McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. PNAS. 2013;110:3229–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology. 2018;127:1–19.
Article
PubMed
Google Scholar
Drosophila 12 Genomes Consortium, Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, et al. Evolution of genes and genomes on the Drosophila phylogeny. Nature. 2007;450:203.
Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science. 2010;329:212–5.
Article
CAS
PubMed
Google Scholar
Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
Article
CAS
PubMed
Google Scholar
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 2014;12:168–80.
Article
CAS
PubMed
Google Scholar
Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol. 2015;69:145–66.
Article
CAS
PubMed
Google Scholar
Cleveland LR. Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci U S A. 1923;9:424–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scharf ME, Karl ZJ, Sethi A, Boucias DG. Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS One. 2011;6. https://doi.org/10.1371/journal.pone.0021709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson BF, Stewart HL, Scharf ME. Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments. Insect Biochem Mol Biol. 2015;59:80–8.
Article
CAS
PubMed
Google Scholar
Peterson BF, Scharf ME. Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genomics. 2016;17. https://doi.org/10.1186/s12864-016-3126-z.
Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. Nitrogen fixation by symbiotic and free-living spirochetes. Science. 2001;292:2495–8.
Article
CAS
PubMed
Google Scholar
Desai MS, Brune A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 2012;6:1302–13.
Article
CAS
PubMed
Google Scholar
Tiedje J. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Methods of soil analysis. Part 2. Chemical and microbiological properties. 1988. p. 179–244.
Potrikus CJ, Breznak JA. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci U S A. 1981;78:4601–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, et al. Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science. 2008;322 November:1108–9.
Article
CAS
PubMed
Google Scholar
Kuwahara H, Yuki M, Izawa K, Ohkuma M, Hongoh Y. Genome of “Ca. Desulfovibrio trichonymphae”, an H2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME J. 2017;11:766–76.
Article
CAS
PubMed
Google Scholar
Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007;450:560–5.
Article
CAS
PubMed
Google Scholar
Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, et al. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A . 2015;112:10224–10230.
Article
CAS
Google Scholar
Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, et al. Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A . 2008;105:5555–5560.
Article
CAS
Google Scholar
Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. Nov. (phylum Elusimicrobia) - an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a group IV nitrogenase. Environ Microbiol. 2016;18:191–204.
Article
CAS
PubMed
Google Scholar
Hongoh Y, Sato T, Noda S, Ui S, Kudo T, Ohkuma M. Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. Environ Microbiol . 2007;9:2631–2635.
Article
CAS
PubMed
Google Scholar
Yuki M, Kuwahara H, Shintani M, Izawa K, Sato T, Starns D, et al. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose. Environ Microbiol. 2015;17:4942–53.
Article
CAS
PubMed
Google Scholar
Brune A. Endomicrobia: intracellular symbionts of termite gut flagellates. Endocytobiosis Cell Res. 2012;23:11–5.
Google Scholar
Shimada K, Lo N, Kitade O, Wakui A, Maekawa K. Cellulolytic protist numbers rise and fall dramatically in termite queens and kings during colony foundation. Eukaryot Cell. 2013;12:545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol. 2007;16:1257–66.
Article
CAS
PubMed
Google Scholar
Ohkuma M. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol. 2008;16:345–52.
Article
CAS
PubMed
Google Scholar
Ikeda-Ohtsubo W, Brune A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and “Candidatus Endomicrobium trichonymphae.” Mol Ecol 2009;18:332–342.
Article
CAS
PubMed
Google Scholar
Desai MS, Strassert JFH, Meuser K, Hertel H, Ikeda-Ohtsubo W, Radek R, et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol. 2010;12:2120–32.
CAS
PubMed
Google Scholar
Radek R, Meuser K, Strassert JFH, Arslan O, Teßmer A, Šobotník J, et al. Exclusive gut flagellates of Serritermitidae suggest a major transfaunation event in lower termites: description of Heliconympha glossotermitis gen. Nov. spec. Nov. J Eukaryot Microbiol. 2018;65:77–92.
Article
CAS
PubMed
Google Scholar
Yamin MA. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology. 1979;4:1–120.
