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Abstract 

Background Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca 
mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea 
is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diar-
rhea in macaques have predominantly been conducted with single sample collections. Our analysis was based 
on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic 
diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to inves-
tigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions 
with a selection of commercially available monkey diets.

Results The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase 
in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two 
lactose free diets were associated with a lower incidence of diarrhea.

Conclusion A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus 
in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmoti-
cally induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship 
in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data 
analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensur-
ing a healthier and more resilient primate population.
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Background
Chronic diarrhea is a common cause of mortality and 
morbidity in captive rhesus macaques (Macaca mulatta). 
Diarrhea may result in dehydration, weight-loss and elec-
trolyte disbalance [1–3]. Both juvenile and adult rhesus 
macaques can be affected, resulting in loss of animals and 
breeding potential and, more importantly, a decreased 
welfare of these animals. The etiology of diarrhea in rhe-
sus macaques is likely to be multi-factorial and diverse as 
many risk factors can lead to the occurrence of diarrhea 
[2, 4, 5]. Frequently reported bacterial pathogens causing 
diarrhea in macaques are Giardia, Shigella, Campylobac-
ter, Yersinia, Salmonella, and Escherichia coli [3, 6–9]. 
Viruses, such as adeno and rotaviruses, can induce diar-
rhea, but in general, viruses are not strongly associated 
with idiopathic diarrhea [10–12]. Furthermore, dietary 
factors have also been associated with diarrhea. Con-
sumption of high-fat diets can result in malabsorption 
and protein losing enteropathy, gluten sensitivity and lac-
tose intolerance have been reported as possible causes of 
diarrhea [13–17].

Lactose intolerance is currently not considered as 
a major contributor to diarrhea in rhesus macaques. 
Although literature in this area is sparse in macaques, 
lactose intolerance is well described in humans [14, 17]. 
Lactose intolerance is the inability to digest lactose in the 
small intestine due to decline in lactase expression, natu-
rally occurring in mammals after weaning [18, 19]. The 
undigested lactose enters the large intestine and leads 
to osmotic trapping of water and an increased osmotic 
load by fermentation of lactose to short chain fatty acids 
(SCFA) [20–23]. As a result, symptoms such as bloat-
ing, abdominal pain, and diarrhea after ingestion of lac-
tose can occur [21, 22, 24]. Different tests are available to 
diagnose lactose intolerance, each of which investigates a 
different aspect of the process and presents with its own 
limitations [22]. Most of them are designed for human 
purposes e.g., a breath test or a genetic test. A less human 
specific test for lactose intolerance involves avoiding lac-
tose combined with subsequent cessation of symptoms 
[14, 22].

Various studies have investigated the influence of 
diet on the microbiome in nonhuman primate (NHP) 
models for human diseases [25–27]. Strong relation-
ship between gut microbiota and diseases e.g., diabe-
tes, neurodegenerative and cardiovascular diseases 
have been shown [28–33]. However, very few stud-
ies have primarily focused on the influence of diet for 

the welfare and gastrointestinal health of macaques. 
As diarrhea is a common health problem in captive 
macaques, the relationship between their microbiome 
and diarrhea has already been investigated. It has been 
observed that rhesus macaques with diarrhea show in 
general an increased abundance of Campylobacter, Fae-
calibacterium, Roseburia, in a less frequent degree an 
abundance of Ruminococcus, Megasphaera, Eubacte-
rium, Dialister, Clostridium and Bacteroides compared 
to non-symptomatic controls [34–37]. Compared to 
our study, only a limited number of fecal samples per 
animal were collected, no longitudinal follow up was 
included, and conventional microbiome analyses were 
performed.

Innovations in machine learning (ML) made it pos-
sible to use this modality to uncover complex rela-
tions between components within the microbiome 
[38–40]. In humans, ML has opened up the possibility 
of correlating the enormous wealth of measurements 
obtained through microbiome analysis and other omics 
approaches. ML can provide interesting leads that 
could also be of relevance with relatively small cohorts. 
For example, a relatively small cohort of 50–150 sam-
ples can already measure more than 500 different 
microbial strains. This makes fecal metagenomics data 
high dimensional with low sample size. Wastyk et  al. 
identified 2204 unique amplicon sequence variants 
in 36 participants, and Qin et  al. [41–43] identified 
2580 individual taxa in 131 individual samples. This 
renders metagenomic data largely unsuitable to tradi-
tional statistical models. Furthermore, ML approaches 
often employ non-linear multivariate predictive mod-
els, which can take interactions between microbes into 
account and reduce the high-dimensional space to a 
single outcome metric (e.g. Receiver Operating Charac-
teristic-Aera Under the Curve (ROC-AUC) for binary 
classification or root-mean-squared-error for regres-
sion). Additionally, when combined with (traditional) 
metagenomic analysis and biological interpretation, 
concordance of the outcomes increases confidence 
and robustness of the results. To the authors knowl-
edge these advanced ML techniques have not yet been 
applied in NHP studies.

We aimed to investigate potential relationships 
between the macaque gut microbiome, the presence 
of diarrhea and diet interventions with commercially 
available monkey diets. We employed ML for the first 
time to differentiate between intestinal microbiome 
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signatures associated with animals experiencing idi-
opathic mild to profuse diarrhea and those with normal 
feces over a two-year period. Our analysis was based 
on the metagenomic composition of longitudinally 
acquired fecal samples from rhesus macaques with 
chronic intermittent diarrhea and clinically healthy 
rhesus macaques.

