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and diet-associated shifts in cichlid fishes
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Abstract

Background: The extent to which deterministic rather than stochastic processes guide gut bacteria co-existence
and ultimately their assembling into a community remains largely unknown. Co-occurrence networks of bacterial
associations offer a powerful approach to begin exploring gut microbial community structure, maintenance and
dynamics, beyond compositional aspects alone. Here we used an iconic model system, the cichlid fishes, with their
multiple lake assemblages and extraordinary ecological diversity, to investigate a) patterns of microbial associations
that were robust to major phylogeographical variables, and b) changes in microbial network structure along dietary
shifts. We tackled these objectives using the large gut microbiota sequencing dataset available (nine lakes from
Africa and America), building geographical and diet-specific networks and performing comparative network
analyses.

Results: Major findings indicated that lake and continental microbial networks were highly resembling in global
topology and node taxonomic composition, despite the heterogeneity of the samples. A small fraction of the
observed co-occurrences among operational taxonomic units (OTUs) was conserved across all lake assemblages.
These were all positive associations and involved OTUs within the genera Cetobacterium and Turicibacter and
several OTUs belonging to the families of Peptostreptococcaceae and Clostridiaceae (order Clostridiales). Mapping
of diet contribution on the African Lake Tanganyika network (therefore excluding the geographic variable) revealed
a clear community change from carnivores (C) to omnivores (O) to herbivores (H). Node abundances and effect size
for pairwise comparisons between diets supported a strong contrasting pattern between C and H. Moreover, diet-
associated nodes in H formed complex modules of positive interactions among taxonomically diverse bacteria
(mostly Verrucomicrobia and Proteobacteria).
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cichlid trophic diversification.

Conclusions: Conservation of microbial network topologies and specific bacterial associations across distinct lake
assemblages point to a major host-associated effect and potential deterministic processes shaping the cichlid gut
microbiota. While the origin and biological relevance of these common associations remain unclear, their persistence
suggests an important functional role in the cichlid gut. Among the very diverse cichlids of L. Tanganyika, diet
nonetheless represents a major driver of microbial community changes. By intersecting results from predictive network
inferences and experimental trials, future studies will be directed to explore the strength of these associations, predict
the outcome of community alterations driven by diet and ultimately help understanding the role of gut microbiota in

Keywords: Bacterial association, Microbial communities, Lake assemblages

Background

The gut microbiota composition is determined by both
the environmental microbial exposure and the host in-
testinal environment, which imposes strong constraints
in the colonization and mediates community assembling
through specific niche offering [1-3]. The combined in-
fluence of the host and the environmental mediated fac-
tors (e.g. dietary inputs) can therefore result in specific
and to some extent predictable gut communities [4—6].
Still, the extent to which deterministic rather than sto-
chastic processes guide microbes co-existence and ultim-
ately their assembling into a community remains a
matter of debate [3, 7].

Co-occurrence networks are a powerful tool to start
exploring the forces that affect gut microbial community
structure and its dynamics [8]. This increasingly used
analytical tool relies on microbial abundance data ob-
tained from extensive sequencing data (typically a matrix
of OTUs) to infer microbe interactions as a function of
their covariation patterns across a wide number of sam-
ples [9]. The assumption is that a non-random pattern is
shaped by ecological processes driving coexistence (e.g.
cross-feeding or partial niche overlap) or exclusion (e.g.
competition or predation) [9, 10].

Comparative analyses of microbial networks built from
distinct datasets that vary at one or multiple traits (ei-
ther host or environmental) are particularly powerful to
explore microbial community dynamics [11]. This type
of approach can retrieve network commonalities across
systems, e.g. microbial associations that are persistent
along major host/environmental-associated variables (i.e.
taxonomical, spatial, temporal and ecological), as well as
unveil system and trait-specific co-occurrence patterns
(e.g. with the host health status, ethnicity and dietary
habits) [11-15]. While not being conclusive in terms of
inferences, these methods allow a first exploration be-
yond microbiota compositional aspects and set the
ground for empirical testing of novel hypotheses [8]. Re-
cent studies have successfully applied this comparative
approach to the exploration of microbial associations at
distinct scales of biological organization, i.e. across host

populations [12], species [14] and within and across dis-
tinct biomes [10, 11, 13], with a major focus on humans.
Little is known about how much of the observed gut mi-
crobial diversity engage into robust interactions in na-
ture, and whether these interaction patterns are
maintained or modified during the natural process of
host diversification.

Cichlid fishes provide an attractive system to investi-
gate gut microbe-microbe association patterns and com-
munity changes during host divergence. They represent
an iconic fish family (Cichlidae), widely distributed
across lakes and rivers in the subtropical/tropical regions
and have served as a primary model to study speciation
and rapid phenotypic diversification [16, 17]. The extra-
ordinary range of ecological niches they occupy, even
within highly reduced water pools (e.g. small crater
lakes), are primarily driven by resource partitioning and
niche displacement, following competition for local re-
sources [18-21]. In the African Great Lakes (Tangan-
yika, Malawi and Victoria), repeated explosive adaptive
radiations have led to the greatest levels of cichlid
specialization in terms of morphology, behavior and
dietary preferences [17, 22]. Central American lakes, on
the other hand, host more recent and less ecologically
diverse fish assemblages (all species belong to the same
genus Amphilopus [21]. While very diverse and widely
distributed, cichlids are nonetheless a relatively young
family (most species have evolved within the past 0.5
My), with distinctive and unifying phenotypic traits [17],
shaped by a common genomic structure [23].

