Llewellyn MS, Boutin S, Hoseinifa S, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5:207. https://doi.org/10.3389/fmicb.2014.00207.
Article
PubMed
PubMed Central
Google Scholar
Hansen GH, Olafsen JA. Bacterial interactions in early life stages of marine cold water fish. Microb Ecol. 1999;38:1–26. https://doi.org/10.1007/s002489900158.
Article
CAS
PubMed
Google Scholar
Lowrey L, Woodhams DC, Tacchi L, Salinas I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol. 2015;81(19):6915–25. https://doi.org/10.1128/AEM.01826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber B, Chen C, Milton D. Colonization of fish skin is vital for Vibrio anguillarum to cause disease. Environ Microbiol Rep. 2010;2:133–9. https://doi.org/10.1111/j.1758-2229.2009.00120.x.
Article
CAS
PubMed
Google Scholar
Westerdahl A, Olsson JC, Kjelleberg S, Conway PL. Isolation and characterization of turbot (Scophtalmus maximus)-associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol. 1999;57(8):2223–8.
Article
Google Scholar
Bernadsky G, Rosenberg E. Drag-reducing properties of bacteria from the skin mucus of the cornetfish (Fistularia commersonii). Microb Ecol. 1992;24:63–76. https://doi.org/10.1007/BF00171971.
Article
CAS
PubMed
Google Scholar
Sar N, Rosenberg E. Fish skin bacteria: production of friction-reducing polymers. Microb Ecol. 1989;17:27–38. https://doi.org/10.1007/BF02025591.
Article
CAS
PubMed
Google Scholar
Sar N, Rosenberg E. Fish skin bacteria: colonial and cellular hydrophobicity. Microb Ecol. 1987;13:193–202. https://doi.org/10.1007/BF02024997.
Article
CAS
PubMed
Google Scholar
Olafsen JA. Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture. 2001;200:223–47. https://doi.org/10.1016/S0044-8486(01)00702-5.
Article
Google Scholar
Legrand TPRA, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DAJ, Qin JG, Oxley APA. The inner workings of the outer surface: skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol. 2018;8:2664. https://doi.org/10.3389/fmicb.2017.02664.
Article
PubMed
PubMed Central
Google Scholar
Doane MP, Haggerty JM, Kacev D, Papudeshi B, Dinsdale EA. The skin microbiome of the common thresher shark (Alopias vulpinus) has low taxonomic and gene function 훽-diversity. Environ Microbiol Rep. 2017;9(4):357–73. https://doi.org/10.1111/1758-2229.12537.
Article
CAS
PubMed
Google Scholar
Minniti G, Hagen LH, Porcellato D, Jørgensen SM, Pope PB, Kolstad GV. The skin-mucus microbial community of farmed Atlantic salmon (Salmo salar). Front Microbiol. 2017;8:2043. https://doi.org/10.3389/fmicb.2017.02043.
Article
PubMed
PubMed Central
Google Scholar
Chiarello M, Villéger S, Bouvier C, Bettarel Y, Bouvier T. High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals, and species. FEMS Microbiol Ecol. 2015;91(7):1–12. https://doi.org/10.1093/femsec/fiv061.
Article
CAS
Google Scholar
Larsen AM, Bullard SA, Womble M, Arias CR. Community structure of skin microbiome of gulf killifish, Fundulus grandis, is driven by seasonality and not exposure to oiled sediments in a Louisiana salt marsh. Microb Ecol. 2015;70:534–44. https://doi.org/10.1007/s00248-015-0578-7.
Article
CAS
PubMed
Google Scholar
Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol. 2013;85:483–94. https://doi.org/10.1111/1574-6941.12136.
Article
CAS
PubMed
Google Scholar
Wilson B, Danilowicz BS, Meijer WG. The diversity of bacterial communities associated with Atlantic cod Gadus morhua. Microb Ecol. 2008;55:425–34. https://doi.org/10.1007/s00248-007-9288-0.
Article
PubMed
Google Scholar
Pimente T, Marcelino J, Ricardo F, Soares AMVM, Calado R. Bacterial communities 16S rDNA fingerprinting as a potential tracing tool for cultured seabass Dicentrarchus labrax. Sci Rep. 2017;7:11862 10:1038/s41598–017–115522-7.
Article
Google Scholar
Landeira-Dabarca A, Sieiro C, Álvarez M. Change in food ingestion induces rapid shifts in the diversity of microbiota associated with cutaneous mucus of Atlantic salmon (Salmo salar). J Fish Biol. 2013;82:893–906. https://doi.org/10.1111/jfb.12025.