Methods
Animals, husbandry and housing
Between 2020 and 2022, fourteen captive bred rhesus 
macaques (Macaca mulatta) were included in this study 
(Table 1). Ten animals had a history of chronic diarrhea, 
which was unresponsive to conventional veterinary treat-
ment. Four macaques, without a history of gastrointes-
tinal symptoms, were included as controls. All animals 
were of Indian origin and bred and raised at the Biomedi-
cal Primate Research Centre (BPRC, Rijswijk, The Neth-
erlands) in naturalistic multi-generational family groups 
with no forced weaning.

The animals with chronic diarrhea had frequently 
been treated with ivermectin, oxytetracycline and 
enrofloxacin. In addition, no probiotics were used to 
support these treatments. Both the control and diar-
rhea group had not received antimicrobial treatment at 
least 30 days prior to the start of the study. During the 
study, the animals did not receive any antimicrobial or 
probiotic treatment. The humane endpoint of this study 
was established when diarrhea symptoms necessitated 
veterinary intervention. One animal with diarrhea met 
the humane endpoint early in the study. With only 
one collected sample, this animal was excluded from 

further analysis. The remaining macaques with diar-
rhea (n = 9) were housed in two pairs and one group of 
three animals; the controls were housed in two pairs. 
The animal enclosures were divided into an indoor and 
outdoor compartment; the indoor floor was provided 
with wood fiber bedding (Lignocel3-4, JRS, Rosenberg, 
Germany) and the outdoor compartment consisted of 
sand bedding.

The wood fiber bedding of the indoor compartments 
was replaced weekly; one week without additional 
cleaning procedures and one week with high-pressure 
water cleaning including disinfection (Anistel Surface 
disinfectant, Tristel Solutions Limited, Cambridgesh-
ire, United Kingdom) as described elsewhere [44].

Standard environmental enrichment in these enclo-
sures consisted of several climbing structures, beams, 
fire hoses, and sitting platforms. The indoor tempera-
ture was set at 18  °C, with a 12 h light:dark cycle. The 
animals were fed commercially available monkey pellets 
supplemented with limited amounts of fruit, vegeta-
bles, or grain mixtures. Water was available ad libitum, 
provided by automatic water dispensers. Animal care-
takers observed all animals at least twice daily for inju-
ries and illness; abnormalities were reported to the 
veterinarians. Individual electronic health records were 
kept for each animal.

Diets
Five commercially available diets were selected for 
this study. Each diet differed in ingredients, content 
or preparation. Full product names as provided by the 
manufacturers are shown in supplementary Table  S1. 
The main nutrients and differences in dietary composi-
tion are shown in Table 2. Diet B and C were extruded; 
during this process the raw ingredients are exposed to 
high pressure and high temperatures (> 100  °C). Diet 
B was manufactured during a high pressure and high 
temperature extrusion process and Diet C with a con-
ventional extrusion process. All animals were assigned 
at random to a specific diet. After each dietary cycle 

Table 1 Individual animal characteristics, including subject’ 
social grouping (enclosure), age in years (yrs), bodyweight in 
kilograms (kg) and gender

Enclosure Animal ID Group Age (yrs) Bodyweight 
(kg)

Gender

1 RM1 Diarrhea 4 8.1 Male

RM2 Diarrhea 4 8.3 Male

2 RM3 Diarrhea 5 7.9 Female

RM4 Diarrhea 7 8.5 Female

3 RM5 Diarrhea 5 10.8 Male

RM6 Diarrhea 5 10.0 Male

RM7 Diarrhea 5 9.5 Male

4 RM8 Control 3 7.4 Male

RM9 Control 3 6.0 Male

5 RM10 Control 5 10.1 Male

RM11 Control 5 10.7 Male

6 RM12 Diarrhea 7 11.1 Male

RM13 Diarrhea 7 12.4 Male

Table 2 percentage of crude nutrients (protein, fat, fiber) of the 
different diets

Presence of gluten and lactose are indicated as either positive (+) or negative (−)

Diet Protein (%) Fat (%) Fiber (%) Gluten Lactose

A 25.2 4.3 4.2 + +

B 22.2 4.6 4.5 + +

C 22.2 4.6 4.5 + +

D 22.0 5.0 3.5 + −

E 17.0 3.5 14.0 + −
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with a duration of approximately three months, a wash-
out period with a similar duration was implemented. 
Diet A was used for washing out because this was the 
standard diet at the BPRC.

Fecal scoring and collection
At the end of each dietary cycle, on the last standard 
cleaning day at approximately 3 pm the animals were fed 
a food coloring product to identify individual feces the 
next morning. The next morning, between 9 and 11 am, 
the feces was collected and divided into three cryovials, 
each containing 1 g, stored at − 80  °C until further pro-
cessing. On two occasions, there was no sample obtained 
as only indoor samples were collected.

One animal per pair or group of three was randomly 
selected to receive blue food coloring, and for the group 
of three, an additional animal was selected to receive indi-
gestible, non-toxic glitter. All animals received the food 
coloring or glitters in alternating sequence, to exclude 
the possible influence of these identification methods. 
Animals receiving food coloring or glitter drank 20  mL 
of diluted syrup with 0.3 mL blue food coloring (Wilton 
Industries, Icing color, Royal blue, Naperville, USA) or 
0.35  g of glitter (The sparkle range, rainbowdust.co.uk, 
Cuerden Greenmill, UK). The individual not receiv-
ing coloring or glitter was offered diluted syrup only. In 
addition, this coloring procedure was performed every 
two weeks, after which the Waltham Faeces Scoring Sys-
tem was applied by two neutral observers [45, 46]. The 
Waltham scale utilizes a scale of 1–5 with half numerical 
increments, covering a range of very hard (score 1) and 
dry to entirely liquid feces (score 5) [45, 46]. The mean 
Waltham score was calculated over a period of three 
months prior to each fecal collection to determine the 
overall stool consistency. The cut-off score for diarrhea 
was set at a mean score of 3.6. This also entails that con-
trol animals whose mean Waltham score exceeded this 
value were labeled as diarrhea-positive and vice versa.

