de Paula AF, Creed JC. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bull Mar Sci. 2004;74:175–83.
Google Scholar
Lages BG, Fleury BG, Menegola C, Creed JC. Change in tropical rocky shore communities due to an alien coral invasion. Mar Ecol Prog Ser. 2011;438:85–96. https://doi.org/10.3354/meps09290.
Article
Google Scholar
Miranda R, Tagliafico A, Kelaher B, Mariano-Neto E, Barros F. Impact of invasive corals Tubastrea spp. on native coral recruitment. Mar Ecol Prog Ser. 2018;605:125–33. https://doi.org/10.3354/meps12731.
Article
Google Scholar
Silva R, Vinagre C, Kitahara MV, Acorsi IV, Mizrahi D, Flores AAV. Sun coral invasion of shallow rocky reefs: effects on mobile invertebrate assemblages in southeastern Brazil. Biol Invasions. 2019;21:1339–50. https://doi.org/10.1007/s10530-018-1903-0.
Article
Google Scholar
Castro CB, Pires DO. Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci. 2001;69:357–71.
Google Scholar
Soares MO, Davis M, Carneiro PBM. Northward range expansion of the invasive coral (Tubastraea tagusensis) in the southwestern Atlantic. Mar Biodivers. 2018;48:1651–4. https://doi.org/10.1007/s12526-016-0623-x.
Article
Google Scholar
Ferreira CEL, Gonçalves JEA, Coutinho R. Cascos de navios e plataformas como vetores na introdução de espécies exóticas. Água Lastro E Bioinvasão; 2004. p. 143–55.
Google Scholar
Creed JC, Eduardo A, Oliveira S, de Paula AF. Cnidaria, Scleractinia, Tubastraea coccinea lesson, 1829 and Tubastraea tagusensis Wells, 1982: distribution extension. Check List. 2008;4:297–300.
Article
Google Scholar
Sampaio CLS, Miranda RJ, Maia-Nogueira R, de Nunes JCCA. New occurrences of the nonindigenous orange cup corals Tubastraea coccinea and T. tagusensis (Scleractinia: Dendrophylliidae) in southwestern Atlantic. Check List. 2012;8:528–30.
Article
Google Scholar
Costa TJF, Pinheiro HT, Teixeira JB, Mazzei EF, Bueno L, Hora MSC, et al. Expansion of an invasive coral species over Abrolhos Bank, Souhwestern Atlantic. Mar Pollut Bull. 2014;85:252–3. https://doi.org/10.1016/j.marpolbul.2014.06.002.
Article
CAS
PubMed
Google Scholar
Silva AG, de Paula AF, Fleury BG, Creed JC. Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the Southwest Atlantic (Brazil). Estuar Coast Shelf Sci. 2014;141:9–16. https://doi.org/10.1016/j.ecss.2014.01.013.
Article
Google Scholar
Mantelatto MC, Creed JC, Mourão GG, Migotto AE, Lindner A. Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs. 2011;30:397. https://doi.org/10.1007/s00338-011-0720-z.
Article
Google Scholar
Creed JC. Two invasive alien azooxanthellate corals, Tubastraea coccinea and Tubastraea tagusensis, dominate the native zooxanthellate Mussismilia hispida in Brazil. Coral Reefs. 2006;25:350. https://doi.org/10.1007/s00338-006-0105-x.
Article
Google Scholar
Capel KC, Creed JC, Kitahara MV. Invasive corals trigger seascape changes in the southwestern Atlantic. Bull Mar Sci. 2019;96:217–8.
Article
Google Scholar
Cairns SD. A revision of the Ahermatypic Scleractinia of the Galapagos and Cocos Islands. Smithson Contrib Zool. 1991:1–32. https://doi.org/10.5479/si.00810282.504.
de Paula AF, Pires DO, Creed JC. Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the Southwestern Atlantic. J Mar Biol Assoc United Kingdom. 2014;94:481–92. https://doi.org/10.1017/S0025315413001446.
Article
Google Scholar
Blackall LL, Wilson B, Van Oppen MJHH. Coral - the world’s most diverse symbiotic ecosystem. Mol Ecol. 2015;24:5330–47. https://doi.org/10.1111/mec.13400.
Article
PubMed
Google Scholar
Fraune S, Bosch TCG. Why bacteria matter in animal development and evolution. BioEssays. 2010;32:571–80. https://doi.org/10.1002/bies.200900192.
Article
CAS
PubMed
Google Scholar
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. Microbiome. 2018;6:1–14. https://doi.org/10.1186/s40168-018-0457-9.