Recent analyses have shown a strong correlation be-
tween compositional aspects of the cichlid gut microbiota
and dietary habits, suggesting that microbes could play a
role in optimizing fish digestion and therefore participat-
ing in cichlid trophic adaptation [4, 24]. These studies also
revealed the existence of a small microbial component
conserved across all cichlids (core). It remains unclear,
however, whether these diet-associated and conserved
compositional traits of the cichlid gut microbiota are
driven by specific microbe-microbe interactions and how
host ecology and geography influence these associations.
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Here we provide the first exploration of the cichlid
gut microbial associations through co-occurrence net-
work analyses. We take advantage of a recently pub-
lished large scale gut microbiota dataset [24],
including samples from two African and seven Ameri-
can lakes encompassing major dietary niches, to ad-
dress the following major objectives: a) provide the
first description of the cichlid gut community net-
work; b) identify network features and pairwise occur-
rences robust to major host ecological and
geographical variables (i.e. the core network); c) de-
tect diet-specific association patterns that can help us
understanding microbial community changes during
cichlid dietary adaptation.

To reach these goals, we partitioned the dataset ac-
cording to major geographic and dietary groups and
built individual co-occurrence networks using a con-
sensus of correlation and dissimilarity metrics. We
then contrasted the networks generated to retrieve
commonalities/differences in microbial associations
across fish assemblages. Finally, we explored the diet
contribution to the co-occurrence patterns observed
in Lake Tanganyika by mapping major dietary groups
on the network layout.
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Results
Comparative analyses of lake and continental networks
We used the CoNet ensemble approach based on four
correlation measures (Spearman, Pearson, Bray-Curtis
and Kullback-Leibler) to infer robust bacterial associ-
ation patterns in the cichlid gut. To this goal, we built
co-occurrence microbial networks for the two continen-
tal datasets, Africa and America, and for six lake data-
sets, including the African Lake Tanganyika and crater
lake Barombi Mbo, and the American lake Nicaragua
and crater lakes Apoyo, Apoyeque and Xilod (Fig. 1a-b).
Despite the heterogeneity of the fish data in terms of
species phylogeny and ecology (42 species and five major
diets, for details see Additional file 1: Table S1, and
[24]), both individual lake and continental networks
were largely comparable in size (number of nodes vary-
ing between 122 and 175) and global topological features
(Table 1). OTUs engaging into significant associations
(i.e. nodes, p <0.05, Benjamini-Hochberg (BH) correc-
tion) represented between 21 and 43% of the total OTUs
per dataset present in the original input matrix (Table 1;
for the original matrix see Additional file 1: Table S2).
The large majority of the associations (edges) were posi-
tive (copresence) for all networks. These were all
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Fig. 1 Co-occurrence network graphs of the cichlid gut microbiota and their node taxonomic composition. a-b Networks for individual lake
assemblages (a) and continental datasets (b), where nodes are OTUs color-colored to the phylum level. ¢ Proportion of nodes (OTUs) per phylum
found in each geographical dataset (for the overall microbial taxonomic composition, see [24], while for proportion of OTUs per phylum in the
input dataset see Additional file 4: Figure S3). All American networks largely resembled in topology and node taxonomic content. Note the dense
cluster of Firmicutes nodes present in all lake networks (blue circles, in L. Tanganyika the cluster is highly reduced), encompassing the two
families Clostridiaceae and Peptostreptococcaceae (for family level, see Additional file 2: Figure S1). Network interactions were inferred based on
concordance among four co-occurrence measures in the ensemble package CoNet [25] and visualized with igraph [26]
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Table 1 Global network topologies
Dataset N. of N. of N. of N. of Mean Node  Clustering Path Density N. of Modularity
samples OTUs® nodes edges (+/-) Degree coefficient length Modules
Continent  America 161 716 150 1113 (1083/ 14.84 0.69 334 0.10 17 044
30)
Africa 116 637 149 881 (856/  11.83 0.50 244 0.08 10 043
25)
Lake Nicaragua 24 504 147 483 (448/ 6.57 071 6.03 0.05 12 0.70
35)
Apoyo 24 510 175 324 (321/3) 3.70 0.61 2.68 0.02 32 0.82
Apoyeque 25 356 155 405 (370/ 523 0.60 5.05 0.03 18 0.57
35)
Xilod 43 494 158 364 (352/ 461 0.58 3.65 0.03 29 0.70
12)
Tanganyika 73 597 162 276 (276/0) 341 049 5.77 0.02 29 0.78
Barombi 43 431 122 632 (500/ 1036 0.56 3.12 0.09 8 0.60
Mbo 132)

@ before filtering in CoNet

relatively poorly dense (0.02-0.10, graph density) and
showed comparable clustering coefficients (0.5-0.7).
Modularity, as calculated by Louvain, ranged between
0.6 and 0.8 (Table 1).

All lake networks showed a quite comparable taxo-
nomic profile, encompassing the same four major phyla
(Proteobacteria, Firmicutes, Planctomycetes and Fuso-
bacteria) (Fig. 1c), and six major families (Clostridiaceae,
Pirellulaceae, Rhodobacteraceae, Fusobacteriaceae, Pep-
tostreptococcaceae and Lachnospiraceae), with compar-
able node frequency (Additional files 2 and 3: Figures S1
and S2). Proteobacteria contributed with the largest
number of nodes, typically followed by Firmicutes. All
lake networks, except for L. Tanganyika, showed a large
cluster of densely connected Firmicutes nodes (Fig. la,
blue circles), which primarily belonged to the families
Clostridiaceae  and  Peptostreptococcaceae  (Add-
itional file 2: Figure S1). In L. Tanganyika, this cluster
was smaller and represented by eight nodes only (Fig.
1a). In general, major differences in lake network com-
position were seen for L. Tanganyika, which encom-
passed the largest cichlid phylogenetic and dietary
diversity among all lakes (Additional file 1: Table S1). L.
Tanganyika network was characterized by a substantially
lower proportion of nodes belonging to the phylum Bac-
teroidetes and Firmicutes (Fig. 1c), particularly of fam-
ilies  Clostridiaceae (5% of the nodes) and
Lachnospiraceae (no nodes) (Additional file 3: Figure S2),
and a higher representation of Actinobacteria and Verruco-
microbia. The network taxonomic profile (proportion of
node per phylum) only partly reflected the microbiota taxo-
nomic profile (proportion of OTUs per phylum in the ori-
ginal input matrices, i.e. 774 OTUs, including only most
abundant OTUs); the latter was characterized by a
remarkably homogeneous pattern of phyla representation

across lakes and continents (Additional file 4: Figure S3).
This indicates that the network composition does not sim-
ply mirror the OTU diversity of the input dataset.

We next explored similarities among individual lake
networks based on shared pairwise associations as mea-
sured by the Jaccard index (where edges are taken as ob-
servations) (Fig. 2a). A total of 1797 unique associations
were obtained across all lake networks. The four Ameri-
can lakes resembled each other more than any of the
two African lakes, while these, Barombi Mbo and Tan-
ganyika, did not cluster together. American lakes shared
between 44 and 55% of their associations with any other
lake network, with a total of 60 associations being shared
across all four lakes (Fig. 2b). The closest resemblance
was observed between crater L. Apoyo and Xilod net-
works (sharing 23.3% of their total unique associations),
followed by the similarity between lakes Nicaragua and
Apoyeque (21.6%). On the other hand, the two African
lakes did not cluster together and the large majority of
associations were unique to each lake (i.e. 76% for crater
lake Barombi Mbo and 87% for L. Tanganyika). Interest-
ingly, Barombi Mbo network was more similar to any of
the American lakes (6.9 to 11.2% of shared associations)
than to L. Tanganyika (only 2.3% of shared associations),
confirming findings based on node taxonomy (Fig. 1c).
The distinctive profiles of the two African lakes are
likely driven by the ecological and phylogenetic hetero-
geneity of these two datasets, both encompassing several
cichlid genera and species and a wide range of dietary
niches (see later for diet analyses).

Core microbial associations

To explore whether specific pairwise associations were
conserved across the range of cichlid geographical distri-
bution, individual lake networks were intersected to
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Fig. 2 Distances among lake networks estimated by a Jaccard similarity index. a Heatmap of distance matrix values as proportion of shared OTU
pairwise associations (i.e. edges) among lake networks and corresponding dendrogram. b The Venn diagram shows number of shared and

retrieve the shared component (Fig. 3). To this goal, we
generated a core network for America, by intersecting
the four lake-specific networks (Fig. 3a), and a core net-
work for Africa, by intersecting lakes Tanganyika and
Barombi Mbo networks (Fig. 3b). We finally retrieved
associations common to all networks (Fig. 3c).

The four American lakes shared 60 pairwise associa-
tions (32 nodes/OTUs) (Fig. 3a), structured into eight
units (individual groups of nodes connected by at least
one edge) of three phyla (Firmicutes, Fusobacteria and
Proteobacteria) and six families. The major unit (12
nodes) included the two Firmicutes families, Clostridia-
ceae and Peptostreptococcaceae. Typically, all other
units included associations among members of the same
family (Clostridiaceae or Fusobacteriaceae), or the same
genus (Cetobacterium, Turicibacter, Epulopiscium and
Porphyromonas), except for one unit (with a Cetobacter-
ium-Fusobacterium association) (Fig. 3a).

The two African lakes included 20 associations (21
nodes), structured into seven units (Fig. 3b), encompass-
ing the same three phyla characterizing the American
core and six families (Fig. 3a). Also in this case, the
major unit (seven nodes) included the two Firmicutes
families, Clostridiaceae and Peptostreptococcaceae, while
the other units involved associations among members of
the same family (Clostridiaceae) or genus (Cetobacter-
ium, Turicibacter, Shewanella, and Rhodobacter).

The global core network, obtained through the inter-
section of all lake-specific networks, encompassed seven

pairwise associations (nine OTUs) (Fig. 3c) that involved
Clostridiaceae-Peptostreptococcaceae associations, and
genus-specific associations between Turicibacter and C.
somerae members. Three of the nodes (OTU-555945,
OTU-712677 and OTU-828162) represented core OTUs
(found in 90% of the specimens according to [24]; see
Additional file 1: Table S2 for OTU counts and sample
distribution). These associations can be considered as
continent and lake- independent.