Fecal metagenomics
DNA isolation and metagenomic sequencing
Total DNA was extracted from the samples using an 
Agowa/PurePrep protocol. To each 150  l sample, 500  l 
zirconium beads (0.1  mm) and 800  l CD1 solution 
(DNeasy 96 Powersoil Pro QIAcube HT kit) were added. 
Cells were disrupted by bead beating twice for 2  min, 
with cooling on ice in between and afterwards. After cen-
trifugation for 6 min at 3000 RPM, 350 l supernatant was 
mixed with 300  l Agowa binding buffer and 10  l Agowa 
magnetic beads. Samples were further purified using 
the PurePrep 96 system (Molgen, The Netherlands) with 
two wash steps and a final elution step in 65 l. Libraries 
for whole-genome sequencing were prepared using the 

Illumina DNA prep protocol according to the instruc-
tions of Illumina (Illumina DNA Prep ReferenceGuide). 
Blank controls were included for DNA isolation and 
sequencing, consisting of all components used for sample 
DNA isolation except for sample material. These controls 
contained very low levels of DNA, and after sequencing, 
they did not result in sequence data.

DNA concentrations were standardized across samples. 
After tagmentation and clean-up steps, PCR-mediated 
standard indexed i5 and i7 adapters were added and the 
library was amplified. Next, the libraries were cleaned-up 
and pooled. Whole genome sequencing was performed 
using the Illumina MiSeq sequencer applying MiSeq V3 
chemistry.

Metagenomic profiling
Fastp was applied to preprocess the reads to filter out 
low-quality and too short reads [47]. In addition, fastp 
trims out all reads from the front and the tail and cuts 
potentially present adapter sequences. Profiling of 
trimmed reads was performed with a kraken2 pipeline 
with a custom database built through kraken2’s pro-
prietary method [48]. A database consisting of archaea, 
bacteria, plasmid, virus, human, fungi and UniVec Core 
nucleotide/protein sequences was used. The latter is a 
subset of the NCBI-supplied database of vector, adapter, 
linker and primer sequences that may be contamination 
factors. The GRCh38 human genome assembly, as availa-
ble on the NCBI database, was used to filter out potential 
human reads that may have ended up in the samples due 
to contamination during or before sample collection [49]. 
Parameter choices for kmer length were unchanged from 
the default settings of kraken2. After profiling, a Bayes-
ian re-estimation of abundance was performed using the 
Bracken tool [50]. All profiling tools were installed from 
bioconda channels [51].

Machine learning
Software packages
All analyses were performed in Python 3.9 and for sta-
tistical test, scipy (version 1.12.0) was used. A stacked 
L2-model comprising three separately trained predic-
tors: CatBoost, XGBoost and Extratrees was applied [52, 
53]. The parameters of the XGBoost (version 2.0.3) and 
Extratrees models were selected using stratified three-
fold cross-validation. The CatBoost (version 1.2.5) model 
was trained using its default parameters as this has been 
shown to yield to high performance [54]. The Extratrees 
model was used as is made available in the scikit-learn 
package (version 1.4.1). Plots were made using a combi-
nation of seaborn (version 0.11.2) and matplotlib (ver-
sion 3.8.3). Figure annotation was performed using the 
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statannotation package (version 0.6.0). Microbial diver-
sity measures were calculated using scikit-bio (version 
0.6.0).

Stability runs
The samples of all macaques were processed as one 
cohort. As such, there was no a priori appointed external 
validation dataset. However, as arbitrary sample selection 
might result in biases, our analysis was therefore repeated 
50 times where each repetition is named a stability run. 
This ensures the correct assessment of stochastic effects 
present in the results of our method.

Leave‑one‑monkey‑out
Samples for predictive models should be independ-
ent and identically distributed between the training and 
testing sets. In this study, we used longitudinally col-
lected samples from each animal. Therefore, samples 
cannot be selected without taking the individual animal 
into account as having samples from the same animal 
in both the training and testing sets breaks the assump-
tion of an independent distribution. As such, a so-called 
Leave-One-Monkey-Out approach was applied (Fig.  1). 
To test the performance of our model on novel, inde-
pendent data, iterative approach was applied. All samples 
from one left-out monkey were used as test data, only 
to be used for evaluation of the model. Subsequently, all 
other samples were used to train our model. This model 
was then applied to predict the diarrhea phenotype in all 
samples of the left-out monkey according to the micro-
bial signature of its samples. Model predictions on all 
left-out monkeys are then concatenated and a single 
Receiver Operator Characteristic (ROC) curve was cre-
ated across all predictions and true labels of the left-out 
samples. The Area Under the Curve (AUC) of this com-
bined ROC curve was used for model evaluation. A full 
loop where each monkey is used as the left-out monkey is 
the definition of a single stability run.

Feature selection
Prior to passing data to our model, two methods of 
dimensionality reduction were performed. Unsupervised 
sparsity selection was performed on the non-zero relative 
abundance of each microbial species, to remove species 
that are sparser and are thus more susceptible to stochas-
tic effects. A threshold was set, such that species that had 

Fig. 1 Schematic representation of the Leave-One-Monkey-Out 
approach used for the machine-learning algorithm for biomarker 
discovery. Each monkey is used as the independent test data 
in an iterative manner and is thus “left out” of the samples on which 
the machine-learning model is developed. One stability run 
is defined as a single loop where each monkey is left-out once

◂
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a relative abundance of zero in more than 80% of samples 
were removed from the dataset. Subsequently, supervised 
multivariate recursive feature elimination was performed 
as available within the scikit-learn package [55]. As an 
evaluator for feature selection, a step size of 1 and scikit-
learn Extra-Trees classifier with default parameters was 
used. Ten repetitions of threefold cross-validation were 
performed to obtain the average validation ROC-AUC 
for a range between 1–150 of kept features.

Feature importance
A permutation feature importance algorithm was per-
formed on all models to verify its predictions. Each fea-
ture was presented to the model ten times, but the values 
were shuffled every time. The feature importance of 
each microbial species was defined as the mean absolute 
change in model performance when its relative abun-
dance values were shuffled.

Permutation test
In typical ML settings, the number of samples should 
outweigh the number of measurements (in this case 
microbial species) by at least a factor 10 as a rule of 
thumb [56]. In the current setting, the measurements 
outweigh the samples by an approximate factor of 10. For 
this reason, we implemented a feature selection method 
based on all samples. Because this has implications for 
risk of overfitting of the trained models, a permutation 
test was performed to quantify the overfitting of our 
models. This test measures the performance of a ML 
algorithm compared to a randomly permuted reference 
outcome. If there is no significant difference between 
a randomly permuted outcome and the true labels, it is 
possible that the performance of the measured might be 
caused by spurious effects, programming error, or biases 
induced by selecting features on the full set of samples.

We ran a permutation test consisting of 50 additional 
stability runs, the same as for the normal runs, where the 
exact same method as for the actual labels was used with 
randomly permuted labels. The same feature selection 
algorithm, parameters and models were used. In addition, 
the same number of features were selected to be used for 
the model, but on the permuted labels. This permutation 
test will show the difference in performance between the 
true labels and completely random labels. Differences in 
performance were assessed using an unpaired two-sided 
independent t-test.

Statistical analysis
Statistical testing to assess differences in group distri-
bution were performed by either an unpaired t-test, 
a Kruskal Wallis test or a Mann–Whitney U rank 
test. Multiple testing correction was performed using 

Benjamin-Hochberg correction when applicable. A one-
way ANOVA test was used to analyze the differences in 
alpha-diversity (Shannon-index) between the diets. The 
specific test used to calculate p-values is indicated for 
each specific case. All tests and corrections were imple-
mented using the SciPy package [57]. The effect of a lac-
tose containing diet was evaluated using a mixed logistic 
model with diarrhea as outcome variable, diet containing 
lactose as fixed and animal as random variable. Reported 
as odd ratio (OR) with 95% confidence intervals CI (lower 
limit-upper limit). This specific test was performed in R 
studio v4.1.3. P-values of < 0.05 were considered statisti-
cally significant.

A power calculation was conducted with pwrEWAS 
to determine the sample size necessary to reliably pre-
dict the difference among the groups [58]. Based on our 
computations adapted for whole-genome shotgun data, 
a sample size of 110 microbial measurements was esti-
mated to be sufficient.

Results
We analyzed a total of 114 samples from 13 macaques: 
35 samples of four control animals and 79 samples of 
the nine diarrhea animals. Based on the Waltham score 
threshold of 3.6, we labeled 78 samples as non-diarrhea 
samples and 36 samples as diarrhea. Genomic tran-
scripts of diarrheal pathogens commonly identified in 
rhesus macaques Campylobacter coli, Campylobacter 
jejuni, Shigella flexneri, and Yersinia enterocolitica rep-
resented an insignificant percentage of reads (max. rela-
tive abundance < 0.07%) ruling them out as causative 
agents. The top five most abundant phyla were Firmicutes 
(91.8% ± 7.38%), Bacteroidetes (1.84% ± 5.41%), Actino-
bacteria (1.67% ± 1.48%), Proteobacteria (0.37% ± 0.53%), 
and Euryarchaeota (0.25% ± 1.28%). An unpaired t-test 
gave the following P-values for Firmicutes (P = 0.64), Bac-
teroidetes (P = 0.37), Actinobacteria (P = 0.18), Proteobac-
teria (P = 0.75) and Euryarchaeota (P = 0.30), showing no 
significant differences on a phylum level between diar-
rhea and non-diarrhea animals. In addition, we observed 
no significant difference in α-diversity (using Shannon-
index) on species level between the healthy group and 
the diarrhea group (P = 0.097). Boxplots of α-diversity of 
normal fecal samples vs. diarrhea are shown in supple-
mentary Fig.  S1. Scatter plots of the first two principal 
coordinates of the β-diversity PCoA based on Bray–Cur-
tis dissimilarity based on the relative abundances at the 
genus level are shown in Fig. S2. A bar plot of explained 
variance for each principal coordinate is shown in Fig. S3. 
Significant differences in the first four principal coor-
dinates were calculated using a Mann–Whitney U test 
for binary values and a Kruskal Wallis test for multi-
class values. All corrected P-values are summarized in 
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table S2. Sample name i.e., individual macaques, showed 
significant differences in the first three principal coordi-
nates (PPCo1 = 0.0441, PPCo2 = 0.0483 and PPCo3 = 0.0441) 
Fig. S4. This shows that there are differences in microbi-
ome between the animals on a large-scale. However, none 
of these differences are associated with fecal consistency 
Fig. S5. The timepoints at which a sample was collected 
shows only a significant difference at PPCo3 = 0.0441) 
fig. S6.