Article
Google Scholar
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the core microbiome in corals’ microbial soup. Trends Microbiol. 2017;25:125–40. https://doi.org/10.1016/j.tim.2016.11.003.
Article
CAS
PubMed
Google Scholar
Bernasconi R, Stat M, Koenders A, Paparini A, Bunce M, Huggett MJ. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front Microbiol. 2019;10:1–16. https://doi.org/10.3389/fmicb.2019.01529.
Article
Google Scholar
Kellogg CA. Microbiomes of stony and soft deep-sea corals share rare core bacteria. Microbiome. 2019;7:1–13. https://doi.org/10.1186/s40168-019-0697-3.
Article
Google Scholar
Glasl B, Smith CE, Bourne DG, Webster NS. Disentangling the effect of host-genotype and environment on the microbiome of the coral Acropora tenuis. PeerJ. 2019;7:1–18. https://doi.org/10.7717/peerj.6377.
Article
CAS
Google Scholar
Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10:3092. https://doi.org/10.1038/s41467-019-10969-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glasl B, Bongaerts P, Elisabeth NH, Hoegh-Guldberg O, Herndl GJ, Frade PR. Microbiome variation in corals with distinct depth distribution ranges across a shallow–mesophotic gradient (15–85 m). Coral Reefs. 2017;36:447–52. https://doi.org/10.1007/s00338-016-1517-x.
Article
PubMed
PubMed Central
Google Scholar
Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-43268-6.
Article
CAS
Google Scholar
Rosenberg E, Koren O, Reshef L, Efrony R. The role of microorganisms in coral health, disease, and evolution. Nat Rev Microbiol. 2007;5:355–62. https://doi.org/10.1038/nrmicro1635.
Article
CAS
PubMed
Google Scholar
Sharp KH, Distel D, Paul VJ. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 2012;6:790–801. https://doi.org/10.1038/ismej.2011.144.
Article
CAS
PubMed
Google Scholar
Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63. https://doi.org/10.1111/j.1462-2920.2009.01935.x.
Article
CAS
Google Scholar
McFall-Ngai MJ. Unseen forces: the influence of bacteria on animal development. Dev Biol. 2002;242:1–14. https://doi.org/10.1006/dbio.2001.0522.
Article
CAS
PubMed
Google Scholar
Saffo M. Symbiosis: the way of all life. In: Seckbach J, editor. Life as we know it. New York: Springer; 2006. p. 325–39.
Google Scholar
Gilbert SF, McDonald E, Boyle N, Buttino N, Gyi L, Mai M, et al. Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philos Trans R Soc Lond B Biol Sci. 2010;365:671–8. https://doi.org/10.1098/rstb.2009.0245.
Article
PubMed
PubMed Central
Google Scholar
Rohwer F, Edwards R. The phage proteomic tree: a genome-based taxonomy for phage. J Bacteriol. 2002;184:4529–35. https://doi.org/10.1128/JB.184.16.4529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol. 2012;87:325–41. https://doi.org/10.1086/668166.
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35. https://doi.org/10.1111/j.1574-6976.2008.00123.x.
Article
CAS
PubMed
Google Scholar
Rosenberg E, Zilber-Rosenberg I. Symbiosis and development: the hologenome concept. Birth Defects Res C Embryo Today. 2011;93:56–66. https://doi.org/10.1002/bdrc.20196.
Article
CAS
PubMed
Google Scholar
Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74. https://doi.org/10.1038/ismej.2015.39.
Article
CAS
Google Scholar
Carlos C, Torres TT, Ottoboni LMM. Bacterial communities and species-specific associations with the mucus of Brazilian coral species. Sci Rep. 2013;3:1–7. https://doi.org/10.1038/srep01624.
Article
CAS
Google Scholar
Apprill A, Marlow HQ, Martindale MQ, Rappé MS. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl Environ Microbiol. 2012;78:7467–75. https://doi.org/10.1128/AEM.01232-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meistertzheim A-L, Lartaud F, Arnaud-Haond S, Kalenitchenko D, Bessalam M, Le Bris N, et al. Patterns of bacteria-host associations suggest different ecological strategies between two reef-building cold-water coral species. Deep Sea Res Part I Oceanogr Res Pap. 2016;114:12–22. https://doi.org/10.1016/j.dsr.2016.04.013.