Google Scholar
Kitade O. Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ. 2004;19:215–20.
Article
Google Scholar
Waidele L, Korb J, Voolstra CR, Künzel S, Dedeine F, Staubach F. Differential ecological specificity of protist and bacterial microbiomes across a set of termite species. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.02518.
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, et al. Rampant host switching shaped the termite gut microbiome. Curr Biol. 2018;28:649–654.e2.
Article
PubMed
CAS
Google Scholar
Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, et al. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol . 2013;22:1836–1853.
Article
CAS
PubMed
Google Scholar
He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, et al. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One. 2013;8:e61126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dietrich C, Köhler T, Brune A, Kohler T, Brune A. The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol. 2014;80:2261–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A, et al. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol . 2015;24:5284–5295.
Article
CAS
PubMed
Google Scholar
Abdul Rahman N, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, et al. A molecular survey of Australian and north American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome. 2015;3:5.
Article
PubMed
PubMed Central
Google Scholar
Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, et al. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome. 2015;3:56.
Article
PubMed
PubMed Central
Google Scholar
Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ, et al. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol . 2015;81:1059–1070.
Article
PubMed
CAS
Google Scholar
Zhang X. Leadbetter JR. Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts mBio. 2012;3:1–11.
Google Scholar
Duarte S, Nobre T, Borges PAV, Nunes L. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément. Ecol Evol. 2018;8:5242–53.
Article
PubMed
PubMed Central
Google Scholar
Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, et al. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 2019;13:104.
Article
CAS
PubMed
Google Scholar
Abe T. Evolution of life types in termites. In: Kawano S, Connell JH, and Hidaka T, editor. Evolution and coadaptation in biotic communities. University of Tokyo Press; 1987. p. 125–146.
Korb J. Termites Curr Biol. 2007;17:R995–9.
Article
CAS
PubMed
Google Scholar
Lenz M. Food resources, colony growth and caste development in wood-feeding termites. In: Nalepa CA, Hunt J, editors. Nourishment and evolution in insect societies. Boulder, CO, USA: Westview Press; 1994. p. 159–209.
Google Scholar
Korb J, Hoffmann K, Hartfelder K. Molting dynamics and juvenile hormone titer profiles in the nymphal stages of a lower termite, Cryptotermes secundus (Kalotermitidae)--signatures of developmental plasticity. J Insect Physiol. 2012;58:376–83.
Article
CAS
PubMed
Google Scholar
Lainé LV, Lainé LV, Wright DJ. The life cycle of Reticulitermes spp (Isoptera: Rhinotermitidae): what do we know? Bull Entomol Res. 2003;93:267–378.
Article
PubMed
Google Scholar
Douglas AE. Lessons from studying insect symbioses. Cell Host Microbe. 2011;10:359–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma D, Leulier F. The importance of being persistent: the first true resident gut symbiont in Drosophila. PLoS Biol. 2018;16:e2006945.
Article
PubMed
PubMed Central
CAS
Google Scholar
Staubach F, Baines JF, Kuenzel S, Bik EM, Petrov DA. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One. 2013;8:e70749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71:6590–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol . 2006;15:505–516.
Article
CAS
Google Scholar
Benjamino J, Graf J. Characterization of the core and caste-specific microbiota in the termite, Reticulitermes flavipes Front Microbiol 2016;7:171.
Benjamino J, Lincoln S, Srivastava R, Graf J. Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration. Microbiome. 2018;6. https://doi.org/10.1186/s40168-018-0469-5.
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:326–49.
Article
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
Article
PubMed
PubMed Central
Google Scholar
Whittle G, Shoemaker NB, Salyers AA. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci. 2002;59:2044–54.
Article
CAS
PubMed
Google Scholar
Liu N, Zhang L, Zhou H, Zhang M, Yan X, Wang Q, et al. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS One. 2013;8:e69184.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490–5.
Article
CAS
PubMed
Google Scholar
Déjean G, Blanvillain-Baufumé S, Boulanger A, Darrasse A, de Bernonville TD, Girard A-L, et al. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol. 2013;198:899–915.