We note that the network intersections generated do
not take into account indirect associations among
OTUs, i.e. common nodes that are indirectly connected
by means of few intermediate nodes (no direct edge con-
nects the two nodes). Consequently, the size of the core
could be potentially larger.

Diet-specific network features

We next focused our analyses on the exploration of diet
as a potential factor in driving dynamics in gut microbial
association patterns. To exclude the geographic effect,
we used the L. Tanganyika dataset which encompasses
the largest diversity of cichlid trophic diversity (our data-
set including carnivores, scale-eaters, omnivores, plankti-
vores and herbivores) and provides a reasonable number
of samples per dietary category for reliable network in-
ference (unlike L. Barombi Mbo). We tackled this goal
through a double approach: first, we built separate net-
works for the two most representative diets, herbivores
(H) and carnivores (C; includes scale eaters) and
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Family (Genus) All lakes Core nodes (OTU ID)
@ Clostridiaceae 1.531374
@ Peptostreptococcaceae @ 2. 555945
@ Fusobacteriaceae @ 3.712677
(Cetobacterium somerae) 4. NewRef566
@ Fusobacteriaceae 5. 368490
(Fusobacterium sp.) 6. 534042
© Turicibacteraceae /. 7. NewRef193
(Turicibacter sp.) 8.828162
@ Lachnospiraceae . 9. 834829
(Epulopiscium sp.)
@ Porphyromonadaceae .
(Porphyromonas sp.) .
O Rhodobacteraceae
(Rhodobacter sp.) .
@ Shewanellaceae
(Shewanella sp.)
Fig. 3 Core networks of common pairwise associations across geographical graphs. a-¢ Shared associations across the four American lakes (Nicaragua, Apoyo,
Apoyeque and Xilog; 60 edges, 32 nodes) (@), the two African lakes (Tanganyika and Barombi Mbo; 20 edges, 21 nodes) (b), and all lakes (7 edges, 9 nodes) (c).
Nodes are colored according to the maximum taxonomic resolution achieved. Nodes in ¢ are labelled by their OTU ID (right panel, for full taxonomic
classification and abundance across samples, see Additional file 1: Table S2)

compared properties. In the second approach, we
mapped diet-associated features (ie. OTU centered log-
ratio (clr) transformed read abundances and effect sizes
in pairwise diet contrasts) on the whole L. Tanganyika
network.

The Tanganyika C and H networks showed remark-
able differences in topology and node taxonomic repre-
sentation (Fig. 4 for phylum and see Additional file 5:
Figure S4 for family level), despite the use of a compar-
able sample size (n =24 for C and n =25 for H), similar
OTUs richness in the input dataset (total number of ob-
served OTUs =460 for C and 542 for H) and same set-
tings for network building (see Methods). The H
network (156 nodes and 339 edges) was about eight-fold
larger than the C network (21 nodes and 70 edges) and
taxonomically more diverse, including nine phyla, the
most conspicuous being the Proteobacteria (43%),
followed by Planctomycetes (22%), Actinobacteria (15%)
and Verrucomicrobia (11%) (Fig. 4a). Most represented

families were Verrucomicrobiaceae, Rhodobacteraceae
and Pirellulaceae (Additional file 4: Figure S3). Major
hub nodes (according to normalized betweenness) in-
volved members of the Proteobacteria (mostly of un-
known families), Actinobacteria and Verrucomicrobia.
In the C network (Fig. 4b), nodes encompassed a re-
duced diversity, involving the same three phyla consti-
tuting the African core network (see Fig. 3b). Most
relevant hub nodes belonged to the Firmicutes, families
Clostridiaceae and Peptostreptococcaceae (Additional
file 5: Figure S4).

Modularity (according to Louvain) was ~ 2.5-fold
higher in the H (0.72) than in the C network (0.29), with
the H network accounting for 19 large modules (Fig. 4,
grey-shaded areas) of heterogeneous taxonomic content,
and the C network including three small modules only.
The two networks shared only three associations. Still,
edge randomization through node label shuffling, but
preserving net topology, indicated that the number of
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Herbivores

Fig. 4 Diet-specific networks of L. Tanganyika herbivores and camivores. Nodes are colored according to phylum and sized by betweenness values
normalized by lake. Grey shades represent distinct modules (connected by red edges). Notice the higher complexity of the herbivore network (156
nodes and 339 edges; 19 modules) compared to the carnivore network (21 nodes and 70 edges; 3 modules)
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shared edges was significantly higher than expected by
chance (p =0.005, 999 permutations). With respects to
African core associations (Fig. 3b), C and H networks
shared only five and four core associations, respectively.
A diet effect on co-occurrence patterns was even clearer
when we used the second approach, that is mapping diet-
associated nodes on the L. Tanganyika network (Fig. 5).

