Wolff SM, Ellison MJ, Hao Y, Cockrum RR, Austin KJ, Baraboo M, Burch K, Lee HJ, Maurer T, Patil R. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome. 2017;5:60.
PubMed
PubMed Central
Google Scholar
Martinez-Guryn K, Leone V, Chang EB. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe. 2019;26:314–24.
CAS
PubMed
Google Scholar
Mao S, Zhang M, Liu J, Zhu W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep. 2015;5:16116.
CAS
PubMed
PubMed Central
Google Scholar
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–52.
CAS
PubMed
PubMed Central
Google Scholar
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.
CAS
PubMed
Google Scholar
Elaine H, James K, Gibson GR, Remy B, Wei J, Sven P, Nicholson JK. Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med. 2012;4:137rv136.
Google Scholar
Lin L, Xie F, Sun D, Liu J, Zhu W, Mao S. Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model. Microbiome. 2019;7:83.
PubMed
PubMed Central
Google Scholar
Malmuthuge N, Liang G. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes. Genome Biol. 2019;20:172.
PubMed
PubMed Central
Google Scholar
Marchix J, Goddard G, Helmrath MA. Host-gut microbiota crosstalk in intestinal adaptation. Cell Mol Gastroenterol Hepatol. 2018;6:149–62.
PubMed
PubMed Central
Google Scholar
Shaani Y, Zehavi T, Eyal S, Miron J, Mizrahi I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. Isme J. 2018;12:2446–57.
CAS
PubMed
PubMed Central
Google Scholar
Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol S. 2015;46:1–23.
Google Scholar
El Aidy S, Derrien M, Merrifield CA, Levenez F, Doré J, Boekschoten MV, Dekker J, Holmes E, Zoetendal EG, Van Baarlen P. Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. Isme J. 2013;7:743–55.
PubMed
Google Scholar
Gao X, Oba M. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. J Dairy Sci. 2014;97:3006–16.
CAS
PubMed
Google Scholar
Krause KM, Oetzel GR. Inducing subacute ruminal acidosis in lactating dairy cows. J Dairy Sci. 2005;88:3633–9.
CAS
PubMed
Google Scholar
Nagaraja TG, Titgemeyer EC. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci. 2007;90:E17–38.
PubMed
Google Scholar
Garrett EF, Pereira MN, Nordlund KV, Armentano LE, Goodger WJ, Oetzel GR. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J Dairy Sci. 1999;82:1170.
CAS
PubMed
Google Scholar
Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci. 2009;92:1060–70.
CAS
PubMed
Google Scholar
Liu JH, Xu TT, Liu YJ, Zhu WY, Mao SY. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am J Physiol Regul Integr Comp Physiol. 2013;305:R232–41.
CAS
PubMed
Google Scholar
Aschenbach JR, Penner GB, Stumpff F, Gäbel G. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. J Anim Sci. 2011;89:1092–107.
CAS
PubMed
Google Scholar
Penner GB, Steele MA, Aschenbach JR, Mcbride BW. Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets. J Anim Sci. 2011;89:1108.
CAS
PubMed
Google Scholar
Owens FN, Zinn RA, Kim YK. Limits to starch digestion in the ruminant small intestine. J Dairy Sci. 1986;63:1634.
CAS
Google Scholar
Gressley TF, Hall MB, Armentano LE. Ruminant nutrition symposium: productivity, digestion, and health responses to hindgut acidosis in ruminants. J Anim Sci. 2011;89:1120–30.
CAS
PubMed
Google Scholar
Li S, Khafipour E, Krause DO, Kroeker A, Rodriguez-Lecompte JC, Gozho GN, Plaizier JC. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci. 2012;95:294–303.
CAS
PubMed
Google Scholar
Górka P, Schurmann BL, Walpole ME, Błońska A, Li S, Plaizier JC, Kowalski ZM, Penner GB. Effect of increasing the proportion of dietary concentrate on gastrointestinal tract measurements and brush border enzyme activity in Holstein steers. J Dairy Sci. 2017;100:4539–51.
PubMed
Google Scholar
Wang Y, Xu L, Liu J, Zhu W, Mao S. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep. Front Microbiol. 2017;8:2080.
PubMed
PubMed Central
Google Scholar
Seddik H, Xu L, Wang Y, Mao SY. A rapid shift to high-grain diet results in dynamic changes in rumen epimural microbiome in sheep. Animal. 2019;13:1614–22.
CAS
Google Scholar
Fernando SC, Purvis HT, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol. 2010;76:7482–90.
