthesis and use products 
of cellulose degradation from other cellulotyic bacte-
ria as an energy source. In addition to being related to 
DMI, hierarchical clustering analysis revealed a relation-
ship between the Butyrivibrio genus with RFI. Indeed, 
within the context of feed efficiency, Myer et al. [10] 
and McGovern et al. [12] reported greater abundance of 
the  Butyrivibrio genus in efficient steers and a negative 
correlation with RFI, respectively. Conversely, Jewell et al. 
[9] reported greater abundance in the rumen of High-RFI 
dairy cows, indicating a positive relationship between 
RFI and rumen Butyrivibrio genus. The relative impor-
tance of the Butyrivibrio genus towards feed efficiency 
is also apparent in monogastrics, specifically the Butyri-
vibrio genus was strongly correlated with feed efficiency 
in pigs during the weaning phase, which the authors 
attributed to potentially be due to an enhanced ability to 
ferment complex carbohydrates [38]. Similarly, Kubasova 
et al. [39] also reported greater abundance of Butyrivibrio 
genus in fecal samples of pigs. Although the Butyrivibrio 
genus is a primarily butyrate producing bacteria, results 
from the current interaction study reported direct con-
nections with only the lactic acid VFAs, which in turn 
were connected to hepatic genes involved in functions 
related to gene expression, lipid metabolism, growth, as 
well as protease activity, which given the function of the 
Butyrivibrio genus towards protein breakdown is of inter-
est. Specifically, genes involved in the regulation of pep-
tidase activity (PI16) as well as those with an associated 
protease function (CAPN6, SERPINA1, SERPINA3-1) 
were connected to lactic acid VFAs within the rumen. 
Moreover, of these, PI16, SERPINA1 and SERPINA3 were 
previously reported as differentially expressed in the RFI 
based datasets of Keogh et al. [21], Weber et al. [22], and 
Alexandre et al. [23]. The lactic acid VFAs were also con-
nected to the leptin receptor gene (LEPR) highlighting 
the role of leptin towards mediating satiety status within 
the body. Moreover, the LEPR gene was differentially 
expressed through the breed contrast, highlighting differ-
ential hepatic expression of this gene between Charolais 
and Holstein-Friesian steers. Additionally, genes involved 
in TGF-beta growth signaling (BMP2, CRM1A, FNDC4 
and HMCN1) were also connected to ruminal lactic acid 
concentrations, which was of interest as Alexandre et al. 
[23] previously reported TGFB1 as a key regulator for 
feed efficiency in skeletal muscle of Nellore cattle.

Similar to the Butyrivibrio genus, the R.faecis sp. is also 
a primarily butyrate producing bacteria. Indeed, although 
correlated with DMI in the current study, as well as clus-
tered with both DMI and RFI through the hierarchical 
clustering analysis, R.faecis sp. was previously associated 
with growth rate in pigs, with a greater abundance of this 
microbe in pigs supplemented with a carbohydrate com-
plex diet, which the authors of that study suggested could 
have accounted for the improved feed efficiency observed 
in those animals [40]. However, through the regression 
analysis in the current study, R.faecis sp. was identified, 
together with the  Succiniclasticum genus, as playing a 
role in determining variation in the RFI, DMI and ADG 
traits examined in this study. Volatile fatty acids con-
nected to R.faecis sp. (lactic acid, ammonia, valeric acid, 
acetic:propionic, isobutyric acid and total-SCFA), were 
also connected to hepatic genes involved in processes 
related to gene expression, growth, immune and lipid 
metabolism. In the current study, the Roseburia genus 
was positively associated with DMI, this microbe utilises 
carbohydrates for growth and its abundance is known to 
increase with greater proportions of concentrates within 
the diet [32, 41]. Similarly, Li et al. [42] and Ellison et al. 
[33] reported greater abundance of the Roseburia genus 
in cattle fed a high-energy diet and lambs fed a concen-
trate diet, respectively, indicating a role for this bacterium 
depending on diet composition. Additionally through 
its connections with isobutyric acid, the R.faecis sp. was 
connected to CMKLR2 and ND6 which encode proteins 
involved in adipokinetic hormone activity and glucose 
homeostasis as well as a mitochondrial gene, respectively, 
potentially suggesting a role for R.faecis sp. in mediating 
hepatic glucose homeostasis and mitochondrial function 
as a consequence of dietary intake. Moreover, CMKLR2 
was specifically pertaining to the diet contrast, whilst 
ND6 was differentially expressed in both diet and RFI 
contrasts, overall highlighting the effect of diet on these 
genes related to R.faecis sp. abundance. Whilst a role for 
these genes related to RFI is already established through 
their differential expression within the published litera-
ture [23, 43].

The Synergistetes phylum was negatively connected 
with RFI in the current study. Similarly, McLoughlin et 
al. [44] also reported a negative correlation between 
this phylum and feed efficiency in the solid rumen frac-
tion of sheep. Additionally, McCormack et al. [45] also 
reported a role for this microbe towards variation in 
RFI in pigs. In addition to the negative relationship 
between the Synergistetes phylum and RFI; class, order 
and genus members of this clade were also negatively 
connected to RFI. Moreover, the members of this spe-
cific phylum were all positively connected to each other. 
Specifically other members of this clade negatively con-
nected to RFI included the Synergistia class, Synergistales 
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order and Pyramidobacter genus. Indeed, the relation-
ship between the members of this specific phylum was 
apparent through the PCIT; correlation and; hierarchical 
clustering analyses undertaken. Of these microbial taxa, 
the Pyramidobacter genus has previously been impli-
cated towards variation in feed efficiency. For example, 
McLoughlin et al. [44] identified positive associations 
between the relative abundance of the  Pyramidobacter 
genus and feed conversion ratio in sheep, whilst also 
reporting a negative association with ADG. Similarly in 
Simmental bulls, McGovern et al. [12] identified an asso-
ciation between RFI and abundance of the Pyramido-
bacter genus. Whilst in pigs McCormack et al. [45] and 
Kubasova et al. [39] identified an association between the 
Pyramidobacter genus and RFI in the cecal digesta of pigs 
and reported greater abundance of the  Pyramidobacter 
genus in the fecal microbiota of Low-RFI pigs compared 
to High-RFI pigs, respectively. Similar to the Synergistetes 
phylum, the Planctomycetes phylum as well as class sub-
member (Planctomycetia), and order member (Pirellu-
lales) were also negatively correlated with RFI, whilst 
positively correlated with one another. Indeed, the Planc-
tomycetes phylum was shown to be altered in both pigs 
and hens divergent in feed efficiency potential [45, 46]. 
In cattle, Freetly et al. [47] reported an effect of ADG on 
abundance of the Planctomyetes phylum, Planctomycetia 
class and Pirellulales order in the rumen of beef cattle, 
with results from this current study highlighting a role 
for these microbes towards RFI in beef cattle.

Of all the microbes directly connected to the pheno-
types examined in this study only one was commonly 
significantly correlated across more than one pheno-
type. Specifically, the Succiniclasticum genus was nega-
tively correlated with both RFI and ADG. Moreover, 
through the regression analysis, the  Succiniclasticum 
genus was observed to contribute to variation in all three 
traits examined in this study. A role for the Succiniclasti-
cum genus towards variation in feed efficiency has been 
established previously within the published literature, 
for example, in a study by Myer et al. [10] more efficient 
steers were observed to have greater abundance of suc-
cinate producing bacteria including the  Succiniclasti-
cum genus. Auffret et al. [48] also reported significantly 
greater abundance of the Succiniclasticum genus in high 
feed efficiency beef cattle. Conversely though, Man-
zanares-Miranda et al. [49] reported lower abundance 
of the Succiniclasticum genus in Low-RFI bulls. Interest-
ingly, an effect of diet on the abundance of Succiniclasti-
cum genus is evident within the literature. For example, 
McCann [50] reported greater proportions of the  Suc-
ciniclasticum genus in steers consuming low quality for-
age, however the same authors observed abundance to 
be mostly undetected in forage diets but more abundant 
in a high grain diet [32]. Additionally, McCabe et al. [51] 

reported alterations to the abundance of the Succiniclas-
ticum genus dependent on the amount of feed consumed, 
whilst Luo et al. [52] showed that a high concentrate diet 
increased the abundance of the  Succiniclasticum genus. 
Moreover, there is also evidence for an effect of breed 
on ruminal abundance of Succiniclasticum genus. For 
example, the  Succiniclasticum genus was higher in the 
High-RFI beef cattle in Li et al. [42], however this dif-
ference was only apparent in Charolais and not in the 
other breeds examined in that study. Similarly, in sheep, 
McLoughlin et al. [53] identified higher abundance of 
the  Succiniclasticum genus in the Connemara breed of 
sheep compared to other breeds. Together these results 
indicate towards a role for the Succiniclasticum genus 
towards the phenotypes examined in this study, however 
the contribution may be dependent on both individual 
genotype as well as the dietary management system in 
place.