Model performance and permutation test
The average ROC curves of each of the models is shown 
in Fig.  2. With an average AUC of 0.825 ± 0.009, our 
models were able to accurately predict diarrhea in the 
rhesus macaques using the biomarkers i.e., microbial spe-
cies, that our feature-selection algorithm has identified. 
The model yields optimal performance in discriminat-
ing between normal feces and diarrhea, with twenty-five 
microbial species identified as the most critical biomark-
ers. The average AUC of the permuted responder col-
umn was equal to 0.694 ± 0.077. The fact that the AUC is 
higher than a true coin toss result, i.e. an average AUC 
of 0.5 suggests that our feature selection algorithm is 
inducing some bias in our results. An independent t-test 
(P = 1.3E−35) showed that the true labels result in sig-
nificantly higher performance, indicating that the true 
labels are required to reach the highest AUC value. The 
comparative performances of the true and permuted 
responder labels are visualized in the boxplot shown in 
Fig. 3.

Signature gut microbiome
The twenty-five most discriminative microbial species 
identified in regard to diarrheal status and their relative 
feature importance as derived by ML models, are shown 
in Fig. 4. Eighteen out of the 25 (72%) identified species 
were more abundant in the diarrhea group, compared to 
the animals with normal feces. The species comprising 
the identified as being most discriminative microbiome 
were mainly derived from three phyla, of which Firmi-
cutes was the most important, followed by Actinobacte-
ria and Bacteroidetes. Members of the Lactobacillaceae 
family were most (40%) represented in animals with diar-
rhea, followed by Lachnospiraceae (20%), Veillonellaceae 
(16%), Atopobiaceae (8%). Full taxonomic classifications 
of these 25 species are provided in Table S3.

Clustering
To biologically interpret the features identified with ML, 
we generated hierarchically clustered heatmaps (Figs.  5 
and 6). Figure 5 visualizes the correlations between the 25 
biomarkers identified with the use of ML. Most of these 
biomarkers can be divided in two main clusters. One 
cluster consisting of species belonging to the Lactobacil-
laceae cluster, and one cluster (ML cluster) consisting of 
multiple bacteria families and species including Ligilacto-
bacillus ruminis, Megasphaera elsdenii, Dialister massil-
iensis, Dialister hominis, Anaerobutyricum hallii, Dorea 
longicatena, Blautia sp. sc05b48, Parolsenella catena, 
and Olsenella timonensis. Figure  6 shows the 250 most 
abundant organisms, resulting in various visually appar-
ent clusters. The normal commensal species were repre-
sented by the large central block (highlighted in green), 
whilst diarrhea and/or dysbiosis associated bacteria are 

Fig. 2 Area Under the Receiver Operating Characteristic curve (AUC) 
shows the performance of the machine learning method using 
an L2-model, mean AUC ± SD

Fig. 3 Boxplots illustrating the comparative performances 
of the model using true and randomly permuted fecal consistency 
labels. The true labels show a significantly higher AUC (P = 1.3E−35)
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located in blocks at the top and bottom of the heatmap. 
Notably, Fig. 6 also illustrates the positioning of the Lac-
tobacillaceae cluster and the ML-cluster shown in Fig. 5. 
The summed-up abundance of species of the ML-cluster 
and Lactobacillus genus are both higher in the diarrhea 
group (P = 0.0139 and 0.0139, respectively, Fig.  7 and 8, 
Mann–Whitney U rank). Many of the species shown in 
Fig.  5 are lactate and succinate producers (including all 
Lactobacillales species). The species that cluster within 
the ML-cluster are fermenters of intermediate fermenta-
tion products, such as lactate and succinate.   

Diets and waltham score
A one-way ANOVA test revealed no significant differ-
ences (P = 0.38) in α-diversity of the microbiome between 
the diets (Fig. S7). Yet, less animals were observed with 
a Waltham score of > 3.6 in the diarrhea group when fed 
with Diet D and E (Fig. 9). Two samples of the diarrhea 

group were unavailable because no sample could be col-
lected indoors. Strikingly, in the diarrhea group none of 
the animals had diarrhea when fed with Diet E. In addi-
tion, within the diarrhea group six out of nine animals 
had normal feces when fed Diet D compared to three 
animals out of nine for Diet A. The odds ratio of having 
diarrhea when fed a lactose containing diet was 8.79 (CI 
1.7–45.4, P = 0.009) compared to having no diarrhea 0.11 
(CI 0.02–0.59, P = 0.009).

As for β-diversity, the differences between each indi-
vidual diet were significant in the third and fourth prin-
cipal coordinates (PPCo3 = 0.0136, PPCo4 = 0.000635). 
Diets D and E show the biggest differences in distri-
bution in these principal coordinates (Fig.  10A, B). 
Therefore, we grouped the diets based on whether 
they are lactose free or not (Fig. 10C, D). Based on lac-
tose content, we observe significant differences in the 
third and fourth principal coordinate (PPCo3 = 0.0136 

Fig. 4 Mean relative feature importances of the biomarkers, i.e., microbial species, in the models. The direction and color of the bar indicates 
in which group the mean of each bacterial species was higher
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and PPCo4 = 0.000505). Eigenvectors obtained in the 
β-diversity analysis with respect to the third and fourth 
principal coordinates are shown in a biplot (Fig.  S8). 
We chose these principal coordinates as they show the 

most interesting differences with respect to individ-
ual diets and lactose content. The top-5 most impor-
tant genera in this plane are Prevotella, Streptococcus, 
Ligilactobacillus, Limosilactobacillus and Vescimonas, 

Fig. 5 Clustered heatmap of the correlations using Spearmann-rho coefficients of the 25 bacterial species identified with the use of machine 
learning (ML). The observed Lactobacillaceae cluster and the ML cluster are highlighted separately

Fig. 6 Clustered heatmap of the correlations using spearman-rho coefficients of the top 250 most abundant microbes on species level. 
Characterizable clusters of species are highlighted separately in the clustered heatmap. The two clusters that are identified by machine learning are 
indicated with (ML)
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where Limosilactobacillus is the most correlated with 
the difference between lactose-free and lactose con-
taining diets (lower-right vs. top-left). The overall less 
abundant genus, Faecalibacillus, showed a signifi-
cantly increased abundance between lactose free (Diet 
D and E) and lactose containing diets (Diet A, B and 
C) (P = 0.036, Mann–Whitney U test). We observed no 
significant differences with other diet combinations.

Discussion
The current study shows a distinct microbiome signature 
in rhesus macaques with chronic intermittent diarrhea 
hints at a potential mechanism of action. The classifica-
tion performance of our ML model indicates a strong 
ability to distinguish between diarrhea and non-diarrhea 
macaques, which is an important prerequisite for the 
interpretation of identified biomarkers. The most clini-
cally relevant result within this signature was an over-
abundance of Lactobacilli and a cluster of various species 
who have in common that they are fermenters of inter-
mediate fermentation products such as lactate and suc-
cinate. The present study was designed to determine the 
effect of diet interventions on the gut microbiome and 
diarrhea status of rhesus macaques. Diet D and E were 
associated with a reduced diarrhea incidence and and 
β-diversity analyses show them to have a significantly dif-
ferent microbiome composition compared to the other 
diets.

In line with Westreich et al. [36] we observed a higher 
abundance of Lactobacillus and Megasphaera in the 
diarrhea group. However, this outcome contrasts Yang 
et  al. [37] who described a depletion of Lactobacilli in 
rhesus macaques with diarrhea. In comparison to our 
study the age distribution in Yang et al. [59] displayed a 
broad range. Their overall age range consisted of rhesus 
macaques between 2 and 19 years (median 8 years) com-
pared to a relatively small range of 3–7 years (median 5 
years) in our study. Yet, it has been described that the 
abundance of lactobacilli in young adult, adult and old 
cynomolgus macaques was relatively stable and there-
fore an unlikely explanation. More likely, the discrepan-
cies between these studies could be caused by differences 
in origin, geography, husbandry and housing. Moreover, 

Fig. 7 Boxplot of the summed relative abundances 
of the machine-learning (ML) cluster in Fig. 6. The macaques 
with normal feces show a significantly lower abundance of these 
species compared to the macaques with diarrhea (P = 0.0139, 
BH-corrected Mann–Whitney U rank)

Fig. 8 Boxplot of the summed relative abundances of the species 
belonging to the Lactobacillus genus. The macaques with normal 
feces show a significantly lower abundance of these Lactobacillus 
species compared to the macaques with diarrhea (P = 0.0139, 
BH- corrected Mann–Whitney U rank)

Fig. 9 The number of animals classified as normal (≥ 3.5) 
versus diarrhea (≤ 3.6) for each diet based on mean Waltham score
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difference in sampling frequency, one single sample per 
animal compared to the longitudinal follow up in our 
study could also have attributed. In addition, although 
the total number of animals included in our study was 
lower, the total number of analyzed samples (n = 114) was 
much higher.

Shifts in the gut microbiome can be induced by 
dietary interventions. It is known that high-fat diets, 

mediterranean versus westernized diets, wild versus 
provisioned or captivity diets induce different microbi-
ome compositions in NHP [26, 59–61]. Yet, in our study 
differences in microbiome between the individual diet 
interventions were nonsignificant in the first and sec-
ond principal coordinates. This is most likely due to the 
effect of the observed inter-individual variance. Other 
reasons are (1) the limited number of animals, (2) that 

Fig. 10 The differences between each individual diet were significant in the third A and fourth B principal coordinates (P PCo3 = 0.0136, P 

PCo4 = 0.000635). Diets D and E show the most differences in distribution in these principal coordinates (A–B). Grouped in lactose free vs lactose 
containing diets show a significant difference in the third C and fourth D principal coordinate (P PCo3 = 0.0136 and P PCo4 = 0.000505)
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the composition and ingredients of the diets did not dif-
fer enough from each other, as they were all commercial 
monkey diets and lastly (3) the inherent instability of the 
gut microbiome of these idiopathic diarrheal animals [62, 
63]. However, the third and fourth principal coordinates 
show indeed a significant difference. Where the first and 
second principal coordinates probably account for more 
inter-individual variability, the third and fourth principal 
coordinates are likely more aligned with the effect of diet.

We observed on genus level a significantly more abun-
dant Faecalibacillus in the lactose free diets compared to 
the lactose containing diets. Interestingly, Huang et  al. 
[64] observed potential probiotic effects of Faecalibacil-
lus intestinalis. Although the exact meaning of the Fae-
calibacillus difference remains unclear, there could be a 
possible positive relationship between the lower diarrhea 
incidence, lactose free diets and the abundance of Faecal-
ibacillus in our macaques.

