Hooks KB, O'Malley MA. Contrasting strategies: human eukaryotic versus bacterial microbiome research. J Eukaryot Microbiol. 2019;67(2):279–95.
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5(1):153.
Article
PubMed
PubMed Central
Google Scholar
Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D, Teiling C, et al. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front Microbiol. 2014;5:298.
Article
PubMed
PubMed Central
Google Scholar
Hamad I, Raoult D, Bittar F. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods. Parasite Immunol. 2016;38(1):12–36.
Article
CAS
PubMed
Google Scholar
Laforest-Lapointe I, Arrieta M-C. Microbial eukaryotes: a missing Link in gut microbiome studies. mSystems. 2018;3(2):e00201–17.
Article
PubMed
PubMed Central
Google Scholar
Chabé M, Lokmer A, Ségurel L. Gut protozoa: friends or foes of the human gut microbiota? Trends Parasitol. 2017;33(12):925–34.
Article
PubMed
Google Scholar
Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol. 2011;2:153.
Article
PubMed
PubMed Central
Google Scholar
Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog. 2015;11(8):e1005039.
Article
PubMed
PubMed Central
CAS
Google Scholar
Audebert C, Even G, Cian A, Safadi DE, Certad G, Delhaes L, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6(1):25255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tito RY, Chaffron S, Caenepeel C, Lima-Mendez G, Wang J, Vieira-Silva S, et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut. 2019;68(7):1180–9.
Article
CAS
PubMed
Google Scholar
Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD, Rahman A, et al. Host-protozoan interactions protect from mucosal infections through activation of the Inflammasome. Cell. 2016;167(2):444–456.e414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Summers KL, Frey JF, Ramsay TG, Arfken AM. The piglet mycobiome during the weaning transition: a pilot study1. J Anim Sci. 2019;97(7):2889–900.
Article
PubMed
PubMed Central
Google Scholar
White JK, Nielsen JL, Madsen AM. Microbial species and biodiversity in settling dust within and between pig farms. Environ Res. 2019;171:558–67.
Article
CAS
PubMed
Google Scholar
Arfken AM, Frey JF, Ramsay TG, Summers KL. Yeasts of burden: exploring the Mycobiome–Bacteriome of the piglet GI tract. Front Microbiol. 2019;10:2286.
Article
PubMed
PubMed Central
Google Scholar
Shieban F. Studies on intestinal protozoa of domestic pigs in the Teheran area of Iran**this project is supported in part by funds for the endemic diseases research project of plan organization and of the Department of Health Science, Teheran University School of Medicine. Br Vet J. 1971;127(3):iii–v.
Article
Google Scholar
Wylezich C, Belka A, Hanke D, Beer M, Blome S, Höper D. Metagenomics for broad and improved parasite detection: a proof-of-concept study using swine faecal samples. Int J Parasitol. 2019;49(10):769–77.
Article
CAS
PubMed
Google Scholar
Matsubayashi M, Suzuta F, Terayama Y, Shimojo K, Yui T, Haritani M, et al. Ultrastructural characteristics and molecular identification of Entamoeba suis isolated from pigs with hemorrhagic colitis: implications for pathogenicity. Parasitol Res. 2014;113(8):3023–8.
Article
PubMed
Google Scholar
Chen C, Huang X, Fang S, Yang H, He M, Zhao Y, et al. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs. Front Microbiol. 2018;9:2626.
Article
PubMed
PubMed Central
Google Scholar
Camarinha-Silva A, Maushammer M, Wellmann R, Vital M, Preuss S, Bennewitz J. Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics. 2017;206(3):1637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crespo-Piazuelo D, Migura-Garcia L, Estellé J, Criado-Mesas L, Revilla M, Castelló A, et al. Association between the pig genome and its gut microbiota composition. Sci Rep. 2019;9(1):8791.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu J, Nie Y, Chen J, Zhang Y, Wang Z, Fan Q, et al. Gradual changes of gut microbiota in weaned miniature piglets. Front Microbiol. 2016;7:1727.
PubMed
PubMed Central
Google Scholar
Urubschurov V, Janczyk P, Pieper R, Souffrant WB. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions. FEMS Yeast Res. 2008;8(8):1349–56.