Article
CAS
PubMed
Google Scholar
Hess S, Wenger AS, Ainsworth TD, Rummer JL. Exposure of clownfish larvae to suspended sediment levels found on the great barrier reef: impacts on gill structure and microbiome. Sci Rep. 2015;5:10561. https://doi.org/10.1038/srep10561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammad H, Arias CR. Potassium permanganate elicits a shift of the external fish microbiome and increases host susceptibility to columnaris disease. Vet Res. 2015;46:82. https://doi.org/10.1186/s13567-015-0215-y.
Article
CAS
Google Scholar
Jasonowicz AJ, Goetz FW, Goetz GW, Nichols KM. Love the one you’re with: genomic evidence of panmixia in the sablefish (Anoplopoma fimbria). Can J Fish Aquat Sci. 2016;74(3):377–87. https://doi.org/10.1139/cjfas-2016-0012.
Article
CAS
Google Scholar
Beamish RJ, McFarlane GA, Benson A. Longevity overfishing. Prog Oceanogr. 2006;68:289–302. https://doi.org/10.1016/j.pocean.2006.02.005.
Article
Google Scholar
Sasaki T. Studies on the sablefish resources in the North Pacific Ocean. Bull Far Seas Fish Res Lab. 1985;22:1–108.
Google Scholar
Pierce ML, Lee JSF, Dodd E, Poretsky RS. Algae and clay water additives differentially impact survival and microbial community structure in sablefish (Anoplopoma fimbria) rearing tanks. Front Mar Sci. 2019;6:203. https://doi.org/10.3389/fmars.2019.00203.
Article
Google Scholar
Lee JSF, Cook MA, Berejikian BA, Goetz FW. Temporal changes in the suitability of claywater as a greenwater substitute for rearing larval sablefish (Anoplopoma fimbria). Aquaculture. 2017;470:11–6. https://doi.org/10.1016/j.aquaculture.2016.12.011.
Article
Google Scholar
Cook MA, Massee KC, Wade TH, Oden SM, Jensen C, Jasonowicz A, Immerman DA, Goetz FW. Culture of sablefish (Anoplopoma fimbria) larvae in four experimental tank designs. Aquac Eng. 2015;60:43–9. https://doi.org/10.1016/j.aquaeng.2015.09.003.
Article
Google Scholar
Luckenbach JA, Fairgrieve WT, Hayman ES. Establishment of monosex female production of sablefish (Anoplopoma fimbria) through direct and indirect sex control. Aquaculture. 2017;479:285–96. https://doi.org/10.1016/j.aquaculture.2017.05.037.
Article
CAS
Google Scholar
Cobcroft JM, Shu-Chien AC, Kuah MK, Jaya-Ram A, Battaglene SC. The effects of tank colour, live food enrichment and greenwater on the early onset of jaw malformation in striped trumpeter larvae. Aquaculture. 2012;356–367:61–72. https://doi.org/10.1016/j.aquaculture.2012.05.035.
Article
Google Scholar
van der Meeren T, Mangor-Jensen A, Pickova J. The effect of green water and light intensity on survival, growth, and lipid composition in Atlantic cod (Gadus morhua) during intensive larval rearing. Aquaculture. 2007;265:206–17. https://doi.org/10.1016/j.aquaculture.2007.01.042.
Article
Google Scholar
Ayer MH, Benton C, King VW, Kneebone J, Elzey S, Toran M, Grange K, Berlinsky DL. Development of practical culture methods for rainbow smelt larvae. N Am J Aquac. 2005;67:202–9. https://doi.org/10.1577/A04-064.1.
Article
Google Scholar
Utne-Palm AC. Effects of larvae ontogeny, turbidity, and turbulence on prey attack rate and swimming activity of Atlantic herring larvae. J Exp Mar Biol Ecol. 2004;310:147–61. https://doi.org/10.1016/j.jembe.2004.04.005.
Article
Google Scholar
Utne-Palm AC. Visual feeding of fish in a turbid environment: physical and behavioural aspects. Mar Freshw Behav Physiol. 2002;35(1–2):111–28. https://doi.org/10.1080/10236240290025644.
Article
Google Scholar
Cobcroft JM, Pankhurst PM, Hart PR, Battaglene SC. The effects of light intensity and algae-induced turbidity on feeding behavior of larval striped trumpeter. J Fish Biol. 2001;59:1181–97. https://doi.org/10.1006/jfbi.2001.1729.
Article
Google Scholar
Bristow BT, Summerfelt RC, Clayton RD. Comparative performance of intensively cultured larval walleye in clear, turbid, and colored water. Prog Fish-Cult. 1996;58:1–10. https://doi.org/10.1577/1548-8640(1996)058<0001:CPOICL>2.3CO;2.
