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Classification and prediction 
of Mycobacterium Avium subsp. Paratuberculosis 
(MAP) shedding severity in cattle based 
on young stock heifer faecal microbiota 
composition using random forest algorithms
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Abstract 

Background:  Bovine paratuberculosis is a devastating infectious disease caused by Mycobacterium avium subsp. 
paratuberculosis (MAP). The development of the paratuberculosis in cattle can take up to a few years and vastly differs 
between individuals in severity of the clinical symptoms and shedding of the pathogen. Timely identification of high 
shedding animals is essential for paratuberculosis control and minimization of economic losses. Widely used meth-
ods for detection and quantification of MAP, such as culturing and PCR based techniques rely on direct presence of 
the pathogen in a sample and have little to no predictive value concerning the disease development. In the current 
study, we investigated the possibility of predicting MAP shedding severity in cattle based on the faecal microbiota 
composition. Twenty calves were experimentally infected with MAP and faecal samples were collected biweekly up to 
four years of age. All collected samples were subjected to culturing on selective media to obtain data about shed-
ding severity. Faecal microbiota was profiled in a subset of samples (n = 264). Using faecal microbiota composition 
and shedding intensity data a random forest classifier was built for prediction of the shedding status of the individual 
animals.

Results:  The results indicate that machine learning approaches applied to microbial composition can be used to 
classify cows into groups by severity of MAP shedding. The classification accuracy correlates with the age of the 
animals and use of samples from older individuals resulted in a higher classification precision. The classification model 
based on samples from the first 12 months of life showed an AUC between 0.78 and 0.79 (95% CI), while the model 
based on samples from animals older than 24 months showed an AUC between 0.91 and 0.92 (95% CI). Prediction for 
samples from animals between 12 and 24 month of age showed intermediate accuracy [AUC between 0.86 and 0.87 
(95% CI)]. In addition, the results indicate that a limited number of microbial taxa were important for classification and 
could be considered as biomarkers.
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Background
Bovine paratuberculosis (Johne’s disease) is a widespread 
chronic wasting disease caused by Mycobacterium avium 
subsp. paratuberculosis (MAP) infection. The disease is 
extremely relevant in the context of dairy farm practice 
due to induction of significant economic losses related 
to the animal wasting, infertility and decrease in the milk 
production [1].

It is generally accepted that calves can be infected with 
MAP in the first days of life, however, the development of 
MAP shedding and clinical symptoms can take years and 
varies substantially between individuals in severity [2]. 
Faecal shedding of MAP into the environment has been 
shown to be high in animals with clinical symptoms [3]. 
Nevertheless, severe MAP shedding can occur even in 
asymptomatic animals, which in turn is correlated with 
an increased rate of transmission of paratuberculosis in a 
herd [4]. Therefore, timely identification of high shedding 
animals is essential for pathogen control and minimiza-
tion of economic losses.

Widely used methods for detection and quantification 
of MAP, such as culturing and PCR based techniques, 
rely on the presence of MAP cells or its DNA in a sample 
and have little to no predictive value for disease devel-
opment. In addition, despite a very high specificity of 
culturing and PCR based tests, their sensitivity can vary 
greatly due to the intermediate shedding of MAP cells by 
infected animals [5, 6]. In this light, the development of 
a diagnostic tool for populations with an endemic MAP 
infection that will allow prediction of MAP shedding 
severity without relying on the presence of the patho-
gen in a sample or a strong and specific immunological 
response is an attractive goal.

The pathophysiology of bovine paratuberculosis is 
complex as exposure of animals to MAP may lead to 
clearance of MAP (no infection) or infection. Infection 
of the distal part of the small intestine as the preferred 
site of infection leads to the formation of granulomatous 
lesions characterized by accumulation of macrophages 
in the lamina propria. These lesions can contain large 
amounts of MAP cells (multibacillary) of very few 
(paucibacillary). In some animals these lesions remain 
relatively stable for years while in others a progressive 
disease develops which will lead to intractable diarrhoea, 
proteins loosing enteropathy and ultimately death. The 

factors driving these changes and different outcomes 
are only partly understood and involve multiple factors 
including host immunity and genetics, MAP genetic fac-
tors as well as environmental factors (reviewed in Koets 
et  al. [7]). In cattle, as a part of the infectious process, 
MAP colonizes the intestine and induces changes in the 
intestinal environment due to invasion into the mucosa 
[8], and is forced to interact with members of the intesti-
nal microbiota. It has been shown in observational stud-
ies that MAP infection induces noticeable differences in 
the gut microbiota composition of affected cows [9, 10] 
In an experimental rabbit model alteration of microbiota 
by diet in turn also influenced the severity of MAP infec-
tion [11]. These findings indicate a bilateral relationship 
between MAP and other intestinal microorganisms.