Article
Google Scholar
Neulinger SC, Järnegren J, Ludvigsen M, Lochte K, Dullo WC. Phenotype-specific bacterial communities in the cold-water coral Lophelia pertusa (Scleractinia) and their implications for the coral’s nutrition, health, and distribution. Appl Environ Microbiol. 2008;74:7272–85. https://doi.org/10.1128/AEM.01777-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Sun W, Tang C, Jin L, Zhang F, Li Z. Phylogenetic diversity of actinobacteria associated with soft coral Alcyonium gracllimum and stony coral Tubastraea coccinea in the East China Sea. Microb Ecol. 2013;66:189–99. https://doi.org/10.1007/s00248-013-0205-4.
Article
PubMed
Google Scholar
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/srep44714.
Article
CAS
Google Scholar
Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. BMC Bioinform. 2011;12:1–9. https://doi.org/10.1186/1471-2105-12-385.
Littman R, Willis BL, Bourne DG. Metagenomic analysis of the coral holobiont during a natural bleaching event on the great barrier reef. Environ Microbiol Rep. 2011;3:651–60. https://doi.org/10.1111/j.1758-2229.2010.00234.x.
Article
CAS
PubMed
Google Scholar
Garcia GD, Gregoracci GB, Santos ED, Meirelles PM, Silva GG, Edwards R, et al. Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals. Microb Ecol. 2013;65:1076–86. https://doi.org/10.1007/s00248-012-0161-4.
Article
PubMed
Google Scholar
Amaral-Zettler L, Artigas LF, Baross J, Bharathi L, Boetius A, Chandramohan D, et al. A global census of marine microbes. In: McIntyre AD, editor. Life in the World’s Oceans: Diversity, Distribution, and Abundance. Scotland: Blackwell Publishing Ltd; 2010. p. 221–45.
Lins-de-Barros MM, Cardoso AM, Silveira CB, Lima JL, Clementino MM, Martins OB, et al. Microbial community compositional shifts in bleached colonies of the brazilian reef-building coral Siderastrea stellata. Microb Ecol. 2013;65:205–13. https://doi.org/10.1007/s00248-012-0095-x.
Article
PubMed
Google Scholar
Lins-de-Barros MM, Vieira RP, Cardoso AM, Monteiro VA, Turque AS, Silveira CB, et al. Archaea, bacteria, and algal plastids associated with the reef-building corals Siderastrea stellata and Mussismilia hispida from Búzios, South Atlantic Ocean, Brazil. Microb Ecol. 2010;59:523–32. https://doi.org/10.1007/s00248-009-9612-y.
Article
CAS
PubMed
Google Scholar
Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol. 2007;9:2707–19. https://doi.org/10.1111/j.1462-2920.2007.01383.x.
Article
CAS
PubMed
Google Scholar
Séré MG, Tortosa P, Chabanet P, Turquet J, Quod J-P, Schleyer MH. Bacterial communities associated with porites white patch syndrome (pwps) on three Western Indian Ocean (WIO) coral reefs. PLoS One. 2013;8:e83746. https://doi.org/10.1371/journal.pone.0083746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using φ29 polymerase. Environ Microbiol. 2006;8:1155–63. https://doi.org/10.1111/j.1462-2920.2006.01005.x.
Article
CAS
PubMed
Google Scholar
Ng JCY, Chan Y, Tun HM, Leung FCC, Shin PKS, Chiu JMY. Pyrosequencing of the bacteria associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in bacterial community composition in apparently healthy and diseased tissues. Front Microbiol. 2015;6:1–14. https://doi.org/10.3389/fmicb.2015.01142.
Article
CAS
Google Scholar
Kellogg CA, Ross SW, Brooke SD. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ. 2016;4:2–25. https://doi.org/10.7717/peerj.2529.
Article
Google Scholar
Capel KCC, Toonen RJ, Rachid CTCC, Creed JC, Kitahara MV, Forsman Z, et al. Clone wars: asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ. 2017;5:1–21. https://doi.org/10.7717/peerj.3873.
Article
Google Scholar
Byler KA, Carmi-Veal M, Fine M, Goulet TL. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One. 2013;8:e59596. https://doi.org/10.1371/journal.pone.0059596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Tech Bact Syst. New York: John Wiley and Sons; 1991. p. 115–75.
Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46:327–38. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x.
Article
CAS
PubMed
Google Scholar
Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010;11:485. https://doi.org/10.1186/1471-2105-11-485.
Article
Google Scholar
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2014;2:1–13. https://doi.org/10.7717/peerj.593.
Article
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41. https://doi.org/10.1128/AEM.01541-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4. https://doi.org/10.1093/bioinformatics/btu494.
Article
CAS
PubMed
PubMed Central
Google Scholar