CAS
PubMed
PubMed Central
Google Scholar
Mao SY, Huo WJ, Zhu WY. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ Microbiol. 2015;18:525.
PubMed
Google Scholar
Plaizier JC, Li S, Danscher AM, Derakshani H, Andersen PH, Khafipour E. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microb Ecol. 2017;74:485–95.
CAS
PubMed
Google Scholar
Bekele AZ, Satoshi K, Yasuo K. Genetic diversity and diet specificity of ruminal Prevotella revealed by 16S rRNA gene-based analysis. FEMS Microbiol Lett. 2010;305:49–57.
CAS
PubMed
Google Scholar
Pitta DW, Pinchak WE, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, Wickersham TA, Malinowski DP. Rumen bacterial diversity dynamics associated with changing from Bermudagrass Hay to grazed winter wheat diets. Microb Ecol. 2010;59:511–22.
PubMed
Google Scholar
Kim M, Kim J, Kuehn LA, Bono JL, Berry ED, Kalchayanand N, Freetly HC, Benson AK, Wells JE. Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci. 2015;92:683–94.
Google Scholar
Xia Y, Kong Y, Seviour R, Yang HE, Forster R, Vasanthan T, Mcallister T. In situ identification and quantification of starch-hydrolyzing bacteria attached to barley and corn grain in the rumen of cows fed barley-based diets. Fems Microbiol Ecol. 2015;91:fiv077.
PubMed
Google Scholar
Yang XP, Darko KO, Huang YJ, He CM, Yang HS, He SP, Li JZ, Li J, Hocher B, Yin YL. Resistant starch regulates gut microbiota: structure, biochemistry and cell signalling. Cell Physiol Biochem. 2017;42:306–18.
CAS
PubMed
Google Scholar
Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217:133–9.
CAS
PubMed
Google Scholar
Seong-Kyu P, Min-Soo K, Jin-Woo B. Blautia faecis sp. nov., isolated from human faeces. Int J Syst Evol Micr. 2013;63:599–603.
Google Scholar
Erdman R. Dietary buffering requirements of the lactating dairy cow. J Dairy Sci. 1988;71:3246–66.
Google Scholar
Solden LM, Hoyt DW, Collins WB, Plank JE, Daly RA, Hildebrand E, Beavers TJ, Wolfe R, Nicora CD, Purvine SO, Carstensen M, Lipton MS, Spalinger DE, Firkins JL, Wolfe BA, Wrighton KC. New roles in hemicellulosic sugar fermentation for the uncultivated Bacteroidetes family BS11. Isme J. 2016;11:691–703.
PubMed
PubMed Central
Google Scholar
Liu JH, Bian GR, Zhu WY, Mao SY. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of toll-like receptor genes in goats. Front Microbiol. 2015;6:167.
PubMed
PubMed Central
Google Scholar
Iurlaro R, Muñoz PC. Cell death induced by endoplasmic reticulum stress. FEBS J. 2016;283:2640–52.
CAS
PubMed
Google Scholar
Ghemrawi R, Battagliahsu SF, Arnold C. Endoplasmic Reticulum Stress in Metabolic Disorders. Cells. 2018;7:63.
PubMed Central
Google Scholar
Inki K, Wenjie X, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7:1013–30.
Google Scholar
Mirzaei MR, Najafi A, Arababadi MK, Asadi MH, Mowla SJ. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines. Tumor Biol. 2014;35:9999–10009.
CAS
Google Scholar
Obiorah I, Sengupta S, Fan P, Jordan VC. Delayed triggering of oestrogen induced apoptosis that contrasts with rapid paclitaxel-induced breast cancer cell death. Brit J Cancer. 2014;110:1488–96.
CAS
PubMed
Google Scholar
Ye HM, Liu JH, Feng PF, Zhu WY, Mao SY. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Sci Rep. 2016;6:20329.
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460.
CAS
PubMed
Google Scholar
Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol. 2010;12:1842–54.
CAS
PubMed
Google Scholar
Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb. 2006;72:5069–72.
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75:7537.
CAS
Google Scholar
Chomczynski P, Sacchi N. Single step method of RNA isolation by acid Guanidium Thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.
CAS
PubMed
Google Scholar
Daehwan K, Ben L, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650.
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44.
CAS
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
CAS
PubMed
PubMed Central
Google Scholar
Brohee S, Van Helden J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics. 2006;7:488.
PubMed
PubMed Central
Google Scholar