Conclusions
The rumen microbiome influences the availability of 
nutrients for subsequent growth purposes through the 
degradation of ingested feed. Equally the liver is a highly 
metabolically active organ and both the rumen microbi-
ome and liver have been shown to be affected by RFI phe-
notype as well as dietary intake. Results from this study 
highlight the interaction amongst the rumen micro-
biome, VFA concentrations and hepatic gene expres-
sion profiles with three production and efficiency traits 
of interest, namely DMI, ADG and RFI. Results from 
this interactive study show a clear relationship between 
hepatic genes related to lipid metabolism towards RFI, 
whilst genes with an associated immune function were 
reported as primarily related to DMI. This study also 
indicated towards differential microbiome interactions 
between RFI and DMI despite the known correlation 
between these two traits, whilst the Succiniclasticum 
genus was identified as the only microbe connected to 
more than one trait, namely ADG and RFI. However, 
results highlight a potential role for both the Succiniclas-
ticum genus and R.faecis sp. towards RFI, DMI and ADG 
phenotypes in beef cattle. Taken together, this study 
provides insights into the interaction amongst rumen 
microbiome and hepatic gene expression, which may be 
contributing to the underlying biology of DMI, ADG and 
RFI in beef cattle.

Methods
Animal management and phenotype collection
The animal model utilised in this study was conducted as 
part of a larger research programme designed to inves-
tigate the within-animal repeatability of feed intake, 
growth and feed efficiency in two contrasting breeds 
(Charolais and Holstein-Friesian) of beef steers, which 
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were offered contrasting diets over separate dietary 
intake test periods [54, 55]. Details related to the origi-
nal animal model are described previously in Higgins 
et al. [17] and are only briefly outlined here. Charolais 
(n = 90) and Holstein-Friesian (n = 77) steers were offered 
contrasting diets over different stages of development 
as follows: (i) a high-concentrate diet during the grow-
ing phase; (ii) zero-grazed grass diet during the growing 
phase and; (iii) high-concentrate diet during the finish-
ing phase. Charolais steers were on average 373 (± 18) 
days of age and weighed 485 (± 38) kg, whilst Holstein-
Friesian steers were 399 (± 7.6) days of age and weighed 
401 (± 43.3) kg at the start of the trial. Upon completion 
of a dietary adaptation period, lasting 14 days, individual 
animal intakes were recorded (using an electronic Calan 
gate system; American Calan Inc., Northwood, NH, 
USA) over the three feeding phases, which each lasted 
for 70 days. Steers were weighed at the beginning and 
end of each dietary phase as well as on a fortnightly basis 
throughout. All steers were offered the same concentrate 
diet ad libitum during each of the two high-concentrate 
phases, with a restricted allowance of grass silage also 
provided. For the interim zero-grazed grass phase, steers 
were individually offered fresh herbage, harvested twice 
daily from Lolium perenne dominant swards, ad libitum. 
All steers had unrestricted access to fresh, clean drinking 
water. Upon completion of each dietary phase, individual 
RFI values were determined within breed for all steers as 
previously described in Higgins et al. [17], and animals 
were ranked as either High-RFI or Low-RFI, selecting 
the highest High-RFI and lowest Low-RFI for subsequent 
analyses.

Rumen digesta sampling and sequencing
Full details related to rumen digesta sampling and sub-
sequent sequencing analysis are described in full in 
McGovern et al. [13]. At the midpoint of each dietary 
phase, following a dietary adaptation period, a single 
rumen fluid sample was collected from all steers via 
stomach intubation (Flora Rumen Scoop, Profs-Products, 
Guelph, Canada). All samples were harvested approxi-
mately 2–4  h post-feeding, and were immediately snap 
frozen in liquid nitrogen and subsequently stored at 
-80  °C, pending further analysis. Ten rumen digesta 
samples per High- and Low-RFI groups from each breed 
and diet were used for subsequent microbial DNA isola-
tion, with the exception of the Low-RFI Charolais and 
High-RFI Holstein-Friesian steers during the zero-grazed 
grass diet and the Low-RFI Holstein Friesian steers dur-
ing the second high-concentrate diet, where only 9 
samples were available for each. Frozen rumen liquid 
samples (20 g) was homogenised to a fine powder under 
liquid nitrogen using a pestle and mortar and stored 
at -80  °C. Approximately 250  mg of the homogenised 

frozen powder was then used for DNA isolation, which 
was undertaken using the repeated bead beating and col-
umn purification method [56]. The quality of the resul-
tant DNA samples was assessed on an agarose gel, with 
DNA yield and purity also assessed on a Nanodrop 1000 
spectrophotometer. Amplicon libraries were prepared 
through PCR amplification, targeting the V4 region of 
the 16  S rRNA gene in both bacteria and archaea. Full 
details of library preparation are previously outlined 
in McGovern et al. [13]. Amplicon generation was vali-
dated through visualisation on an agarose gel. Amplicons 
were pooled in equal concentrations and gel purified to 
remove unwanted products using the Qiagen Gel Extrac-
tion Kit (Qiagen, Manchester, UK). The pooled purified 
libraries were measured for purity and quantity on the 
Nanodrop 1000 spectrophotometer and further quanti-
fied using the KAPA SYBR FAST universal kit with Illu-
mina Primer Premix (Roche Diagnostics, West Sussex, 
UK). The library pool was then diluted and denatured 
according to the Illumina MiSeq library preparation 
guide. The sequencing was conducted using 500 cycle 
MiSeq reagent kits (Illumins, San Diego, CA, USA). The 
sequencing reads generated were imported into Qiime2 
[57], where the DADA2 pipeline [58] was used for the 
detection of operational taxonomic units [59]. Taxonomy 
was assigned using a naïve Bayes classifier trained on the 
RefSeq database [60]. Sequence read files associated with 
this analysis are available through the NCBI Sequence 
Read Archive (Accession no. PRJNA483745).

Rumen fermentation profiling
The concentration of ruminal VFA composition was 
measured using a gas chromatograph (model 3800 Var-
ian gas chromatograph) as per McGovern et al. [13]. The 
concentration of the following acids was determined: 
acetic, propionic, isobutyric, butyric, isovaleric, valeric, 
total short chain fatty acids, acetic:propionic acid ratio; 
D-lactic acid; L-lactic acid; DL-lactic acid; g-lactic acid 
and ammonia (NH3).

Liver tissue sample collection and RNA-sequencing
Liver tissue sample collection and RNA-sequencing 
methodology is described in full in Higgins et al. [17]. 
Briefly, at the end of each dietary phase and within breed, 
steers were ranked as either High-RFI (feed-inefficient; 
n = 12) or Low-RFI (feed-efficient; n = 12) and were sub-
sequently used for the collection of liver tissue biopsies. 
All steers selected for biopsy collection were adminis-
tered a local anaesthetic (5  ml; Adrenacaine, Norbrook 
Laboratories, Ireland Ltd.) to the biopsy site location. 
Following anaesthetisation, liver tissue was harvested 
through percutaneous punch between the 11th and 12th 
ribs as previously described by McCarthy et al. [61]. Care 
was taken to ensure that all samples were consistently 
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harvested from the same location from each animal. All 
instruments used for biopsy collection were sterilised, 
washed with 70% ethanol and treated with RNaseZap 
(Ambion, Applera Ireland, Dublin, Ireland), prior to use. 
Following collection, all tissue samples were washed with 
sterile DPBS and immediately snap frozen in liquid nitro-
gen before subsequent storage at -80 °C pending further 
processing.

Full details related to RNA isolation and subsequent 
RNA sequencing and bioinformatic analysis are pro-
vided in Higgins et al. [17] and are only summarised here. 
Briefly, 50 mg of liver tissue from each biopsy sample was 
used for the isolation of total RNA. RNA was isolated 
from tissue samples in 3  ml of QIAzol reagent using a 
rotor-stator tissue lyser (Qiagen, UK). RNA was subse-
quently precipitated and purified using the RNeasy plus 
Universal kit (Qiagen, UK) according to the manufac-
turer’s instructions. Quality and quantity of RNA isolated 
were determined using the RNA 6000 Nano Lab Chip kit 