The PCA biplot representing samples (fish specimens)
and features (OTUs, after clr transformation of OTU
abundances) showed that the network microbial compos-
ition significantly segregated by diet (from carnivores
through omnivores to herbivores, PERMANOVA, p <
0.001, excluding planktivores) (Fig. 5a). Within each diet,
individuals tended to aggregate by species, indicating
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hollow circles indicate nodes with abundance below the geometric mean. ¢ Tanganyika network showing node effect sizes for t-test pairwise
comparisons between diets (estimated with ALDEx2). Nodes that significantly discriminated between diets (p < 0.05) are colored to phylum level, as in
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species-specific differences in gut microbiota composition.
The two species classified as planktivores (a zoopanktoni-
vore and a phytoplanktivore) were amply segregated in
the PCA biplot. Being a mixed group, these were excluded
from further analyses. We then mapped diet-associated
nodes on the Tanganyika network by calculating the median
clr-transformed OTU/node abundance across individual
specimens within each diet (Fig. 5b). For this we used a net-
work layout optimized to resemble the node layout emer-
ging from the PCA analysis (see Methods; for the original
PCA-based layout see Additional file 6: Figure S5). Results
indicated a clear segregation across diets in terms of patterns
of node (i.e. OTU) relative abundances (i.e. relative to the
sample geometric mean) (Fig. 5b), with a significant increase
in the number and taxonomic diversity of nodes from C to
H, with omnivores (O) in between. Diet-associated nodes in
C tended to form few modules of small size and homoge-
neous taxonomic content (i.e. most associations occurring
between members of the same phylum). Both O and H
showed a relevant increase in number of diet-associated
nodes. More importantly, most of these diet-associated
nodes were not scattered throughout the network, rather
they grouped into a few large modules of heterogeneous
taxonomic composition, mostly involving members of the
phyla Proteobacteria, Verrucomicrobia, Planctomycetes and
Actinobacteria (Fig. 5b). This transition was also fundamen-
tally supported by fish specimen mapping on the network,
with few outliers (Additional file 7: Figure S6).

The above pattern was further emphasized by large (>
1) and significant node effect sizes in pairwise compari-
sons among diets (Fig. 5c), supporting a strong contrast-
ing pattern between C and H i.e. most of the nodes that
were highly abundant in C were depleted in H (hollow
circles) (p < 0.05). Compared to the C and O, the H were
primarily characterized by a significantly higher repre-
sentation of Verrucomicrobia and Proteobacteria nodes
(Fig. 5¢, red and blue circles).

Discussion

We used the consortium of African and Central Ameri-
can cichlid fishes, with their remarkable diversification,
to explore gut microbial associations through co-
occurrence networks. Our main goals were 1) to under-
stand how much of the observed gut microbial diversity
translates into robust microbe-microbe associations, 2)
whether there are conserved microbial co-occurrence
patterns in cichlids, despite the scale of the host diver-
sity, and 3) how microbial community structures adjust
following changes in the host diet.

Cross-lake network comparative analysis reveals
community conservation

Major findings indicated that at least 21% (up to 43%) of
total OTUs detected in individual cichlid lake
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assemblages (excluding the rare biosphere, see filtering
in Methods) formed robust pairwise associations. Des-
pite some lake-specific differences, notably in the L.
Tanganyika network (but see later), these associations
resolved into lake co-occurrence networks that were
largely comparable in terms of both topology (Table 1),
and taxonomic content (Fig. 1). American lakes formed
particularly similar co-occurrence patterns, with a con-
siderable overlap in terms of specific OTU associations
(Fig. 2). Unlike the highly diverse African cichlid assem-
blages [17-19], the ecological and phylogenetic similarity
of the American cichlids (they are all omnivores and
belonged to the same genus Amphilopus) and their re-
cent lake diversification [21] are likely to represent cru-
cial factors in driving microbial network similarity,
suggesting an interesting phylogeographic effect in shap-
ing bacterial associations.

Persistent co-occurrences have been recently observed
for free-living microbial communities, where a propor-
tion of OTUs engage in similar interactions and form
comparable communities in natural soils along large en-
vironmental gradients [13]. In host-associated micro-
biota, only a few sparse studies are beginning to explore
the resilience and recurrence of similar association pat-
terns across host populations [12], species [14], free ver-
sus laboratory-reared cultures [14], and experimental
treatments [15]. In humans in particular, specific associ-
ations and network features (including modules) were
found to be conserved across populations, suggesting
that despite considerable intraspecific microbial variation
and geographical distance, the microbiome tended to
organize into stable interactions [12].