The composition of the intestinal microbiota has been 
shown to be a biomarker for gastro-intestinal health and 
disease development. Microbiota composition analy-
sis showed a potential for prediction of gastro-intestinal 
cancer [12], liver disease [13], and other not-communi-
cative disorders [14–16]. However, the forecasting of a 
disease or disorder development using microbiota com-
position is not a trivial task. Microbiota composition in 
both humans and cattle have been shown to be relatively 
stable within a single individual [17, 18], however the 
composition shifts dramatically with the change of hosts 
diet [19] and age [20, 21] in cattle, lambs and humans. 
These changes introduce a high level of noise in the data 
that could render forecasting very difficult or inaccurate. 
Another challenge comes from the complex nature of 
microbiota composition data. Large datasets can be com-
posed from hundreds of samples and each sample may 
contain a very divers microbial community. Complex, 
not normally distributed, zero inflated data can be chal-
lenging for statistical analysis and deciphering of the rel-
evant signal. Nevertheless, machine learning approaches 
have shown a great promise in addressing challenges 
presented by the microbiota compositional data includ-
ing prediction of host susceptibility to pathogens [22]. 
Machine learning is a branch of artificial intelligence that 
advanced considerably in recent years and is now com-
monly used in multiple aspects of everyday life as well as 
science. Machine learning is a broad term for a family of 
statistical techniques that are taking advantages of a large 
amount of data and computational power of modern 

Conclusions:  The study provides evidence for the link between microbiota composition and severity of MAP infec-
tion and shedding, as well as lays ground for the development of predictive diagnostic tools based on the faecal 
microbiota composition.

Keywords:  Mycobacterium avium subsp. paratuberculosis, Gut microbiota, Machine learning, Prediction, Pathogen 
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computers to detect patterns in data [23]. Machine learn-
ing algorithms, and in particular Random Forest, became 
a popular solution for analysis of various types of micro-
biota data, due to its flexibility [24].

In the current study the feasibility of MAP shedding 
intensity prediction based on microbial composition dif-
ferences between animals with different cumulative shed-
ding of MAP cells throughout their life was investigated. 
The following study is a proof of concept study that 
aimed to lay the foundation for development of micro-
biota composition based diagnostic and prediction tools.

Methods
Animals
Details of the animal experiment have been previously 
described in detail in a PhD thesis [25] and in a publi-
cation by Ganusov et  al. [26]. In short, twenty neonatal 
female Holstein–Friesian calves were purchased from 
several commercial high health farms in the Netherlands 
with a documented paratuberculosis unsuspected status 
and housed at the Wageningen Bioveterinary Research 
(WBVR) pathogen free facilities (Lelystad, The Nether-
lands). Calves were raised following best practices, on 
a diet with restricted access to a commercially available 
milk replacer and calf concentrate. In addition, calves had 
free access to hay and drinking water. Following wean-
ing at 6  weeks of age the animals were fed with a con-
ventional diet based on grass silage, concentrates and free 
access to water corresponding to their age and lactation 
status. The diet was never supplemented with fresh grass 
and animals were kept indoors for the duration of the 
experiment.

Practices of the animal husbandry during the experi-
ment were closely resembling dairy cattle farming prac-
tices commonly accepted in the Netherlands except for 
outdoor grazing. Animals were bred around 15  months 
of age. In the second year of the study six animals were 
culled due to infertility and two due to development of 
pathological conditions not related to the experimental 
MAP infection. The remaining 12 animals survived for 
at least 50  months out of the total of 55  months of the 
experiment duration. During the experiment none of the 
animals developed any signs of clinical paratuberculosis 
(severe diarrhoea, weight loss, emaciation, oedema).

Experimental infection and samples collection
A faecal suspension from a single donor-cow with clinical 
signs of paratuberculosis and consistently shedding MAP 
as confirmed by culture and MAP specific IS900 qPCR 
[27] was used as the inoculum. Every calf was orally 
dosed with 20 g of inoculum in 200 mL of commercially 
available milk replacer recommended for use in dairy 
calf rearing, three times per week for the period of four 

weeks. After the experimental infection of animals, faecal 
samples were collected every two weeks.

Samples were collected from the rectum using a clean 
set of disposable latex gloves per calf without lubricant. 
Samples were transported to lab immediately where a 
part was taken for direct MAP culture and quantification, 
the rest was rapidly stored for further analysis at − 20 °C 
as has been described previously [25].