(Aglient Technologies Ireland Ltd., Dublin, Ireland) on 
an Aglient Bioanalyser 2100 and using a Nanodrop spec-
trophotometer (Nanodrop Technologies, Wilmington, 
DE, USA), respectively. All RNA samples displayed RNA 
integrity numbers (RIN) greater than 8 and thus were 
deemed to be of suitable quality for subsequent RNA-
sequencing. Individual cDNA libraries were prepared 
from each separate liver RNA sample for cattle divergent 
for RFI across each breed and dietary phase, using the 
Illumina TruSeq stranded mRNA sample prep kit (Illu-
mina, San Diego, CA, USA) according to the manufactur-
er’s instructions. Resultant cDNA libraries were validated 
using the DNA 1000 Nano Lab Chip kit on the Aglient 
Bioanalyser 2100. Sequencing was subsequently under-
taken on an Illumina HiSeq 2500 sequencer. All sequenc-
ing data used in this study are publicly available in NCBI’s 
Gene Expression Omnibus and can be accessed through 
GEO ID GSE111464.

Fig. 7  Overview of data used for co-expression network analysis. ([VFA]: volatile fatty acid concentrations; H-RFI: High-RFI; L-RFI: Low-RFI; ZG: zero-grazed 
grass diet; HC: high concentrate diet; CH: Charolais; HF: Holstein-Friesian; DMI: dry matter intake; RFI: residual feed intake; ADG: average daily gain)
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Quality control of sequencing reads was undertaken 
using FastQC (v 0.11.5; [62]), followed by removal of 
sequencing adapters and any low quality reads using 
Cutadapt (v 1.13; [63]). Trimmed sequencing reads were 
mapped to the bovine reference genome (ARS-UCD1.2; 
[64]) and also quantified using STAR (v.2.5.1; [65]). Dif-
ferential expression was undertaken using the edgeR 
package within the R environment [66]. Within edgeR, 
gene expression reads were estimated as Counts Per 
Million (CPM) and genes which presented with at least 
1 CPM in at least half of the samples were retained for 
differential expression analysis. Differentially expressed 
genes were identified for each of the main contrasts of 
RFI phenotype (Low-RFI versus High-RFI), breed (Cha-
rolais versus Holstein-Friesian) and dietary source (high 
concentrate versus zero-grazed grass). The model for 
differential expression due to a given contrast (e.g., RFI) 
contained the other two contrasts as main effects (e.g., 
breed and diet).

Co-expression network analysis
The following datasets were utilised for the gene co-
expression network analysis: liver transcriptomics; 16  S 
rumen microbial abundance taxonomy; VFA concentra-
tions; and phenotype data (DMI, RFI and ADG; Fig. 7). 
From the differential expression analysis conducted in 
edgeR, the top 5% differentially expressed genes, for each 
of the three contrasts (RFI, breed, and diet) based on cor-
rected p-value were selected for subsequent inclusion in 
the co-expression network analysis. Thus, nodes selected 
for subsequent co-expression analysis included: (i) genes 
differentially expressed based on the RFI contrast; (ii) 
genes differentially expressed based on the breed con-
trast; (iii) genes differentially expressed based on the 
diet contrast; (iv) ruminal microbial abundance; (v) 
VFA concentrations and; (vi) three phenotypes of inter-
est: RFI, DMI and ADG. Significant connections (edges) 
between nodes were identified using the Partial Correla-
tion and Information Theory (PCIT) algorithm [67]. The 
PCIT algorithm determines the significance of the cor-
relation between a pair of nodes after accounting for all 
other nodes within the network [67]. The resultant net-
work of co-expressed genes was imported into Cytoscape 
software [68] for visualisation. In order to assign bio-
logical annotation of the generated network, co-expres-
sion network analysis results were further evaluated for 
functional enrichment using Gprofiler and David gene 
ontology.

Stepwise regression and correlation analyses
To determine the independent rumen microbial predic-
tors of RFI, DMI and ADG, a stepwise regression analy-
sis was conducted. This analysis was undertaken in SAS 
(version 9.4) using the REG procedure, incorporating the 

three phenotypes examined in this study as well as any 
microbe directly connected to the phenotypes, based 
on the results from the co-expression network analysis 
within the model and utilising R2 as the selection criteria. 
A correlation analysis was undertaken on the aforemen-
tioned phenotype and microbe variables using the CORR 
procedure of SAS. Additionally, a hierarchical clustering 
analysis was performed between the phenotypes and first 
neighbour microbial connections using PermutMatrix 
(version 1.9.4; http://www.atgc-montpellier.fr/permut-
matrix/, [69]).
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