In our study, we observed network taxonomic and
topological properties conservation at a macroscale level,
i.e. across gut communities encompassing different host
species within a single family (the Cichlidae), and along
a broad phylogeographic and ecological gradient. Such
conservation of microbial association patterns indirectly
supports the presence of common constraints in the
process of gut community assembling in cichlids, puta-
tively driven by conserved aspects of the cichlid gut en-
vironment, including physiology and immune system,
that can favor the retention of specific microbes and
their persistence in the gut. In line with these findings,
recent studies in fishes have shown a predominant role
of host selection in shaping gut community composition,
with deterministic rather than stochastic processes
appearing to guide the early onset of the gut microbiota
assembly [2, 27]. This scenario could also explain the
similarities in association patterns observed across the
distinct cichlid assemblages, although experimental stud-
ies are clearly needed to validate their biological rele-
vance and understand the community ecological
processes taking place in the cichlid gut.
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Intriguingly, a small set of associations (seven) was ro-
bust to all data partitioning, being consistently found in
all the lake networks (i.e. core, Fig. 3c). Particularly,
members of the families Clostridiaceae and Peptostrep-
tococcaceae (phylum Firmicutes), involved in five core
associations, were also forming consistent co-occurring
pairs in all lake and continental networks, where they
typically resolved into large modules (Fig. 1la-b).
Whether these modules represent ecologically or func-
tionally equivalent units across largely distinct systems
clearly needs further investigation. Similarly, recurring
pairwise associations were also observed between mem-
bers of the genus Turicibacter, a common inhabitant of
animal guts, and between members of the species C.
somerae (Fig. 3c). The latter formed few conserved mod-
ules in each lake network, suggesting putative niche
overlapping and/or in situ diversification. C. somerae is a
supplier of vitamin B12 (also known as cobalamin) [28]
and represents the most conspicuous member of the
cichlid gut, where it showed a systematic presence in all
specimens [4, 24]. Recent studies have shown that cobal-
amins are essential nutrients for both animals and
microorganism growth and metabolism, dictating im-
portant metabolic dependencies among them [29].

The nature and functional relevance of all these per-
sistent associations remain unclear. An important aspect
to consider is the large phylogeographical scale of net-
work comparison in this study, which may be more rele-
vant to detect association patterns at higher levels of
bacteria hierarchical organization (from genera to fam-
ilies/orders), driven by ecological similarity within taxo-
nomic group [30], rather than among OTUs. A puzzling
question is how the same co-occurring pairs of OTUs
are established in these highly diverse lake assemblages.
We note that vertical or restricted transmission of bac-
teria over time can also generate patterns of co-
occurrence, and this is an avenue that is worth consider-
ing. On this line, both Peptostreptococcaceae and Turi-
cibacter, here members of the cichlid core network, were
shown to be highly heritable in mice and humans [31].
Undoubtedly, the biogeography of these widespread
OTUs and their ecological role need to be fully investi-
gated if we are to understand their co-occurrence pat-
terns in cichlids.

Microbial community shift along dietary changes

While common traits in cichlids might be responsible
for general conservation of gut microbial community as-
pects, we expected diet to represent a major factor in
driving community changes. Despite the extensive litera-
ture supporting a role of diet in changing the compos-
itional aspects of the gut microbiota, little attention has
been paid to changes in community association patterns
(for an example outside humans, see [15]). We had
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previously shown that diet was a key factor shaping the
taxonomic content of the African cichlid gut microbiota,
with the herbivore-type (H) gut microbiota being char-
acterized by a significantly higher taxonomic diversity
compared to the carnivore-type (C) one [4]. Here we
showed that the microbial compositional diversity asso-
ciated to these two extreme dietary categories in L. Tan-
ganyika cichlids resolved into highly distinct co-
occurrence networks (Fig. 4). In particular, the complex
H network was larger in size, modularity and taxonomic
diversity, compared to the smaller C network. A simi-
larly important change in community structure was ob-
served by mapping diet-specific node size on the whole
Tanganyika network, revealing a clear contrasting pat-
tern of node abundances between C and H (Fig. 5b-c).
These differences can be partly associated to the distinct
metabolic requirements of the two diets and the poten-
tial role of the gut microbiota in facilitating dietary ad-
justments [32]; in herbivores in particular, bacteria are
essential players in the digestion of fibers and can estab-
lish complex metabolic interdependencies [33]. Interest-
ingly, the same phyla that we previously showed to be
significantly overrepresented in the African herbivores
[4] (Verrucomicrobia, Proteobacteria, Actinobacteria and
Planctomycetes) were found here to form major clusters
of positive associations (Figs. 4 and 5). While network
analyses alone cannot presently discriminate between
microbial coexistence driven by metabolic interdepend-
encies or shared niche preference, these clusters of co-
occurring taxa/OTUs provide interesting candidates for
future studies seeking to understand the role of the gut
microbiota in the evolution of fish herbivory. At present,
the functional profiles of these bacteria remain unre-
solved, as most of the OTUs involved are novel and
show poor taxonomic resolution beyond the family level.
Finally, fish accessibility to bacterial taxa involved in co-
occurrence patterns needs to be explored. Recent studies
suggest that diet-specific taxa could be simply sourced
from common dietary inputs. The macroalgal micro-
biota, for instance, is known to be significantly enriched
in algal polysaccharide-degrading bacteria in comparison
to the water column [34]. This could hypothetically ex-
plain patterns of microbial co-occurrence across the di-
verse algal consumers from L. Tanganyika, a scenario
that requires further investigation.

Conclusions

Altogether our study illustrates the power of co-
occurrence networks to begin exploring community as-
pects of animal-associated microbiota, particularly in
wild animals. Cross-lake network analyses of the gut
microbiota identified important network commonalities
in otherwise highly diverse fish assemblages. This sup-
ports the existence of major constraints in microbial
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community assembly and maintenance in cichlids. By
excluding the geographical effect, we also identified spe-
cific microbial associations and hub taxa potentially in-
volved in key dietary transitions within a lake.