DNA extraction and amplicons library preparation
For microbiota profiling, a subset of samples was selected 
from the experimentally infected cattle. Two hundred 
sixty two samples were selected to represent the overall 
dataset with the particular focus on samples that were 
collected at crucial animal husbandry time-points: pre-
weaning period (1  month), post-weaning period (3 and 
7 months), start of sexual maturity (12 months) and start 
of first lactation (24 months); Additional file 1). Prior to 
DNA extraction faecal samples were thawed and 0.1  g 
of a sample was subjected to repetitive bead-beating 
(3 × 30  s with 5  s cooldown in between) using Lysing 
Matrix B (2  mL tube) and the FastPrep-24 instrument 
(MP Biomedicals). Total DNA was extracted individu-
ally from every faecal sample using QIAamp Fast DNA 
Stool Mini Kit (QIAGEN) according to the manufacture 
instructions. In short, following homogenization the 
samples were lysed in a lysis buffer, treated with Inhibi-
tEX to remove inhibitors from the sample, and proteins 
were digested using a proteinase K treatment. DNA was 
subsequently bound to a silica spin column, washed twice 
and eluted in a low-salt buffer. Extracted DNA was sub-
jected to quantification using CLARIOstar Plus (BMG 
Labtech) and Quant-iT™ dsDNA Assay Kit, high sensi-
tivity (ThermoFisher Scientific) according to instructions 
provided by the manufacturer.

Amplicon library preparation and sequencing were 
performed at BaseClear (Leiden, The Netherlands). The 
V3-V4 region of 16 s rRNA gene was amplified with 341F 
(5′-CCT​ACG​GGNGGC​WGC​AG-3′) and 785R (5′-GAC​
TAC​HVGGG​TAT​CTA​ATC​C-3′) [28] primers in a two-
step protocol. Generated amplicons were appended with 
Illumina adaptors and sequenced on the Illumina MiSeq 
platform. The sequencing data was demultiplexed, Illu-
mina adaptors were removed and the data was trans-
ferred from BaseClear to WBVR for further analysis.

Data analysis and statistics
A schematic outline of the data analysis steps is shown in 
Fig. 1. The outline shows the major steps of analysis, cor-
responding results and connections between them. Sub-
headings of the Data analysis subsections are identical to 
the names of the grey coloured action boxes in Fig. 1.
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The complete data analysis pipeline is available as a 
GitHub project at https://​github.​com/​Alexa​nderUm/​
WBVR_​MAP_​Micro​biota. Additional file 2 contains the 
samples’ metadata used for the data processing.

Determination of the shedding intensity scores
Isolation and quantification of the MAP colonies were 
performed according to methods published previously 
[25, 26]. Based on the number of colonies per tube a 
Shedding Intensity Score (SIS) was assigned to each sam-
ple. The SISs were assigned as following: 0—no colonies 
observed; 1—from 1 to 10 colonies observed; 2—from 
11 to 100 colonies observed; 3—more than 100 colonies 
observed (Additional file 3). The SIS values reflect inten-
sity of MAP shedding at a given time point and were used 
for further calculations of shedding scores. Based on the 
individual SIS a Weighted SIS was calculated. For calcu-
lation of Weighted SISs the sum of all SISs per animal 
was divided by the number of samples from that animal. 
The Weighted SISs were taken as an objective indica-
tion of MAP shedding severity. Weighted SISs were cal-
culated for all available samples (I) and for samples from 

the first 20 months of the experiment (II). The Weighted 
SISs II were calculated with the goal to mitigate effects 
of differences in the time an animal was present in the 
experiment (Additional file 4: Fig. S1A). In total 20 ani-
mals were enrolled in the experiment, however, some 
were culled before the end of the experiment. In total, 
eight animals were culled between 20 and 26 months of 
age (“Early Culled”) due to the inability to breed or health 
related problems. Weighted SISs I and Weighted SISs II 
in the subset of animals which survived until the end of 
the experiment showed a high and significant correlation 
(Pearson; r = 0.89, p < 0.0001), and further analysis were 
performed using Weighted SISs II (Additional file 4: Fig. 
S1B).

ASVs picking, filtering, and count normalization
The raw data was processed following the DADA2 
v1.14.1 pipeline [29] in R v3.6.2 statistical and program-
ming environment [30]. The final output of DADA2 pipe-
line is an abundance table of amplicon sequence variants 
(ASVs). An ASV is a unique sequence of a marker gene 
that approximates a microbial species or strain and could 

Fig. 1  Overview of the data analysis workflow. Black boxes indicate input data and the final model; grey boxes correspond to data processing steps 
and arrows show connection between them. Names of the grey boxes are identical to the titles of data analysis subsection in the Material and 
Methods section. Blue rectangles show correspondence between data analysis steps and the Results section

https://github.com/AlexanderUm/WBVR_MAP_Microbiota
https://github.com/AlexanderUm/WBVR_MAP_Microbiota
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be used as the lowest taxonomic units (for more details 
see publication of Callahan et  al. [26]). In short, prim-
ers and low quality bases were truncated from the reads, 
the model of error-rate within sequences was inferred 
from the data, ASVs were picked and chimeric sequences 
removed. AVSs were taxonomy assigned as implemented 
in DADA2 (function “assignTaxonomy”) using the sug-
gested version of the manually curated Silva v138 data-
base [31]. Taxonomic and abundance tables produced 
by the DADA2 pipeline were combined with metadata 
into a phyloseq object [32]. Prior to further analysis 
ASVs were filtered to retain only taxa that were present 
in more than three samples. Also, samples with less than 
1000 reads were removed. Sufficiency of the sequencing 
depth was assessed by rarefaction curves with a 200  bp 
step as implemented in the package vegan (v 2.5–6). Prior 
to further analysis, ASV count data was normalized using 
cumulative sum scale (CSS) transformation [33].

The random forest model construction (General)
The random forest (RF) algorithm [34] as implemented 
in the randomForest v4.6–14 package [35] was used for 
sample classification and regression. The RF model was 
fine-tuned by determining the optimal number of taxa 
at each split (“mtry” parameter) and the number of clas-
sification trees (“ntree” parameter). The “mtry” param-
eter was tuned using the tuneRF function (randomForest 
package) with step factor two. The optimal number of 
classification trees was determined by constructing the 
RF model five times with a different number of trees, and 
subsequent identification of the models with the lowest 
out of bag error (OOBE).

Definition of “Low” and “High” shedders
The Weighted SISs were used as a guide to assign ani-
mals as a “Low” or “High” shedder, however no obvious 
split between animals was observed. Therefore, animals 
were classified into “Low” or “High” shedders based on 
accuracy of RF classification model. Several RF models 
with various configurations of “High” and “Low” shed-
ding groups were constructed. Samples were assigned as 
“High” shedders if their Weighted SIS II was above the 
selected cut-off value and as “Low” shedders if below. 
Cut-off values with a range between between 0.45 and 
1.19 were used to capture shifts in the shedding intensity 
and a RF model was built for each available Weighted SIS 
II within this range.

Regression with RF algorithm
The regression model was built as implemented in the 
randomForest package. The sufficient number of trees 
for the RF model was identified as follows. A RF model 
was built using default parameters (randomForest) and 

an excessively large number of trees (20,000). The built 
model was used for plotting relationships between accu-
racy and the number of used trees (plot(RF)). A total of 
7501 trees were used as the final ntree parameter for the 
model with the default mtry parameter.

To test the prediction accuracy beyond OOBE a sub-
traction approach was used as described below. Con-
sequentially several RF regression models were built, 
each time using a data-set with ten uniquely subtracted 
samples until no possibility for unique subtraction was 
left. RF regression models were used to predict values 
of the corresponding subtracted values (generic R func-
tion “predict”). To account for the random variations in 
RF models the model building for each set of subtracted 
samples was repeated five times.

Identification of the taxa significantly contributing 
to the classification accuracy and “Lean” RF model 
construction
Taxonomic features with a significant contribution to 
the RF accuracy were identified by a permutation test 
as implemented in rfPermute v2.1.81 package [36]. Only 
features with the significance levels below threshold val-
ues (alpha = 0.05) for the mean decrease accuracy and the 
mean decrease purity (Gini purity index [35]) were con-
sidered as important for classification. Significant ASVs 
were used as input features for building a new simplified 
RF model (“Lean”). The “mtry” and “ntree” parameters 
for the simplified RF model were optimised as described 
above.

Determination of the shedding status prediction accuracy
Accuracy of the shedding status prediction was assessed 
by construction of the receiver operating characteristic 
(ROC) curve and calculation of the area under the curve 
(AUC). To calculate ROC curve and AUC a dataset was 
split into “training” and “validation” datasets. The “train-
ing” dataset was used to construct the RF classification 
model (package randomForest) and shedding status of 
samples from the corresponding “validation” dataset was 
predicted (generic R function “predict”). The resulting 
prediction was used to construct ROC curves and calcu-
lated AUC (package ROCR).

To understand the influence of cows’ age on the accu-
racy of classification the ROC curve and AUC for differ-
ent age groups were calculated. Three age groups were 
defined: Early (n = 82)—before 12 months of age, Middle 
(n = 90)—12 to 24 months of age and Late (n = 85)—older 
than 24  months of age. The ROC curve and AUC for a 
specific age group was calculated based on the group 
specific “validation” and “training” datasets. Fifty percent 
of the samples from the target age group was randomly 
drawn to create a “validation” dataset. The samples from 
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the other age groups and not drawn samples from the 
target group comprised a “training” dataset. The overall 
ROC curve and AUC were estimated using 20% of ran-
domly drawn data points from all samples as a “valida-
tion” dataset and the rest of the samples as a “training” 
dataset. Splitting of the target data into “validation” and 
“training” with consequent evaluation of the ROC curve 
and AUC was repeated 99 times for each age group and 
the complete dataset.

Next, we ruled out the possibility of samples classifica-
tion into a shedding group due to similarity of microbiota 
within one animal during its lifespan. We used all sam-
ples from a single animal as the “validation” dataset and 
the rest of the samples as the “training” dataset. This pro-
cedure was repeated for every animal and the results of 
prediction were compared with the shedding status.