Firrman et al. [65] examined the impact of lactose expo-
sure on the gut microbiome in vitro, using fecal samples 
originating from healthy human donors. Lactose treat-
ment decreased the relative abundance of Bacteroidaceae 
and increased lactic acid bacteria such as Lactobacil-
lacea, Enterococceae, and Streptococcaceae. This corre-
sponded with an increased abundance of lactate utilizers 
such as Veillonellaceae. In line with these findings, we 
observed an increased abundance of Lactobacillacea and 
Veillonellaceae in the diarrhea microbiome signature. In 
contrast, for the lactose free we observed a decrease in 
the Bacteroidales cluster. In addition, we did not observe 

a significant difference in abundance in Enterococceae 
and Streptococcaceae, this could be explained by the fact 
that the most abundant Streptococcaceae in our dataset 
were of the species equini and lutetiensis, both are unable 
to ferment lactose [66, 67]. In addition, the abundance of 
Enterococceae was overall very low (0.03%).

We observed a reduction of diarrhea incidence in the 
diarrhea group when fed Diet D and E. In retrospect, the 
most striking commonality between these diets was the 
absence of lactose. In contrast, the other diets consisted 
of lactose rich ingredients such as whey powder or milk 
and cream powder. Diets D and E showed also the big-
gest differences in distribution in the principal coordi-
nates compared to the other lactose containing diets A, 
B and C. Grouped together in lactose free and lactose 
containing diets, we observed a significant difference in 
the third and fourth principal coordinate. The reduction 
of the diarrhea incidence combined with the differences 
in β-diversity when the animals where fed Diet D and E, 
suggests that lactose contributes to diarrhea symptoms.

In addition, we observed an overabundance of Lacto-
bacilli, which produce lactate and succinate from lactose 
[68, 69], and a cluster of species subsequently capable of 
fermenting intermediate fermentation products such as 
lactate and succinate (ML-cluster).

The overabundance of lactate and succinate consumers 
(ML-cluster) is indicative of an overabundance of avail-
able lactate and succinate in the large intestine, as has 
indeed been shown by others [70, 71]. Figure  11 illus-
trates our hypothesis regarding the suggested lactose 

Fig. 11 Illustration of the hypothesized lactose intolerance relationship and the observed microbiome signature in macaques with diarrhea. Due 
to malabsorption of lactose in the small intestine water is trapped, subsequently the lactose enters the large intestine to primarily be fermented 
by lactobacilli. Consequently, the abundance of lactobacilli increases by the excess of substrate. The lactobacilli ferment the lactose into short chain 
fatty acids (SCFA) resulting in elevated concentrations of lactate, succinate in the lumen. The increased concentration of lactate and succinate 
leads to proliferations of lactate- and succinate-consuming bacteria. Water is attracted by the lumen of the intestine due to the osmotic effect 
of the increased SCFAs concentration, together with the earlier trapped water in the intestine resulting in osmotic diarrhea
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intolerance relationship and diarrhea in our macaques. 
An overabundance of available lactate and succinate, pro-
duced by lactose consumers such as Lactobacillus, might 
be due to an overabundance of lactose which is not taken 
up properly in lactose intolerant individuals i.e., lactose 
malabsorption. It is known that inefficient digestion of 
lactose due to reduced or impaired lactase activity in 
the small intestine results in a higher concentration of 
lactose entering the caecum and large intestine [21, 24] 
and it is furthermore shown that lactose intake in lactose 
intolerant individuals/humans can induce an increase 
in Lactobacilli [20, 72]. Normally, lactate and succinate 
are a by-product of microbial anaerobic fermentation 
of dietary fiber that is rapidly converted into propion-
ate in the case of succinate and in the case of lactate into 
acetate, propionate and butyrate [20, 73]. These are sub-
sequently absorbed by colonocytes. Therefore, the succi-
nate concentration in the lumen (or feces) is usually low 
(1–3 mmol/kg). In pathophysiological situations the con-
centrations of intermediate fermentation products can 
increase in the lumen of the large intestine. As a result of 
the increased concentration of intermediate short-chain 
fatty acids (SCFAs) such as succinate, lactate and for-
mate secretory diarrhea can occur [69, 72, 74, 75]. It has 
similarly been shown in rats by Xue et  al. [72] that lac-
tose intolerance results in osmotically induced diarrhea. 
Therefore, our data suggests a possible etiology of lactose 
intolerance in our initially idiopathic diarrhea group. 
There is a relatively small body of literature describing 
lactose intolerance in NHP. Hart et al. [14] reported lac-
tose intolerance in two sibling rhesus macaques. Both 
infants were hand raised with milk formula, both suffered 
from diarrhea and slow weight gain. These symptoms dis-
solved when the animals were fed a lactose-free formula. 
Wen et  al. [17] observed a 100% incidence of lactose 
intolerance in seven adult wild caught rhesus macaques 
when challenged with lactose rich diets. However, adap-
tation to long term lactose feeding did occur. Our study 
group comprised individuals of the fourth generation 
or beyond at the BPRC and the same lactose-contain-
ing Diet A, was fed for decades. However, our diets had 
relatively low lactose levels at 3.4% and 3.5% compared 
to 20% lactose containing diets fed in the study by Wen 
et  al. [17]. Adaptation to lactose levels in macaques at 
the BPRC is expected. Yet, our study indicates that some 
macaques with diarrhea remain lactose intolerant despite 
multigenerational captivity and lifelong exposure to die-
tary lactose.