Article
CAS
PubMed
Google Scholar
Van Uden N, do Carmo Sousa L. Quantitative aspects of the intestinal yeast Flora of swine. Microbiology. 1962;27(1):35–40.
Google Scholar
Kurtzman CP, Robnett CJ, Ward JM, Brayton C, Gorelick P, Walsh TJ. Multigene phylogenetic analysis of pathogenic candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov. J Clin Microbiol. 2005;43(1):101–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemler M, Witfeld F, Begerow D, Yurkov A. Phylloplane yeasts in temperate climates. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer International Publishing; 2017. p. 171–97.
Chapter
Google Scholar
Hoog GSD, Guarro J, Gene J, Figueras MJ. Atlas of clinical fungi. 2nd ed; 2000.
Google Scholar
Bao X, Carris LM, Huang G, Luo J, Liu Y, Castlebury LA. Tilletia puccinelliae, a new species of reticulate-spored bunt fungus infecting Puccinellia distans. Mycologia. 2010;102(3):613–23.
Article
PubMed
Google Scholar
Preugschat K, Kersten S, Ettle T, Richter W, Karl H, Breves G, et al. Effects of feeding diets containing increasing proportions of bunt-infected wheat (Tilletia caries) on performance and health of pigs. Arch Anim Nutr. 2014;68(1):55–62.
Article
CAS
PubMed
Google Scholar
Raimondi S, Amaretti A, Gozzoli C, Simone M, Righini L, Candeliere F, et al. Longitudinal survey of fungi in the human gut: ITS profiling, phenotyping, and colonization. Front Microbiol. 2019;10:1575.
Article
PubMed
PubMed Central
Google Scholar
Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol. 2015;15:9–17.
Article
Google Scholar
Mann AE, Mazel F, Lemay MA, Morien E, Billy V, Kowalewski M, et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 2019;14:609–22.
Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1(12):16161.
Article
CAS
PubMed
Google Scholar
Pakandl M. The prevalence of intestinal protozoa in wild and domestic pigs. Vet Med (Praha). 1994;39(7):377–80.
CAS
Google Scholar
Schuster FL, Ramirez-Avila L. Current world status of <em>Balantidium coli</em>. Clin Microbiol Rev. 2008;21(4):626.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Bielefeldt-Ohmann H, Traub RJ, Cuttell L, Owen H. Location and pathogenic potential of Blastocystis in the porcine intestine. PLoS One. 2014;9(8):e103962.
Article
PubMed
PubMed Central
Google Scholar
Rivera WL. Phylogenetic analysis of Blastocystis isolates from animal and human hosts in the Philippines. Vet Parasitol. 2008;156(3):178–82.
Article
CAS
PubMed
Google Scholar
Mostegl MM, Richter B, Nedorost N, Lang C, Maderner A, Dinhopl N, et al. First evidence of previously undescribed trichomonad species in the intestine of pigs? Vet Parasitol. 2012;185(2–4):86–90.
Article
PubMed
PubMed Central
Google Scholar
Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2(5):403–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho A, Cunha C, Di Ianni M, Pitzurra L, Aloisi T, Falzetti F, et al. Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplant. 2010;45(11):1645–52.
Article
CAS
PubMed
Google Scholar
Nur S, Sparber F, Lemberg C, Guiducci E, Schweizer TA, Zwicky P, et al. IL-23 supports host defense against systemic Candida albicans infection by ensuring myeloid cell survival. PLoS Pathog. 2020;15(12):e1008115.
Article
CAS
Google Scholar
Zakrzewski M, Simms LA, Brown A, Appleyard M, Irwin J, Waddell N, et al. IL23R-protective coding variant promotes beneficial bacteria and diversity in the Ileal microbiome in healthy individuals without inflammatory bowel disease. J Crohns Colitis. 2018;13(4):451–61.
Article
Google Scholar
Willinger T, Flavell RA. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci U S A. 2012;109(22):8670–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parekh VV, Wu L, Boyd KL, Williams JA, Gaddy JA, Olivares-Villagómez D, et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J Immunol. 2013;190(10):5086–101.