Overall, our findings provide that very first exploration
of the factors shaping microbial association patterns in
the cichlid gut. Inclusion of additional microbial com-
munity data, both from the host and the environment, is
required to support the above network inferences and
validate specific association patterns. Furthermore, the
fish phylogenetic diversity should also be integrated into
the network structure; this could be tackled, for ex-
ample, by comparison of multiple species-specific co-
occurrence networks, by means of an extensive fish sam-
pling within a single species. Finally, ongoing lab cul-
tures are now targeting key community changes between
cichlid specimens raised under high and low-fiber con-
tent diets (data in preparation). This could prove useful
to test the predictive role of the hub taxa and association
patterns here identified in driving gut community
changes, as well as to explore bacteria functional
relevance.

Materials and methods

Sampled data and network generation

Samples corresponded to our previously published data-
set [24] and included a total of 277 specimens (42 spe-
cies) sampled across nine lakes from Africa and
America: the two African lakes, Tanganyika (n =73) and
Barombi Mbo (Cameroon, n = 43) and the seven Central
American lakes, Apoyo (n=25), Apoyeque (n=25),
Xilod (n=43), Masaya (n = 14), Asososca Leén (n =13),
Nicaragua (n =29), and Managua (n =12), all found in
Nicaragua. Except for the large lakes Tanganyika,
Nicaragua and Managua, all others are small crater lakes.
African specimens encompassed multiple genera and
dietary niches, including carnivores, scale-eaters, omni-
vores, planktivores and herbivores, while American spec-
imens belong to a single genus (Amphilopus) and are
largely omnivores (see [24] for details on diet assign-
ment). Gut microbiota data was obtained through three
16S rRNA Miseq runs using the same protocol for DNA
extractions, library preparation and sequencing. Briefly,
DNA was extracted from whole intestines using the
protocol described by [35]. The region V3-V4 of 16S
rRNA was amplified for each sample fish in three-
replicates with primers S-D-Bact-0341-b-S-17 and S-D-
Bact-0785-a-A-21 [36]. Amplicons were barcoded,
pooled and equimolar libraries were sequenced on the
[llumina MiSeq v.3 instrument (600 cycle cartridge, 300
bp paired end, San Diego, CA, USA) with 10% PhiX, at
the Center for Genomic Regulation in Barcelona (Spain).
The use of the same experimental approach and sequen-
cing in three Miseq runs minimized technical artifacts in
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driving community structure similarity. After quality fil-
tering and reads merging, sequences from the three runs
(18287373) were combined and filtered according to
OTU taxonomy, abundance and frequency across sam-
ples (see [24] for details). We finally obtained an OTU
abundance table including 3639 OTUs and 16,083,429
total counts. This table was further filtered to remove
OTUs contributing <0.005% of total counts across all
samples, reducing the dataset to 774 OTUs and 15,467,
721 total counts (provided as Additional file 1: Table
S2). To account for the heterogeneity of the data, the
OTU matrix was then split into several datasets accord-
ing to geographical (continent and lake) and ecological
variables (diet), setting an arbitrary minimum number of
samples for network generation (n =20 fish specimens).
For the American lakes Masaya, Managua and Asososca
Ledn, where n < 20, sample contribution was integrated
into the American continental network.

Each dataset (abundance matrix) was loaded into the
CoNet ensemble app available in Cytoscape v. 3.7.2 [25]
for network generation (where rows are OTUs and col-
umns are fish specimens). Settings were the same for
lake and continental datasets. Specifically, the data was
filtered for OTU occurrence across samples according to
the minimum value suggested by the program, keeping
the sum of filtered rows (row minimum occurrence
above 31% for all lake/continental datasets). This step
minimizes sparsity issues and false correlations due to
double zero problem when computing similarity or dis-
tance coefficients using species presence-absence or
abundance data [25, 37]. In all cases, data was normal-
ized by column (col norm; entries divided by column
sum) to reduce compositionality issues associated to dif-
ferent sampling efforts. Four correlation and dissimilar-
ity metrics were chosen: Spearman, Pearson, Bray-Curtis
dissimilarity and Kullback-Leibler dissimilarity, with cor-
relation thresholds set to retain 1000 edges (top positives
and negatives) that were supported by all four metrics
(score = mean). Edge significance was tested through
1000 permutations and bootstraps (method =" brown”),
retaining edges with merged p-values <0.05 after
Benjamini-Hochenberg’s correction (q-value).

The impact of diet on network topology and proper-
ties was explored on the Lake Tanganyika dataset as it
encompassed the largest diversity of diets among all
lakes and is the only lake that includes herbivore cich-
lids. The Tanganyika dataset was further split into herbi-
vores (n=25) and carnivores plus scale-eaters (here
grouped into the same category) (n = 24) (see Additional
file 1: Table S1). CoNet settings for dietary analyses were
chosen to be more conservative: minimum OTU occur-
rence was set to 60% of the samples for both herbivores
and carnivores, considering copresence only to reduce
potential spurious correlations due to matrix sparsity.
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For both carnivores and herbivores, we retained the top
1000 positive edges resulting from the intersection of
the four metrics. For the carnivore network this resulted
in the inclusion of all edges, providing that total number
of edges for this network was less than 1000.

Network analysis

Each network was loaded into R for all subsequent ana-
lyses. Network properties, including simple and complex
parameters of global net and node topologies were esti-
mated with R package igraph version 1.2.5 [26]. Number
of modules, defined as clusters of nodes that form co-
herent structural subsystems of interacting units, and
modularity (M) were measured according to the Louvain
algorithm, with the function cluster_louvain in the
igraph package [38]. Hub nodes (OTUs) were explored
by measures of normalized betweenness centrality with
function betweenness in the igraph package. Distances
among lakes networks were estimated by a Jaccard simi-
larity index, taking edges as observations and building a
distance matrix based on edge presence/absence among
lakes. Distances were graphically represented through a
dendogram using the function /clust in base R.

The cichlid core was defined as the fraction of edges
that were conserved across all lake networks. Shared
edges were obtained through the function intersection in
the igraph package.

To explore how fish diet mapped onto the Lake Tan-
ganyika network, we first examined whether network
OTU content differed among diets. Since OTU reads are
compositional [39], we first processed the data using the
centered log-ratio (clr) transformation, that is, for a
given sample (fish specimen), OTU counts were first di-
vided by the sample geometric mean and then this ratio
was log transformed. Since zero counts are not allowed
because of logarithms, data were preprocessed to impute
zeros with the count zero multiplicative method using
function cmultRepl in the zCompositions package [40].
The resulting clr-transformed counts are suitable for
principal components analysis (PCA), with the implicit
distance being the Aitchison distance, i.e., the Euclidean
distance among clr-transformed data [41]. PCA allows
for a natural joint representation of samples (fish speci-
mens) and features (OTUs) in reduced dimension, the
biplot. Separation among diets was tested using PERM
ANOVA, with diet as the factor of interest and fish spe-
cies as a nested fixed factor (because samples are aggre-
gated by fish species), followed by pairwise contrasts
among diets. All PERMANOVA analyses were done with
function adonis in the vegan R package [42] using the
Euclidean distance on clr-transformed data (i.e., the
Aitchison distance).

Once it was established that OTU assemblages differed
among diets, we looked at which OTUs best
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discriminated among diets in pairwise comparisons. For
this, we used ANOVA-like differential expression
(ALDEXx) analysis with the ALDEx2 R package [43]. Spe-
cifically, we used function aldex.effect to calculate OTU
effect sizes (median of the ratio of the between diet dif-
ference and the larger of the variance within the two di-
ets being compared), and function aldex.ttest to obtain
Benjamini-Hochberg corrected p-values for each OTU
from Welch’s t-tests. For each diet pairwise comparison,
we showed both effect sizes and significance (p < 0.05)
mapped onto the Tanganyika network as explained next.

Whereas the PCA biplot offers a natural layout for dis-
playing the Tanganyika network and mapping diet fea-
tures onto it, it is not optimal for visualizing important
network features such as edges, components and hubs.
On the other hand, common network layout algorithms,
such as the Fruchterman and Reingold force-directed al-
gorithm (FR, [44]) are optimal for displaying network
features, but are blind to spatial relations among added
mapped features (diet, in our case). In order to add the
latter, we mapped diet features onto an FR layout that
approached as much as possible the OTU layout pro-
duced by the PCA. To do so, we produced 5000 random
FR layouts and chose the seed for the pseudorandom
number generator that produced the layout with the
smallest sum of squared distances between the FR layout
and the PCA layout. For this, we used function procrus-
tes in the vegan package. This has the added benefit that
the resulting layout is also rotated and orientated simi-
larly to the target layout (ie., the PCA layout). The
chosen layout was used to display both median clr-
transformed OTU counts by diet and effect sizes in pair-
wise comparisons. For reference, the clr-transformed
counts mapped onto the original PCA layout are pro-
vided in Additional file 6, Figure S5.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/542523-020-00054-4.

Additional file 1: Table S1. Sample metadata; Table $2. OTU input
matrix (774 OTUs) and taxonomic classification.

Additional file 2: Figure S1. Individual lake networks with nodes
colored by family level. For clarity, only the first 36 most abundant
families are color-coded (remaining families are labelled as “Others” and
shown in white). The same color is repeated across different families but
in association to distinct border colors (i.e. black, gray and white).

Additional file 3: Figure S2. Taxonomic composition of continental
and lake networks as proportion of nodes per family.

Additional file 4: Figure S3. Microbiota taxonomic composition by
lake and continental datasets expressed as proportion of OTUs present in
the original input matrices (774 OTUs after filtering out low abundant
OTUs).

Additional file 5: Figure S4. Diet-specific networks of L. Tanganyika
herbivores and carnivores. Nodes are colored according to family and
sized by betweenness values normalized by lake. Grey shades represent
distinct modules (connected by red edges).
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Additional file 6: Figure S5. Mapping of diet contribution onto the L.
Tanganyika co-occurrence network based on the original PCA layout.
Node size displays median clr-transformed OTU counts by diet, with filled
(hollow) nodes signifying OTUs that are more (less) abundant than the
sample geometric mean, as in Fig. 5.

Additional file 7: Figure S6. Mapping of individual cichlid species onto
the Tanganyika network. The network layout is the same as in Fig. 5, and
node circle size is proportional to median clr-transformed OTU abun-
dances in individuals belonging to the same species. Species are ordered
by diet (color coded) and alphabetically within a diet. Only species with
two or more representative specimens are shown.
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