Article
Google Scholar
Naas KE, Naess T, Harboe T. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water. Aquaculture. 1992;105:143–56. https://doi.org/10.1016/0044-8486(92)90126-6.
Article
Google Scholar
Boehlert GW, Morgan JB. Turbidity enhances feeding abilities of larval pacific herring, Clupea harengus pallasi. Hydrobiologia. 1985;123:161–70. https://doi.org/10.1007/BF00018978.
Article
Google Scholar
Stuart KR, Drawbridge M. The effect of light intensity and green water on survival and growth of cultured larval California yellowtail (Seriola lalandi). Aquaculture. 2011;321:152–6. https://doi.org/10.1016/j.aquaculture.2011.08.023.
Article
Google Scholar
Palmer PJ, Burke MJ, Palmer CJ, Burke JB. Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture. 2007;272:1–21. https://doi.org/10.1016/j.aquaculture.2007.06.018.
Article
Google Scholar
Cahu CL, Zambonino Infante JL, Péres A, Quazuguel P, Le Gall MM. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture. 1998;161:479–89. https://doi.org/10.1016/S0044-8486(97)00295-0.
Article
CAS
Google Scholar
Attramadal KJK, Tøndel B, Salvesen I, Øie G, Vadstein O, Olsen Y. Ceramic clay reduces the load of organic matter and bacteria in marine fish larval culture tanks. Aquac Eng. 2012;49:23–34. https://doi.org/10.1016/j.aquaeng.2012.02.003.
Article
Google Scholar
Stuart K, Rotman F, Drawbridge M. Methods of microbial control in marine fish larval rearing: clay-based turbidity and passive larval transfer. Aquac Res. 2016;47:2470–80. https://doi.org/10.1111/are.12696.
Article
CAS
Google Scholar
Daugherty ZN. Effects of algal paste substitutes on the larval rearing performance and microbial communities in the culture of cobia (Radycentron canadum) and yellowtail kingfish (Seriola lalandi). In: University of Miami Scholarly Repository. University of Miami. 2013. https://scholarlyrepository.miami.edu/oa_theses/448. Accessed 12 Feb 2018.
Breen P, Winters AD, Nag D, Ahmad MM, Theis KR, Withy JH. Internal versus external pressures: effect of housing systems on the zebrafish microbiome. Zebrafish. 2019;16:388–400. https://doi.org/10.1089/zeb.2018.1711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K, Seredick S, Guillemin K, Bohannan BJM. Interhost dispersal alters microbome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc Natl Acad Sci. 2017;114(42):11181–6. https://doi.org/10.1073/pnas.1702511114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Björnsdóttir R. The bacterial community during early production stages of intensively reared halibut (Hippoglossus hippoglossus L.). In: Skemman repository. National and University Library of Iceland https://skemman.is/bitstream/1946/4623/1/The%20bacterial%20community%20during%20early%20production%20stages%20of%20intensively%20reared%20halibut%20_Hippoglossus%20hippoglossus%20L.pdf. Accessed 12 Feb 2018.
Robinson CD, Klein HS, Murphy KD, Parthasarathy R, Guillemin K, Bohannan BJM. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 2018;16(12):e2006893. https://doi.org/10.1371/journal.pbio.2006893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minich JJ, Poore GD, Jantawongsri K, Johnston C, Bowie K, Bowman J, Knight R, Nowak B, Allen EE. Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl Environ Microbiol. 2020;86(12):e00411–20. https://doi.org/10.1128/AEM.00411-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55. https://doi.org/10.1038/nrmicro.2017.157.
Article
CAS
PubMed
Google Scholar
Bletz MC, Archer H, Harris RN, McKenzie VJ, Rabemananjara FCE, Rakotoarison A, Vences M. Host ecology rather than host phylogeny drives amphibian skin microbial community structure in biodiversity hotspot of Madagascar. Front Microbiol. 2017;8:1530. https://doi.org/10.3389/fmicb.2017.01530.
Article
PubMed
PubMed Central
Google Scholar
Apprill A, Robbins J, Murat Eren A, Pack AA, Reveillaud J, Mattila D, Moore M, Niemeyer M, Moore KMT, Mincer TJ. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS One. 2014;9(3):e90785. https://doi.org/10.1371/journal.pone.0090785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carda-Diéguez M, Ghai R, Rodríguez-Valera F, Amaro C. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. Microbiome. 2017;5:162. https://doi.org/10.1186/s40168-017-0376-1.