Data wrangling and visualization
For data wrangling and visualization, the package 
tidyverse v1.2.1 [37] was used. For visualization of heat-
maps the package ComplexHeatmaps [38] was used.

Results
Shedding pattern analysis
No apparent division in “Low” and “High” shed-
ders among animals based on the Weighted SISs was 
observed. A gradual increase in Weighted SISs from 0.3 
(lowest observed) to 0.84, slight jump from 0.84 to 1.19 
and further gradual increase to 1.41 (highest observed) 
was observed. The mean shedding value among all sam-
ples was 0.53 (Fig. 2A, B).

Samples sequencing and overall microbial composition
Two hundred fifty seven samples remained in the sample-
set after the quality control with a median of 12 samples 
per cow, a maximum of 22, and a minimum of 8 (Addi-
tional file  4: Table  S1). In total, 3,973,061 reads passed 
the initial quality control and filtering as described in the 
material and methods section. The median value of reads 
per sample was 14,000 reads with a minimum of 1415 
and a maximum of 44,407 (Additional file  4: Fig. S2A). 
The rarefaction curves showed sufficient sequencing 
depth to capture microbial diversity at ASV level (Addi-
tional file 4: Fig. S2 B).

Overall 4940 ASVs from 15 microbial phyla remained 
in the dataset after the filtering steps. However, only Fir-
micutes (from 61.3 to 64.3%, 95% CI), Bacteroidota (from 
29.2 to 32.2%, 95% CI), Verrucomicrobiota (from 2.0 to 
2.7%, 95% CI), Actinobacteriota (from 1.3 to 1.7%, 95% 
CI) received averagely more than 1% of the reads across 
all samples (Additional file 4: Fig. S3, Table S2).

Prediction of weighted SISs by RF regression model based 
on microbiota composition
The absolute differences between predicted and actual 
Weighted SISs ranged from 0.0007 up to 0.81, with the 
median value of 0.2. A significant correlation between 
animal ID and absolute difference between predicted and 
actual Weighted SISs (Pearson; r =  − 0.85, p < 0.0001) 
was found, but not with the age of the animals. Overall 
averages of the predicted Weighted SISs were signifi-
cantly correlated with the actual Weighted SISs (Pearson; 
r = 0.83, p < 0.0001), however, accuracy of the prediction 

Fig. 2  A Bar chart of Weighted shedding intensity scores (SIS). The solid blue line marked the average weighted SIS and dashed lines marked 0.5 
of Standard deviation. B Line/scatter plot of cumulative shedding values. Each dot represents the sum of shedding scores prior and including this 
time point. Lines and dots are coloured by shedding status that was assigned based on optimal separation by RF classification model (See “Results”: 
“General” RF classification model)
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varied strongly per individual sample and per animal 
(Additional file 4: Fig. S4).

“General” RF classification model
The best prediction outcome for the RF model based on 
all ASVs (“General” RF) was observed when samples with 
the Weighted SISs ≤ 0.5 were assigned as “Low” shed-
ders and all above assigned as “High”. At that point, class 
errors for the “Low” and “High” shedders were compara-
ble with each other (Fig. 3).

A larger number of trees (ntree = 15,001) resulted in 
a more stable classification model, and the accuracy of 
classification increased when a larger than the default 
number of features (ASVs) per split (mtry = 568; Addi-
tional file  4: Fig. S5) was used. The final classification 
model resulted in an OOBE of 22.2% and class errors of 
28.7% and 16.3% for “High” and “Low” shedding groups 
respectively.

ASVs significantly contributing to classification
In total, 192 ASVs were identified as significantly contrib-
uting to the accuracy of classification (Additional file 5). 
From the phylogenetic point of view, identified ASVs 
were distributed among nine different phyla, 12 classes, 
25 orders, 41 families and 54 genera.

The majority of ASVs that contributed to classifica-
tion accuracy belonged to Firmicutes (108 ASVs) and 
Bacteroidota (58 ASVs) phyla followed by Verrucomi-
crobiota (10 ASVs) and Actinobacteriota (7 ASVs), 
and the remaining phyla were represented only by 1–3 
ASVs. The overall composition of the significantly con-
tributing taxa mirrored the overall microbiota compo-
sition, however, out of the top 21 ASVs contributing 

to the Accuracy of the RF classification model, more 
ASVs belonged to Bacteroidota (13 ASVs) than to Fir-
micutes (6 ASVs; Fig. 4).

The differences in the average CSS normalized abun-
dance and the prevalence of ASVs contributed to the 
classification accuracy between “High” and “Low” shed-
ding groups ranged from 0.01 to 1.59 and from 0.5 to 34% 
respectively. Overall, no large difference in ASVs preva-
lence, nor abundance in the “Low” versus “High” shed-
ding groups (Fig. 5A, B) was observed. However, a clear 
distinction in ASVs identified as significantly contribut-
ing to classification was observed between samples from 
the animals with the milk (pre-weaning) and solid diet 
(post-weaning; Fig. 5C).

“Lean” RF classification model
The RF classification model was built using only ASVs 
that were identified as significantly contributing to clas-
sification (“Lean” RF classification model) with the goal 
to reduce the number of input features, decrease com-
putational time and subsequently improve the accuracy 
of classification. Similarly to the “General” RF model, the 
best split for the “Lean” RF model was observed when 
samples with the Weighted SIS ≤ 0.5 were assigned to 
the “Low” shedding group, and all above to the “High” 
shedding group. However, the “Lean” RF model showed 
a similar classification accuracy for the Weighted SIS split 
point 0.5 and 0.55, rather than a single best split point as 
it was observed for the General RF model (Fig. 3).

The “Lean” RF model showed the best accuracy of clas-
sification when 28 ASVs per split (mtry parameter) and 
an excessively sufficient number of trees (ntree = 15,001) 
were used. The “Lean” RF model showed higher accuracy 

Fig. 3  Scatter plot of class errors correspond to General (A) and Lean (B) random forest (RF) models with a different composition of “High” and “Low” 
shedding groups. General RF model built with all ASVs passed quality control and Lean RF model employed only AVS significantly contributing to 
classification. On the x-axis Weighted Shedding Intensity Scores (SISs) are shown that were used as a split point for the groups division, and y-axis 
depict the class error expressed in proportion
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than the “General” RF model and resulted in 12.84% 
OOBE. The class errors were 9.63% for the “Low” and 
16.4% for the “High” shedding groups.

Influence of age on the accuracy of the shedding status 
prediction
A progressive improvement in the accuracy of the shed-
ding status prediction from the “Early” to “Late” age 
groups was observed (Fig. 6A, B). The highest AUC was 

Fig. 4  Top 21 ASVs with the highest contribution to Random Forest classification accuracy. ASVs named by a corresponding genus, or lowest 
available taxonomic classifier as indicated by prefix letter

Fig. 5  ASVs significantly contributed to Random Forest model classification accuracy. The boxplots show differences in log transformed averaged 
abundance (A) and average prevalence (B); green (higher in “Low” group) and red (higher in “High” group) lines represent differences in abundance 
or prevalence of individual ASVs. C Heatmap shows CSS normalized abundance of the ASVs, with samples arranged in columns and ASVs in rows
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observed for the samples from the animals older than 
24 months (“Late” group; AUC from 0.91 to 0.92, 95% CI) 
and the lowest in the samples from the animals younger 
than 12 months (“Early” group; AUC from 0.78 to 0.79, 
95% CI). Prediction for samples from animals between 
12 and 24  month of age (“Middle” group) showed an 
intermediate accuracy (AUC from 0.86 to 0.87, 95% CI) 
that was not significantly different from the accuracy 
observed for the complete dataset (“All” group; AUC from 
0.86 to 0.87, 95% CI). In addition, a higher consistency in 
observer AUC between permutations was observed in 
the “Late” (SD = 0.036) group in comparison with “Mid-
dle” (SD = 0.046) and “Early” (SD = 0.054) groups.

Prediction of the shedding status controlled for microbiota 
similarity within an animal
The number of correctly classified samples varied per 
animal (Fig. 6C) with 95% CI between 70.3% and 83.7%. 
However, only 5 out of 11 samples from cow C1348 were 

classified correctly. The overall AUC with this classifica-
tion approach was 0.77. No clear age dependent pattern 
for misclassification of the samples was observed (Addi-
tional file 4: Fig. S6).

Discussion
To our knowledge, this is the first study that leveraged 
relationships between the gut microbiota composition 
and MAP infection in cows to predict severity of MAP 
shedding in the environment. Effective diagnosis of con-
tagious diseases is a cornerstone when it comes to their 
control and prevention. However, a positive test does not 
always provide guidance for further action, where a fore-
casting model could give a direction for disease control 
options and mitigation of financial losses. It is particu-
larly relevant for diseases with a slow progressive devel-
opment and a variable outcome such as Johne’s disease.