In humans, it has been described that lactose intoler-
ant individuals usually can tolerate a dose of 12–24  g 
lactose per day [76, 77]). In macaques, a corresponding 
estimated tolerated dose would be 1.6–3.2  g of lactose, 
assuming a standard human bodyweight of 70  kg and 

adjusted for the mean bodyweight of the macaques in 
our study. The lactose containing diets contained of 3.4 
and 3.5% lactose which results in an intake of approxi-
mately 5  g lactose per day. This indicates that the daily 
extrapolated macaque lactose toleration threshold was 
exceeded with 313–156% when fed Diet A, B and C. In 
combination with our finding that lactose-free Diets D 
and E resulted in significant lower incidence of diarrhea 
compared to lactose-containing diets this suggests that 
lactose could have contributed to the diarrhea.

In addition to being free of lactose, Diet E had higher 
dietary fiber levels. This might explain why none of the 
animals experienced diarrhea. For example, the two 
increased Atopobiaceae species of the genus Olsenella 
and Parolsenella tend to be susceptible for fiber sup-
plementation in dogs in relation to diarrhea. Levels of 
Atopobiaceae genus Atopobium were at comparable lev-
els between diarrhea and control dogs, but fiber inter-
vention resulted in a decrease in diarrhea dogs and an 
increase in control dogs [78]. In addition, in marmosets, 
an increase in Parolsenella catena was observed upon 
yoghurt supplementation, which limited Multiple-scle-
rosis pathology [79]. Furthermore, in Asian colobines, a 
leaf-eating old world monkey, the Atopobium genus was 
relatively more abundant in wild colobines compared 
to their captive counterparts, possibly highlighting its 
association with fiber-rich wild diets [80]. Yang et  al. 
[37] observed no significant changes in Olsenella spe-
cies between the diarrhea group and the control group. 
Although, in humans, a relation between members of the 
Atopobiaceae family and gastrointestinal health has been 
proposed [81, 82], these inconclusive reports implicate 
that its exact role is not clear.

In our study, a predictive modeling ML algorithm was 
employed that demonstrated robust performance, as 
evidenced by an average Receiver Operating Character-
istic Area Under the Curve (ROC-AUC) of 0.825. This 
ROC-AUC score is indicative of the algorithm’s effective 
discrimination between diarrhea and normal Waltham 
scores in rhesus macaques, underscoring its utility in 
our research. This result showed that such a non-linear 
multivariate predictive modeling approach can provide 
additional insights into fecal metagenomics data when 
sample sizes are limited. The permutation feature impor-
tances calculated allowed for identification and quantifi-
cation of the relevant patterns in the fecal metagenome 
rhesus macaques associated with lactate and succinate 
consumption and production. However, it is important 
to note that our models are primarily developed for bio-
marker discovery, and as such, feature selection was con-
ducted on the entire sample pool. This approach, while 
beneficial for biomarker identification, may limit the gen-
eralizability of the models for future applications, as the 
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selected features may be over-fitted to the current data-
set. Despite this, rigorous steps have been taken to ensure 
the validity of our findings, i.e., the comparison with the 
results of a randomly permuted version of itself yielded 
a significant lowering of performance. The biomarkers 
identified through ML were further validated using addi-
tional analyses and corroborated with existing literature. 
This multi-faceted approach reinforced the validity of our 
results.

The limitation of this study was the relatively low num-
ber of animals. Compared to similar monkey studies 
with a range of 24–96 cross sectional samples, our study 
included 114 samples from 13 individual animals [26, 
36, 37, 61]. With our longitudinal follow up we complied 
with the suggestion that longitudinal and intervention 
studies combined with methodological approaches are 
of importance to advance research on microbiome asso-
ciation and modulation [83]. However, for ML and sta-
tistics in general more samples and more animals would 
have resulted in more robust data. On the other hand, the 
results of both ML and biological analysis were consist-
ent, thereby increasing confidence and robustness of the 
outcome.

Overall, collecting large sample sizes is a common 
challenge in animal research. Availability of patients and 
matching controls can be limited. Since we also studied 
patients, this limited the inclusion of different genders 
and the total number of animals. Date of last treatment, 
and the time-frame in which patients had arrived from 
the breeding colony also influenced the selection of the 
animals. Although the fecal sample collections were 
conducted within consistent time ranges, variability in 
defecation time and sample collection could not be con-
trolled. Meanwhile, the macaques used in this study were 
housed and cared for identically thus decreasing inter-
animal variability. Controlling variability, i.e. noise, is a 
known strategy in preclinical animal research to reduce 
sample size. In addition, in our study biases were also 
reduced by the repeated measures design: feces of each 
animal were scored and recorded every two weeks during 
the entire study. Furthermore, the random assignment of 
the diets reduced the impact of unknown confounders.

Conclusion
This study suggests microbiome-lactose intolerance 
relationship in rhesus macaques with intermittent 
chronic diarrhea through the application of ML data 
analysis techniques and biological interpretation. We 
combined metagenomic profiling with ML algorithms, 
offering an additional avenue to investigate the com-
plex interactions between diet, gut microbiota, and 
health outcomes in rhesus macaques. In particular, our 

approach has not only provided insights into the spe-
cific microbial signatures possibly associated with lac-
tose intolerance but is also bridging the gap between 
computational biology and animal health, offering a 
potential blueprint for similar research in other species 
and contexts.

The integration of ML with metagenomic data anal-
ysis holds potential for developing targeted dietary 
interventions and therapeutic strategies. As technol-
ogy continuous to evolve, our ability to understand and 
possibly manipulate the microbiome through dietary 
interventions will improve, leading to better health 
outcomes of rhesus macaques. Although additional 
research is warranted, in the future this understand-
ing will not only enhance the welfare of macaques in 
zoos and research facilities but also pave the way for 
improved management practices, ensuring healthier 
and more resilient primate populations.
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