Article
PubMed
PubMed Central
Google Scholar
Imelda-Joseph Susmitha V, Mathew A. Isolation and characterisation of extreme halophiles Halomonas aquamarina and Halomonas marina from trigger fish, Abalistes stellaris (Bloch & Schneider, 1801). Indian J Fish. 2013;60(3):107–12.
Google Scholar
Boutin S, Bernatchez L, Audet C, Derôme N. Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One. 2013;8:e84772. https://doi.org/10.1371/journal.pone.0084772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson JM, Leonard AB, Hyde ER, Petrosino JF, Primm TP. Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broad-spectrum antibiotic. Infect Drug Resist. 2017;10:143–54. https://doi.org/10.2147/IDR.S129055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verner-Jeffreys DW, Nakamura I, Shields RJ. Egg-associated microflora of Pacific threadfin, Polydactylus sexfilis and amberjack, Seriola rivoliana, eggs. Characterisation and properties. Aquaculture. 2006;253:184–96. https://doi.org/10.1016/j.aquaculture.2005.08.019.
Article
Google Scholar
Bayha KM, Ortell N, Ryan CN, Griffitt KJ, Krasnec M, Sena J, Ramaraj T, Takeshita R, Mayer GD, Schilkey F, Griffitt RJ. Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder. PLoS One. 2017;12(5):e0176559. https://doi.org/10.1371/journal.pone.0176559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navarrete P, Mardones P, Opazo R, Espejo R, Romerjo J. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. J Aquat Anim Health. 2010;20:177–83. https://doi.org/10.1577/H07-043.1.
Article
Google Scholar
Svanevik CS, Lunestad BT. Characterisation of the microbiota of Atlantic mackerel (Scomber scombrus). Int J Food Microbiol. 2011;151:164–70. https://doi.org/10.1016/j.ijfoodmicro.2011.08.016.
Article
CAS
PubMed
Google Scholar
Verner-Jeffreys DW, Shields RJ, Bricknell IR, Birkbeck TH. Effects of different water treatment methods and antibiotic addition on larval survival and gut microflora development in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae. Aquaculture. 2004;232:129–43. https://doi.org/10.1016/S0044-8486(03)00525-8.
Article
CAS
Google Scholar
Paulsen SS, Strube ML, Bech PK, Gram L, Sonnenschein EC. Marine chitinolytic Pseudoalteromonas represents an untapped reservoir of bioactive potential. mSystems. 2019;4(4):e00060–19. https://doi.org/10.1128/mSystems.00060-19.
Article
PubMed
PubMed Central
Google Scholar
Pham D, Ansquer D, Chevalier A, Dauga C, Peyramale A, Wabete N, Labreuche Y. Selection and characterization of potential probiotic bacteria for Litopenaeus stylirostris shrimp hatcheries in New Caledonia. Aquaculture. 2014;432:475–82. https://doi.org/10.1016/j.aquaculture.2014.04.031.
Article
Google Scholar
Lee JSF, Poretsky RS, Cook MA, Reyes-Tomassini JJ, Berejikian BA, Goetz FW. Dimethylsulfoniopropionate (DMSP) increases survival of larval sablefish, Anoplopoma fimbria. J Chem Ecol. 2016;42:533–6. https://doi.org/10.1007/s10886-016-0713-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green SJ, Venkatramanan R, Naqib A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One. 2015;10(5):e0128122. https://doi.org/10.1371/journal.pone.0128122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. Qiime allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72. https://doi.org/10.1128/AEM.03006-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissable. PLoS Comput Biol. 2014;10(4):e1003531. https://doi.org/10.1371/journal.pcbi.1003531.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible Interactive and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;30:289–90. https://doi.org/10.1093/bioinformatics/btg412.
Article
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.4-4. In: CRAN Repository https://CRAN.R-project.org/package=vegan. Accessed 12 Feb 2018.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
CAS
Google Scholar
Lahti L, Shetty S, Blake T, Saloja J. (2014). Microbiome R package. In: Github. http://microbiome.github.io. Accessed 12 Feb 2018.
Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35. https://doi.org/10.1186/1471-2105-12-35.
Article
PubMed
PubMed Central
Google Scholar
Beals EW. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv Ecol Res. 1984;14:1–55. https://doi.org/10.1016/S0065-2504(08)60168-3.
Article
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Aust Ecol. 2001;26:32–46. https://doi.org/10.1046/j.1442-9993.2001.01070.x.
Article
Google Scholar
Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83(4):557–74. https://doi.org/10.1890/12-2010.1.
Article
Google Scholar
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82(13):1–26. https://doi.org/10.18637/jss.v082.i13.
Article
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8(9):761–3. https://doi.org/10.1038/nmeth.1650.
Article
CAS
PubMed
PubMed Central
Google Scholar