Article
CAS
PubMed
Google Scholar
McLeod IX, Zhou X, Li Q-J, Wang F, He Y-W. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Rα surface expression. J Immunol. 2011;187(10):5051.
Article
CAS
PubMed
Google Scholar
Zhao S, Xia J, Wu X, Zhang L, Wang P, Wang H, et al. Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish. Nat Commun. 2018;9(1):2639.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davison JM, Lickwar CR, Song L, Breton G, Crawford GE, Rawls JF. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor hepatocyte nuclear factor 4 alpha. Genome Res. 2017;27(7):1195–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity. 2016;44(5):1005–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz H, Tuckwell J, Lotz M. A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene. 1993;134(2):295–8.
Article
CAS
PubMed
Google Scholar
H. M, K.S T, H. Y. Blastocystis: pathogen or passenger? An evaluation of 101 years of research, vol. 4; 2012.
Google Scholar
Ajjampur SSR, Tan KSW. Pathogenic mechanisms in Blastocystis spp. — interpreting results from in vitro and in vivo studies. Parasitol Int. 2016;65(6, Part B):772–9.
Article
CAS
PubMed
Google Scholar
Lim MX, Png CW, Tay CYB, Teo JDW, Jiao H, Lehming N, et al. Differential regulation of proinflammatory cytokine expression by mitogen-activated protein kinases in macrophages in response to intestinal parasite infection. Infect Immun. 2014;82(11):4789–801.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khan AA, Yurkovetskiy L, O’Grady K, Pickard JM, de Pooter R, Antonopoulos DA, et al. Polymorphic immune mechanisms regulate commensal repertoire. Cell Rep. 2019;29(3):541–550.e544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32(5):723–35.
Article
CAS
PubMed
Google Scholar
Wang J, Chen L, Zhao N, Xu X, Xu Y, Zhu B. Of genes and microbes: solving the intricacies in host genomes. Protein Cell. 2018;9(5):446–61.
Article
PubMed
PubMed Central
Google Scholar
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5.
Article
CAS
PubMed
Google Scholar
Urubschurov V, Büsing K, Freyer G, Herlemann DPR, Souffrant W-B, Zeyner A. New insights into the role of the porcine intestinal yeast, Kazachstania slooffiae, in intestinal environment of weaned piglets. FEMS Microbiol Ecol. 2016;93(2)..
Urubschurov V, Büsing K, Souffrant WB, Schauer N, Zeyner A. Porcine intestinal yeast species, Kazachstania slooffiae, a new potential protein source with favourable amino acid composition for animals. J Anim Physiol Anim Nutr. 2018;102(2):e892–901.
Article
CAS
Google Scholar
Dai W, Yu W, Zhang J, Zhu J, Tao Z, Xiong J. The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp. Appl Microbiol Biotechnol. 2017;101(16):6447–57.
Article
CAS
PubMed
Google Scholar
del Campo J, Bass D, Keeling PJ. The eukaryome: diversity and role of micro-eukaryotic organisms associated with animal hosts. Funct Ecol. 2019. Early view, Online Version of Record before inclusion in an issue.
Todaka N, Inoue T, Saita K, Ohkuma M, Nalepa CA, Lenz M, et al. Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One. 2010;5(1):e8636.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral Gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Curr Biol. 2017;27(6):807–20.
Article
CAS
PubMed
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. PCR protocols amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics: Elsevier; 1990..
Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C. Characterization of the 18S rRNA Gene for designing universal eukaryote specific primers. PLoS One. 2014;9(2):e87624.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.
CAS
PubMed
Google Scholar
Community U. UNITE QIIME release for fungi. Version 18.11.2018. UNITE community; 2019. https://doi.org/10.15156/BIO/786334.
Book
Google Scholar
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17(2):95–109.
Article
CAS
PubMed
Google Scholar
Jari Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5–3. 2018. https://www.CRANR-projectorg/package=vegan.
Google Scholar
Shannon C. A mathematical theory of communication; 1984.
Google Scholar
Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21(2/3):213–51.
Article
Google Scholar
Pérez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics. 2014;198(2):483–95.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289–300.
Google Scholar
Liu Y. SHAP for XGBoost in R: SHAPforxgboosthttps://github.com/liuyanguu/SHAPforxgboost; 2019.
Google Scholar