Smith VS, Ford T, Johnson KP, Johnson PCD, Yoshizawa K. Multiple lineages of lice pass through the K-Pg boundary. Biol Lett. 2011;7:782–5.
PubMed
PubMed Central
Google Scholar
Marshall AG. The ecology of ectoparasitic insects. London: Academic Press Inc. (London) Ltd; 1981.
Google Scholar
Xia Y, Massé DI, McAllister TA, Kong Y, Seviour R, Beaulieu C. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes. Bioresour Technol. 2012;110:111–9.
CAS
PubMed
Google Scholar
Pugh GJF, Evans MD. Keratinophilic fungi associated with birds: I. Fungi isolated from feathers, nests and soils. Trans Br Mycol Soc. 1970;54:233–40.
Google Scholar
Burtt EH, Ichida JM. Occurrence of feather-degrading bacilli in the plumage of birds. Auk. 1999;116:364–72.
Google Scholar
Whitaker JM, Cristol DA, Forsyth MH. Prevalence and genetic diversity of Bacillus licheniformis in avian plumage. J Field Ornithol. 2005;76:264–70.
Google Scholar
Stettenheim PR. The integumentary morphology of modern birds - an overview. Am Zool. 2000;40:461–77.
Google Scholar
Bradbury JH. The structure and chemistry of keratin fibers. Adv Protein Chem. 1973;27:111–211. https://doi.org/10.1016/s0065-3233(08)60447-7.
Fraser RDB, MacRae TP, Parry DAD, Suzuki E. The structure of feather keratin. Polymer. 1971;12:35–56.
CAS
Google Scholar
Noval JJ, Nickerson WJ. Decomposition of native keratin by Streptomycer fradiae. J Bacteriol. 1959;77:251–63.
CAS
PubMed
PubMed Central
Google Scholar
Cheng S-W, Hu H-M, Shen S-W, Takagi H, Asano M, Tsai Y-C. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci Biotechnol Biochem. 1995;59:2239–43.
CAS
PubMed
Google Scholar
Sangali S, Brandelli A. Feather keratin hydrolysis by a Vibrio sp strain kr2. J Appl Microbiol. 2000;89:735–43.
CAS
PubMed
Google Scholar
Williams CM, Richter CS, Mackenzie JM, Shih JCH. Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol. 1990;56:1509–15.
CAS
PubMed
PubMed Central
Google Scholar
Riffel A, Lucas F, Heeb P, Brandelli A. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol. 2003;179:258–65.
CAS
PubMed
Google Scholar
Gupta R, Ramnani P. Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol. 2006;70:21.
CAS
PubMed
Google Scholar
Brandelli A. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol. 2008;1:105–16.
Google Scholar
Shawkey MD, Mills KL, Dale C, Hill GE. Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb Ecol. 2005;50:40–7.
PubMed
Google Scholar
Gunderson AR. Feather-degrading bacteria: a new frontier in avian and host-parasite research? Auk. 2008;125:972–9.
Google Scholar
Dille JW, Rogers CM, Schneegurt MA. Isolation and characterization of bacteria from the feathers of wild dark-eyed juncos (Junco hyemalis). Auk. 2016;133:155–67.
Google Scholar
Bisson IA, Marra PP, Burtt EH, Sikaroodi M, Gillevet PM. A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb Ecol. 2007;54:65–81.
PubMed
Google Scholar
Kent CM, Burtt EH. Feather-degrading bacilli in the plumage of wild birds: prevalence and relation to feather wear. Auk. 2016;133:583–92.
Google Scholar
Musitelli F, Ambrosini R, Caffi M, Caprioli M, Rubolini D, Saino N, Franzetti A, Gandolfi I. Ecological features of feather microbiota in breeding common swifts. Ethol Ecol Evol. 2018;30:569–81.
Google Scholar
Jacob S, Sallé L, Zinger L, Chaine AS, Ducamp C, Boutault L, Russell AF, Heeb P. Chemical regulation of body feather microbiota in a wild bird. Mol Ecol. 2018;27:1727–38.
PubMed
Google Scholar
van Veelen HPJ, Salles JF, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156.
PubMed
PubMed Central
Google Scholar
Dickinson EC, Christidis L. (eds). The Howard and Moore complete checklist of the birds of the world, 4th edition, Vol. 2: passerines. Eastbourne: Aves Press; 2014.
Google Scholar
Dickinson EC, Remsen JV. (eds). The Howard and Moore complete checklist of the birds of the world, 4th edition, Vol. 1: non-passerines. Eastbourne: Aves Press; 2013.
Google Scholar
Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, Adamík P, Heneberg P, Porkert J. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–76.
Azcárate-García M, González-Braojos S, Díaz-Lora S, Ruiz-Rodríguez M, Martín-Vivaldi M, Martínez-Bueno M, Moreno J, Soler JJ. Interspecific variation in deterioration and degradability of avian feathers: the evolutionary role of microorganisms. J Avian Biol. 2020;51:e02320.
Google Scholar
Simmons KEL. The sunning behaviour of birds: a guide for ornithologists. Bristol: Bristol Ornithological Club; 1986.