Our prediction model in the best-case scenario 
showed an AUC from 0.86 to 0.87 (95% CI) for 

Fig. 6  Accuracy of the samples classification into shedding groups. A and B show classification for samples from the different life periods: “Early”—
younger than 12 month, “Middle”—from 12 to 24 month, “Late”—older than 24 months, and “All”—samples randomly drawn from all age groups. 
A Box-plot of AUC per life period group—every dot represents AUC obtained in a single permutation; **** level of significance corresponds to 
p < 0.0001. B ROC curves plot—thin half-transparent lines represent ROC curves of individual permutations and thick solid lines are median ROC 
curves per group. C shows the number of miss-classified samples per animal when all samples from the corresponding animal removed from the 
RF model training dataset and used as the validation; samples are faceted by shedding status



Page 10 of 13Umanets et al. Animal Microbiome            (2021) 3:78 

separation of the “Low” from the “High” shedding cows. 
It is difficult to compare these results with the conven-
tional diagnostic methods based on culturing, PCR or 
ELISA. The conventional MAP diagnostic methods 
are designed to give the information about presence or 
absence of the pathogen at the time of sampling rather 
than predict development of the disease and amount of 
the MAP shed by the infected cow during its lifetime.

Accuracy of our model was age sensitive and showed 
improvement from young to the old age groups. Simi-
lar observations have been made for conventional diag-
nostic methods. The specificity of culture and ELISA 
based methods has been shown to be greatly improved 
in older cows with more advanced stages of the disease 
[39, 40]. The slow-progressive nature of MAP infection, 
especially the slow development of lesions as well as 
MAP specific immune responses is the most likely to be 
the explanation for these observations. Improved sensi-
tivity of the microbiota based model could be attributed 
to extensive pathogen-induced changes in the intestinal 
environment and the microbiome, where the sensitivity 
of culturing or PCR based methods solely relies on the 
increase of MAP replication and faecal shedding. This 
difference is important, since decoupling of a predictive 
or diagnostic method from the presence of the patho-
gen in a sample could greatly improve robustness of the 
method. MAP cells tend to clump together rather than 
grow as a planktonic culture, which inherently creates 
an uneven distribution of MAP in faecal samples. The 
heterogeneous distribution of MAP in biological matri-
ces can seriously compromise sensitivity of tests that 
are reliant on the presence of MAP in a small tested 
sample. Currently, only immunological tests (predomi-
nantly absorbed ELISA tests) are decoupled from the 
direct detection of MAP in samples. However, immu-
nological tests also struggle with ambiguous results due 
to arbitrary defined cut-off values between positive and 
negative samples.

Detection of MAP in early stages of the disease with 
classical methods is particularly difficult due to inter-
mittent or lack of pathogen shedding [41] as well as slow 
development of the adaptive immune response [42]. The 
results of the current study however show satisfactory 
accuracy (AUC from 0.78 to 0.79, 95% CI) of classifica-
tion into “Low” and “High” shedding groups even at an 
early stage of infection. Based on these results it is tempt-
ing to speculate about the possibility of microbiota com-
position based diagnostic tests that will be superior in 
detection of the paratuberculosis at the very early stages 
of the disease. However, that will require an experiment 
with a different study design that will allow the compari-
son between a large number of healthy and cows infected 
with MAP.

The microbiota based shedding intensity classifier 
was built using the RF algorithm. The RF shown to be 
a simple, effective and “white box” machine learning 
approach that can handle various data types [14], includ-
ing microbiota compositional data [43, 44]. Flexibility of 
the approach allowed construction of an accurate classi-
fier, but also identification of the MAP infection relevant 
ASVs biomarkers and test possibilities.

Construction of the “General” RF model allowed the 
identification of ASVs for the final (“Lean”) classification 
model. When comparing performance of the “General” 
and the “Lean” RF model a clear improvement in accu-
racy of classification as well as a reduction of the time 
required for the model training was observed. The selec-
tion of features is commonly used prior to application of 
a machine learning algorithm [45] to reduce the amount 
of noise from irrelevant data, and overcome the curse of 
dimensionality [46].

The RF regression model that was developed showed a 
moderate performance. Despite a statistically significant 
correlation between predicted and actual Weighted SISs 
the accuracy was not satisfactory. In particular, the sam-
ples for the animals with lower Weighted SISs had a large 
discrepancy between the actual and predicted values. 
Nevertheless, a regression model to predict shedding of 
MAP could be a useful tool in certain situations, but the 
model construction will require a larger dataset and a dif-
ferent experimental design.

Optimization of RF parameters was an important step 
to improve accuracy of the classification model. This sen-
sitivity of RF to changes in mtry parameter was shown 
previously in application to the gene expression data [47].

Definition of a response variable and groups for clas-
sification is a crucially important step in development 
of a the classification model. In our case, the shedding 
intensity data was inferred from the number of cultured 
MAP colonies and was used as the response variable. 
The scores of the shedding intensity rather than actual 
count of the cultivated colonies were used to allow a 
higher level of generalization, which could be beneficial 
for smaller data-sets. Nevertheless, the actual count of 
cultivated colonies or qPCR assessed gene copy number 
could be useful for larger datasets, and could allow for 
inference of the shedding values rather than classifica-
tion into shedding intensity groups. However, due to high 
variability of microbiota composition between individual 
animals this approach could also suffer from a low preci-
sion with less interpretable results.

When it comes to the definition of the groups for clas-
sification—there is no clear guide what could be consid-
ered low or high shedding cow, and cut-off is usually set 
arbitrarily. A gradual increase in the Weighted SISs in 
studied animals was observed without a clear separation 
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into “High” or “Low” shedders. MAP infected animals 
often show intermediate shedding where periods of 
severe shedding are followed by low or completely shed-
ding free periods [41, 48]. Therefore, when samples are 
not collected longitudinally the division into high and 
low shedders could be more prominent [49]. However, 
differences became more subtle when shedding score was 
evaluated during the lifetime of the animal. An optimal 
separation into “Low” and “High” shedders was obtained 
by comparing the accuracy of RF models built with the 
different configurations of the groups. This approach is 
suitable for the “proof of concept” research, such as pre-
sented in this paper, however, the development of a real 
world applicable MAP shedding prediction tools will 
require a larger number of animals with a clearer division 
into shedding groups.

One of the great advantages of the RF classification 
algorithm is the possibility to get insight in the contri-
bution of individual features to classification. In total, 
4940 ASVs were identified across all samples, neverthe-
less, only 4% from the total number was important for 
the classification. This is not surprising since not every 
microbial taxa will respond to MAP infection, or have 
protective qualities against it. In addition, microbiota 
composition has been shown to vary between individu-
als and only a relatively small number of taxa comprises 
a shared core [50, 51]. The current dataset consisted 
from samples collected in a longitudinal experiment 
that captured all stages of animal development with the 
consequent age and season related microbiota varia-
tions, which further decreased the number of ASVs that 
could have a meaningful impact on the classification. In 
the current study, age related change in diet from milk to 
solid food and following overall microbial composition 
are reflected in differences in ASVs significant to classifi-
cation. This is an expected finding, nevertheless, it under-
lines the importance of an experimental design adequate 
to reach the intended goals. In our case, the number of 
samples available from the animals of early age (milk 
diet) was a small proportion of total samples and did not 
allow for a separate investigation.

Among the top 20 ASVs contributing to classification, 
the majority had a significantly higher abundance in 
the “Low” (18 ASVs) than in the “High” (2 ASVs) shed-
ding group. It is difficult to speculate about the function 
of ASVs and why they are more abundant in the “Low” 
shedding group, due to the limited taxonomic resolution 
of the microbiota profiling based on an amplified 16S 
rRNA fragment [52]. In addition, almost half (8 out of 20) 
ASVs were not assigned even to a genus level, increas-
ing uncertainty regarding the role of a microbial feature. 
Future research may benefit from advances in sequence 
technologies and strategies such as shotgun metagenomic 

sequencing. Nevertheless, even a high-level taxonomic 
assignment can give an indication of the ecological niche, 
albeit with limitations. ASVs from genus Bacteroides 
showed the highest contribution to the accuracy of clas-
sification. Four out of the top 20 ASVs belonged to genus 
Bacteroides, and all of them have significantly higher 
abundance in the “Low” in comparison with the “High” 
shedding group. Members of the genus Bacteroides can 
be found only as a part of the mammalian gastrointestinal 
microbiota [53]. They are generally regarded as beneficial 
commensals when they resign in their niche, however, 
some strains are pathogenic and can cause severe infec-
tions [54]. Higher abundance of Bacteroides in the “Low” 
shedding group could be an indication of their protective 
properties and competitive exclusion of MAP, however 
further research will be needed. Intriguingly, an ASV 
from the genus Akkermansia had a significantly higher 
abundance in the “High” shedding group. Akkermansia is 
a mucin degrading commensal bacteria with a tight con-
nection with the host [55]. It is generally considered as 
a beneficial microbe in humans [56]. The higher abun-
dance in the “High” shedding group is puzzling, but could 
be explained by physiological changes in the mucosal 
layer due to MAP colonization and as a consequence an 
expansion of the Akkermansia habitat. However, the pos-
sibility of a more direct relationship between MAP and 
Akkermansia should not be discarded.

Conclusions
In this proof-of-concept-study, showed evidence that 
future shedding severity of MAP by cows can potentially 
be forecast based on the composition of the intestinal 
microbiota. To our knowledge this is the first approach 
that showed a potential to predict severity of MAP infec-
tion at early stages of the infection. Forecasting of MAP 
infection progression will help to develop management 
strategies in farms with the high prevalence, endemic and 
or hard to control MAP infection as it will provide farm-
ers and veterinarians with a tool to select animals for cull-
ing. An indiscriminate culling based on MAP specific test 
results indicating presence or absence of MAP may be an 
economically non-viable strategy for areas with endemic 
MAP. Therefore, microbiota based prediction of the 
infection development can help mitigate the economic 
burden of MAP and limit spread of the infection in popu-
lations where MAP is endemic by preferentially targeting 
animals with a likely higher lifetime contribution to MAP 
transmission and environmental contamination.
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