Article
PubMed
CAS
Google Scholar
Hottes AK, Meewan M, Yang D, Arana N, Romero P, McAdams HH, et al. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol. 2004;186:1448–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnum KE, Callister SJ, Nicora CD, Purvine SO, Hugenholtz P, Warnecke F, et al. Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. ISME J. 2011;5:161–4.
Article
CAS
PubMed
Google Scholar
Baum DA, Futuyma DJ, Hoekstra HE. Lenski RE. Moore AJ: Peichel CL, et al. The Princeton guide to evolution. Princeton University Press; 2013.
Google Scholar
McMahan EA. Feeding relationships and radio-isotope techniques. In: Biology of Termites. Academic Press, New York, London; 1969. p. 387–406.
Chapter
Google Scholar
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, et al. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007;2:e224.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci. 2008;33:330–8.
Article
CAS
PubMed
Google Scholar
Koebnik R. TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol. 2005;13:343–7.
Article
CAS
PubMed
Google Scholar
Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fengel D, Grosser D. Chemische Zusammensetzung von Nadel- und Laubhölzern. Holz als Roh-und Werkstoff. 1975;33:32–4.
Article
CAS
Google Scholar
Pettersen RC. The chemical composition of wood. Adv Chem Ser. 1984;207.
Korb J, Lenz M. Reproductive decision-making in the termite, Cryptotermes secundus (Kalotermitidae), under variable food conditions. Behav Ecol. 2004;15:390–5.
Article
Google Scholar
Scheffrahn R. Cuban subterranean termite - Reticulitermes simplex (Hagen). 2007. http://entnemdept.uft.edu/creatures/urban/termites/p_simplex.htm. .
Google Scholar
Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, et al. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol Phylogenet Evol. 2016;94 Pt B:778–90.
Article
PubMed
Google Scholar
Smythe RV, Carter FL. Feeding responses to sound wood by the eastern subterranean termite, Reticulitermes flavipes An Entomol Soc Am 1969;62:335–337.
Cárdenas AM, Gallardo P, Toledo D. Suitability of multiple Mediterranean oak species as a food resource for Reticulitermes grassei Clément (Isoptera: Rhinotermitidae). Bull Entomol Res. 2018;108:532–9.
Article
PubMed
Google Scholar
Janzow MP, Judd TM. The termite Reticulitermes flavipes (Rhinotermitidae: Isoptera) can acquire micronutrients from soil. Environ Entomol. 2015;44:814–20.
Article
CAS
PubMed
Google Scholar
Judd TM, Landes JR, Ohara H, Riley AW. A geometric analysis of the regulation of inorganic nutrient intake by the subterranean termite Reticulitermes flavipes Kollar. Insects. 2017;8:97.
Article
PubMed Central
Google Scholar
Wertz JT, Breznak JA. Stenoxybacter acetivorans gen. Nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl Environ Microbiol. 2007;73:6819–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H. A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol. 1996;19:139–49.
Article
CAS
Google Scholar
Breznak JA. Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Anderson J, editor. Invertebrate - microbial interaction. Cambridge University Press: Cambridge; 1984. p. 173–203.
Google Scholar
Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, et al. Lignocellulose pretreatment in a fungus-cultivating termite. Proc Natl Acad Sci U S A. 2017;114:4709–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X-F, Bakker MG, Judd TM, Reardon KF, Vivanco JM. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb Ecol. 2013;65:531–6.
Article
PubMed
Google Scholar
Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, et al. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol. 2018;2:557.
Article
PubMed
PubMed Central
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Article
CAS
PubMed
Google Scholar
Bushnell B. BBMap. sourceforge.net/projects/bbmap/.
Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.
Article
CAS
PubMed
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Version 2.4–3. URL https://CRAN.R-project.org/package=vegan. 2017.
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:e1029.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Article
CAS
PubMed
Google Scholar
Shallom D, Shoham Y. Microbial hemicellulases. Curr Opin Microbiol. 2003;6:219–28.
Article
CAS
PubMed
Google Scholar