Google Scholar
Clayton DH, Koop JAH, Harbison CW, Moyer BR, Bush SE. How birds combat ectoparasites. Open Ornithol J. 2010;3:41–71.
Google Scholar
Ehrlich PR, Dobkin DS, Wheye D. The adaptive significance of anting. Auk. 1986;103:835.
Google Scholar
Hauser DC. Some observations on sun-bathing in birds. Wilson Bull. 1957;69:78–90.
Google Scholar
Kennedy RJ. Sunbathing behaviour of birds. British Birds. 1969;62:249–58.
Google Scholar
Ohmart RD, Lasiewski RC. Roadrunners: energy conservation by hypothermia and absorption of sunlight. Science. 1971;172:67–9.
CAS
PubMed
Google Scholar
Clark RG, Ohmart RD. Spread-winged posture of Turkey vultures: single or multiple function? Condor. 1985;87:350–5.
Google Scholar
Moyer BR, Wagenbach GE. Sunning by black Noddies (Anous minutus) may kill chewing lice (Quadraceps hopkinsi). Auk. 1995;112:1073–7.
Google Scholar
Houston DC. A possible function of sunning behavior by griffon vultures, Gyps spp., and other large soaring birds. Ibis. 1980;122:366–9.
Google Scholar
Potter EF, Hauser DC. Relationship of anting and sunbathing to molting in wild birds. Auk. 1974;91:537–63.
Google Scholar
Saranathan V, Burtt EH. Sunlight on feathers inhibits feather-degrading bacteria. Wilson J Ornithol. 2007;119:239–45.
Google Scholar
Javůrková VG, Enbody ED, Kreisinger J, Chmel K, Mrázek J, Karubian J. Plumage iridescence is associated with distinct feather microbiota in a tropical passerine. Sci Rep. 2019;9:12921.
PubMed
PubMed Central
Google Scholar
Shawkey MD, Igic B, Rogalla S, Goldenberg J, Clusella-Trullas S, D’Alba L. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae). Sci Nat. 2017;104:78.
Google Scholar
Marder J. Body temperature regulation in the brown-necked raven (Corvus corax ruficollis)—II. Thermal changes in the plumage of ravens exposed to solar radiation. Comp Biochem Physiol A Physiol. 1973;45:431–40.
CAS
Google Scholar
Ward JM, Blount JD, Ruxton GD, Houston DC. The adaptive significance of dark plumage for birds in desert environments. Ardea. 2002;90:311–23.
Google Scholar
Johnson JA, Brown JW, Fuchs J, Mindell DP. Multi-locus phylogenetic inference among New World vultures (Aves: Cathartidae). Mol Phylogenet Evol. 2016;105:193–9.
PubMed
Google Scholar
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–31.
CAS
PubMed
PubMed Central
Google Scholar
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.
CAS
PubMed
Google Scholar
Houston DC. Cathartidae (New World vultures). In: del Hoyo J, Elliott A, Sargatal J, editors. Handbook of Birds of the World, New World vultures to guineafowl, vol. 2. Barcelona: Lynx Edicions; 1994. p. 24–41.
Google Scholar
Buckley NJ. Black vulture (Coragyps atratus). In: Rodewald PG, editor. The birds of North America. Ithaca: Cornell Lab of Ornithology; 1999. https://birdsna.org/Species-Account/bna/species/blkvul.
Google Scholar
Metcalf JL, Xu ZZ, Weiss S, Lax S, Van Treuren W, Hyde ER, Song SJ, Amir A, Larsen P, Sangwan N, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science. 2016;351:158–62.
CAS
PubMed
Google Scholar
Roggenbuck M, Schnell IB, Blom N, Baelum J, Bertelsen MF, Ponten TS, Sorensen SJ, Gilbert MTP, Graves GR, Hansen LH. The microbiome of New World vultures. Nat Commun. 2014;5:5498. https://doi.org/10.1038/ncomms6498.
Article
CAS
PubMed
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
CAS
PubMed
Google Scholar
Paulson JN, Stine OC, Bravo HC, Pop M. Robust methods for differential abundance analysis in marker gene surveys. Nat Methods. 2013;10:1200–2.
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
PubMed
PubMed Central
Google Scholar
Battista JR. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol. 1997;51:203–24.
CAS
PubMed
Google Scholar
Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol. 2009;7:237–45.
CAS
PubMed
Google Scholar
Battista JR, Rainey FA. Deinococcus. In: Boone DR, Castenholz RW, editors. Bergey's Manual of Systematic Bacteriology Second Edition Volume One The Archaea and the Deeply Branching and Phototrophic Bacteria. New York: Springer; 2001. p. 396–403.
Google Scholar
Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 2001;65:44.
CAS
PubMed
PubMed Central
Google Scholar
Buczolits S, Busse HJ. Hymenobacter. In Bergey's Manual of Systematic Bacteriology Second Edition Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fuscobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Edited by Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB. New York: Springer; 2010: 397–404.
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
PubMed
PubMed Central
Google Scholar
Waite D, Taylor M. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. 2015;6:673.
Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 Neotropical bird species. Front Microbiol. 2015;6:1403.
PubMed
PubMed Central
Google Scholar
Drovetski SV, O'Mahoney M, Ransome EJ, Matterson KO, Lim HC, Chesser RT, Graves GR. Spatial organization of the gastrointestinal microbiota of urban Canada geese. Sci Rep. 2018;8:3713.
PubMed
PubMed Central
Google Scholar
Drovetski SV, O’Mahoney MJV, Matterson KO, Schmidt BK, Graves GR. Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore. Anim Microbiome. 2019;1:2.
PubMed
PubMed Central
Google Scholar
Chao A. Non-parametric estimation of the number of classes in a population. Scand J Stat. 1984;11:265–70.
Google Scholar
McLaughlin RW, Chen MM, Zheng JS, Zhao QZ, Wang D. Analysis of the bacterial diversity in the fecal material of the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Mol Biol Rep. 2012;39:5669–76.
CAS
PubMed
Google Scholar
Kropáčková L, Pechmanová H, Vinkler M, Svobodová J, Velová H, Těšičký M, Martin J-F, Kreisinger J. Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major). PLoS One. 2017;12:e0179945.
PubMed
PubMed Central
Google Scholar
Banskar S, Mourya DT, Shouche YS. Bacterial diversity indicates dietary overlap among bats of different feeding habits. Microbiol Res. 2016;182:99–108.
PubMed
Google Scholar
Jiang H-Y, Ma J-E, Li J, Zhang X-J, Li L-M, He N, Liu H-Y, Luo S-Y, Wu Z-J, Han R-C, Chen J-P. Diets alter the gut microbiome of crocodile lizards. Front Microbiol. 2017;8:2073.
Hedenström A, Norevik G, Warfvinge K, Andersson A, Bäckman J, Åkesson S. Annual 10-month aerial life phase in the common swift Apus apus. Curr Biol. 2016;26:3066–70.
PubMed
Google Scholar
Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol. 2002;56:117–37.
CAS
PubMed
Google Scholar
Porcar M, Louie KB, Kosina SM, Van Goethem MW, Bowen BP, Tanner K, Northen TR. Microbial ecology on solar panels in Berkeley, CA, United States. Front Microbiol. 2018;9:1–14.
Google Scholar
Dorado-Morales P, Vilanova C, Peretó J, Codoñer FM, Ramón D, Porcar M. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city. Sci Rep. 2016;6:29235.
CAS
PubMed
PubMed Central
Google Scholar
Pyle P. Identification guide to north American birds. Part 1. Columbidae to Ploceidae. Bolinas: Slate Creek Press; 1997.
Google Scholar
Pyle P. Identification guide to north American birds. Part II. Anatidae to Alcidae. Point Reyes Station: Slate Creek Press; 2008.
Google Scholar
Jenni L, Winkler R. Moult and ageing of European passerines. London: Christopher Helm; 2011.
Google Scholar
Gill FB, Prum RO. Ornithology. New York: W. H. Freeman, Macmillan Learning; 2019.
Google Scholar
Chandler RM, Pyle P, Flannery ME, Long DJ, Howell SNG. Flight feather molt of Turkey vultures. Wilson J Ornithol. 2010;122:354–60.
Google Scholar
Xu X, Zhou Z, Dudley R, Mackem S, Chuong C-M, Erickson GM, Varricchio DJ. An integrative approach to understanding bird origins. Science. 2014;346:1253293.
PubMed
Google Scholar
Shultz S, Baral HS, Charman S, Cunningham AA, Das D, Ghalsasi GR, Goudar MS, Green RE, Jones A, Nighot P, et al. Diclofenac poisoning is widespread in declining vulture populations across the Indian subcontinent. Proc R Soc Lond Ser B Biol Sci. 2004;271:S458–60.
Google Scholar
Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Iqbal Chaudhry MJ, Arshad M, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 2004;427:630–3.
CAS
PubMed
Google Scholar
Graves GR. Head color and caruncles of sympatric Cathartes vultures (Aves: Cathartidae) in Guyana and their possible function in intra- and interspecific signaling. Proc Biol Soc Wash. 2016;129:66–75.
Google Scholar
Graves GR. Field measurements of gastrointestinal pH of New World vultures in Guyana. J Raptor Res. 2017;51:465–9.
Google Scholar
Graves GR. Urohidrosis and tarsal color in Cathartes vultures (Aves: Cathartidae). Proc Biol Soc Wash. 2019;132:56–64.
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
CAS
PubMed
PubMed Central
Google Scholar
Earth Microbiome Project: 16S Illumina amplicon protocol [http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/].
Drovetski SV, O’Mahoney M, Ransome EJ, Matterson KO, Lim HC, Chesser RT, Graves GR. Spatial organization of the gastrointestinal microbiota in urban Canada geese. Sci Rep. 2018;8:3713.
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
CAS
PubMed
PubMed Central
Google Scholar
vegan: community ecology package. R package version 2.4–3. [https://CRAN.R-project.org/package=vegan].
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
CAS
PubMed
PubMed Central
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar