DeLong EF, Taylor LT, Marsh TL, Preston CM. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl Environ Microbiol. 1999;65:5554–63 http://www.ncbi.nlm.nih.gov/pubmed/10584017. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC91757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bik EM, Costello EK, Switzer AD, Callahan BJ, Holmes SP, Wells RS, et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun. 2016;7:10516. https://doi.org/10.1038/ncomms10516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vendl C, Ferrari BC, Thomas T, Slavich E, Zhang E, Nelson T, et al. Interannual comparison of core taxa and community composition of the blow microbiota from East Australian humpback whales. FEMS Microbiol Ecol. 2019;95:1-8.
Apprill A, Mooney TA, Lyman E, Stimpert AK, Rappé MS. Humpback whales harbour a combination of specific and variable skin bacteria. Environ Microbiol Rep. 2011;3:223–32.
Article
CAS
PubMed
Google Scholar
Apprill A, Miller CA, Van Cise AM, U’Ren JM, Leslie MS, Weber L, et al. Marine mammal skin microbiotas are influenced by host phylogeny. R Soc Open Sci. 2020;7:192046. https://doi.org/10.1098/rsos.192046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol. 2012;3:292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marzinelli EM, Campbell AH, Zozaya Valdes E, Vergés A, Nielsen S, Wernberg T, et al. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Environ Microbiol. 2015;17:4078–88.
Article
PubMed
Google Scholar
Nelson TM, Apprill A, Mann J, Rogers TL, Brown MV. The marine mammal microbiome: current knowledge and future directions. Microbiol Australia. 2015;36:8. https://doi.org/10.1071/MA15004.
Article
Google Scholar
Apprill A, Robbins J, Eren AM, Pack AA, Reveillaud J, Mattila D, et al. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS One. 2014;9:e90785. https://doi.org/10.1371/journal.pone.0090785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103.
Article
CAS
PubMed
Google Scholar
Harrison R, Thurley K. Structure of the epidermis in Tursiops, Delphinus and Phocoena. In: Harrison RJ, editor. Functional anatomy of marine mammals. London: Academic Press; 1974. p. 45–71.
Google Scholar
Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–2. https://doi.org/10.1126/science.1171700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, Segre JA. Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc Natl Acad Sci U S A. 2010;107:14799–804. https://doi.org/10.1073/pnas.1004204107.
Article
PubMed
PubMed Central
Google Scholar
Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17:320–8.
Article
PubMed
PubMed Central
Google Scholar
Hobbs RC, Waite JM, Rugh DJ. Beluga, Delphinapterus leucas, group sizes in cook inlet, Alaska, based on observer counts and aerial video. Mar Fish Rev. 2000;62:46–59.
Google Scholar
Shelden KE, Goetz KT, Rugh DJ, Calkins DG, Mahoney BA, Hobbs RC. Spatio-temporal changes in Beluga whale, Delphinapterus leucas, distribution: results from aerial surveys (1977-2014), opportunistic sightings (1975-2014), and satellite tagging (1999-2003) in cook inlet, Alaska. Mar Fisheries Rev. 2015;77:1–60. https://doi.org/10.7755/MFR.77.2.1.
Article
Google Scholar
O’Corry-Crowe G, Suydam R, Quakenbush L, Smith TG, Lydersen C, Kovacs KM, et al. Group structure and kinship in beluga whale societies. Sci Rep. 2020;10:1–21. https://doi.org/10.1038/s41598-020-67314-w.
Article
CAS
Google Scholar
Hobbs RC, Reeves RR, Prewitt JS, Desportes G, Breton-Honeyman K, Christensen T, et al. Global review of the conservation status of monodontid stocks. Mar Fish Rev. 2019;81:1–53. https://doi.org/10.7755/MFR.81.3-4.1.
Article
Google Scholar
Quakenbush LT, Suydam RS, Bryan AL, Lowry LF, Frost KJ, Mahoney BA. Diet of beluga whales, Delphinapterus leucas, in Alaska from stomach contents, March–November. Mar Fisheries Rev. 2015;77:70–84.
Article
Google Scholar
Aubin DJS, Smith TG, Geraci JR. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can J Zool. 1990;68:359–67. https://doi.org/10.1139/z90-051.
Article
Google Scholar
Boily P. Theoretical heat flux in water and habitat selection of phocid seals and beluga whales during the annual molt. J Theor Biol. 1995;172:235–44.
Article
Google Scholar
Chernova OF, Shpak OV, Kiladze AB, Azarova VS, Rozhnov VV. Summer molting of bowhead whales Balaena mysticetus Linnaeus, 1758, of the Okhotsk Sea population. Dokl Biol Sci. 2016;471:261–5. https://doi.org/10.1134/S0012496616060028.
Article
CAS
PubMed
Google Scholar
Pitman RL, Durban JW, Joyce T, Fearnbach H, Panigada S, Lauriano G. Skin in the game: epidermal molt as a driver of long-distance migration in whales. Marine Mammal Sci. 2020;36:565–94. https://doi.org/10.1111/mms.12661.
Article
Google Scholar
Daniel RG, Jemison LA, Pendleton GW, Crowley SM. Molting phenology of harbor seals on Tugidak Island, Alaska. Marine Mammal Sci. 2003;19:128–40. https://doi.org/10.1111/j.1748-7692.2003.tb01097.x.
Article
Google Scholar
Hobbs RC, Laidre KL, Vos DJ, Mahoney BA, Eagleton M. Movements and area use of belugas, Delphinapterus leucas, in a subarctic Alaskan estuary. Arctic. 2005;58:331–40.
Google Scholar
Citta JJ, Quakenbush LT, Frost KJ, Lowry L, Hobbs RC, Aderman H. Movements of beluga whales (Delphinapterus leucas) in Bristol Bay, Alaska. Mar Mammal Sci. 2016;32:1272–98.
Article
Google Scholar
Moore SE, Shelden KEW, Litzky LK, Mahoney BA, Rugh DJ. Beluga, Delphinapterus leucas, habitat associations in cook inlet, Alaska. Mar Fisheries Rev. 2000;62:60–80.
Google Scholar
Goetz KT, Montgomery RA, Ver Hoef JMV, Hobbs RC, Johnson DS. Identifying essential summer habitat of the endangered beluga whale Delphinapterus leucas in cook inlet, Alaska. Endangered Species Res. 2012;16:135–47.
Article
Google Scholar
Goetz KT, Rugh DJ, Read AJ, Hobbs RC. Habitat use in a marine ecosystem: Beluga whales Delphinapterus leucas in cook inlet, Alaska. Mar Ecol Prog Ser. 2007;330:247–56.
Article
Google Scholar
Castellote M, Thayre B, Mahoney M, Mondragon J, Lammers MO, Small RJ. Anthropogenic noise and the endangered cook inlet beluga whale, Delphinapterus leucas: acoustic considerations for management. Mar Fish Rev. 2018;80:63–88.
Article
Google Scholar
National Marine Fisheries Service. Recovery plan for the Cook Inlet beluga whale (Delphinapterus leucas). Juneau: National Marine Fisheries Service, Alaska Region, Protected Resources Division; 2016. https://www.fisheries.noaa.gov/resource/document/recovery-plan-cook-inlet-beluga-whale-delphinapterus-leucas.
Google Scholar
Norman SA, Hobbs RC, Wuertz S, Melli A, Beckett LA, Chouicha N, et al. Fecal pathogen pollution: sources and patterns in water and sediment samples from the upper cook inlet, Alaska ecosystem. Environ Sci: Process Impacts. 2013;15:1041–51. https://doi.org/10.1039/c3em30930d.
Article
CAS
Google Scholar
Norman SA, Hobbs RC, Goertz CEC, Burek-Huntington KA, Shelden KEW, Smith WA, et al. Potential natural and anthropogenic impediments to the conservation and recovery of cook inlet beluga whales, Delphinapterus leucas. Mar Fisheries Rev. 2016;77:89–105. https://doi.org/10.7755/MFR.77.2.5.
Article
Google Scholar
Carter BTG, Nielsen EA. Exploring ecological changes in cook inlet beluga whale habitat though traditional and local ecological knowledge of contributing factors for population decline. Mar Policy. 2011;35:299–308.
Article
Google Scholar
Citta JJ, O’Corry-Crowe G, Quakenbush LT, Bryan AL, Ferrer T, Olson MJ, et al. Assessing the abundance of Bristol Bay belugas with genetic mark-recapture methods. Mar Mammal Sci. 2018;34:666–86. https://doi.org/10.1111/mms.12472.
Article
Google Scholar
Lowry LF, Citta JJ, O’corry-Crowe G, Quakenbush LT, Frost KJ, Suydam R, et al. Distribution, abundance, harvest, and status of Western Alaska beluga whale, Delphinapterus leucas, stocks. Mar Fish Rev. 2019;81:54–71. https://doi.org/10.7755/MFR.81.3-4.2.
Article
Google Scholar
Citta JJ, Frost KJ, Quakenbush L, Citta J. Aerial surveys of Bristol Bay beluga whales, Delphinapterus leucas, in 2016. Mar Fish Rev. 2019;81:98–104. https://doi.org/10.7755/MFR.81.3-4.5.
Article
Google Scholar
Mahoney BA, Shelden KEW. Harvest history of belugas, Delphinapterus leucas, in cook inlet, Alaska. Mar Fisheries Rev. 2000;62:124–33.
Google Scholar
Hobbs RC, Shelden KEW, Rugh DJ, Sims CL, Waite JM. Estimated abundance and trend in aerial counts of beluga whales, Delphinapterus leucas, in cook inlet, Alaska, 1994-2012. Mar Fish Rev. 2015;77:11–31.
Article
Google Scholar
Sheldon K, Wade P. Aerial surveys, distribution, abundance, and trend of belugas (Delphinapterus leucas) in Cook Inlet, Alaska, June 2018. Seattle: Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv.; 2019.
Google Scholar
CEC G, Burek-Huntington K, Royer K, Quakenbush L, Clauss T, Hobbs R, et al. Comparing progesterone in blubber and serum to assess pregnancy in wild beluga whales (Delphinapterus leucas). Conserv Physiol. 2019;7:coz071. https://doi.org/10.1093/conphys/coz071.
Article
Google Scholar
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37. https://doi.org/10.3354/ame01753.
Article
Google Scholar
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
Article
CAS
PubMed
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. 2016. https://www.r-project.org/.
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.
Article
PubMed
PubMed Central
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41. https://doi.org/10.1093/nar/gks1219.
McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. 2019. https://cran.r-project.org/package=vegan.
Google Scholar
Simpson EH. Measurement of diversity. Nature. 1949;163:688. https://doi.org/10.1038/163688a0.
Article
Google Scholar
Shannon CE, Weaver W. The mathematical theory of communication. Urbana: The University of Illinois Press; 1964.
Google Scholar
Whittaker RH. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr. 1960;30:279–338. https://doi.org/10.2307/1943563.
Article
Google Scholar
Apprill A, Miller CA, Moore MJ, Durban JW, Fearnbach H, Barrett-Lennard LG. Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring. mSystems. 2017;2:e00119–7. https://doi.org/10.1128/msystems.00119-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Corry-Crowe G, Suydam R, Quakenbush L, Potgieter B, Harwood L, Litovka D, et al. Migratory culture, population structure and stock identity in North Pacific beluga whales (Delphinapterus leucas). PLoS One. 2018;13:e0194201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zaneveld JR, McMinds R, Thurber RV. Stress and stability: Applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121. https://doi.org/10.1038/nmicrobiol.2017.121.
Article
CAS
PubMed
Google Scholar
Ma Z. Testing the Anna Karenina Principle in human microbiome-associated diseases. iScience. 2020;23:101007.
Article
CAS
PubMed
Google Scholar
Mangano S, Michaud L, Caruso C, Lo GA. Metal and antibiotic resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biol. 2014;37:227–35.
Article
Google Scholar
Wu G, Wu G, Zhan T, Shao Z, Liu Z. Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles. 2013;17:809–19. https://doi.org/10.1007/s00792-013-0562-4.
Article
CAS
PubMed
Google Scholar
Ley JD, Segers P, Gillis M. Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol. 1978;28:154–68.
Article
Google Scholar
Koo H, Strope BM, Kim EH, Shabani AM, Kumar R, Crowley MR, et al. Draft Genome Sequence of Janthinobacterium sp. Ant5-2-1, Isolated from Proglacial Lake Podprudnoye in the Schirmacher Oasis of East Antarctica. Genome Announc. 2016;4:1-2.
Irgens RL, Gosink JJ, Staley JT. Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol. 1996;46:822–6.
Article
CAS
PubMed
Google Scholar
Zhang WY, Fang MX, Zhang WW, Xiao C, Zhang XQ, Yu ZP, et al. Extensimonas vulgaris gen. nov., sp. nov., a member of the family Comamonadaceae. Int J Syst Evol Microbiol. 2013;63:2062–8.
Article
CAS
PubMed
Google Scholar
Stokes JL. Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J Bacteriol. 1954;67:278–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Veen WL, Mulder EG, Deinema MH. The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev. 1978;42:329–56.
Article
PubMed
PubMed Central
Google Scholar
Eikelboom DH. Filamentous organisms observed in activated sludge. Water Res. 1975;9:365–88.
Article
Google Scholar
Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol. 1997;47:590–2. https://doi.org/10.1099/00207713-47-2-590.
Article
PubMed
Google Scholar
Bierlich KC, Miller C, Deforce E, Friedlaender AS. Temporal and regional variability in the skin microbiome of humpback whales along the Western Antarctic peninsula. Appl Environ Microbiol. 2018;84:1–15.
CAS
Google Scholar
Vendl C, Slavich E, Nelson T, Acevedo-Whitehouse K, Montgomery K, Ferrari B, et al. Does sociality drive diversity and composition of airway microbiota in cetaceans? Environ Microbiol Rep. 2020;12:324–33.
Article
PubMed
Google Scholar
Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26:101–12. https://doi.org/10.1264/jsme2.ME10179.
Article
PubMed
Google Scholar
Olguin-Uribe G, Abou-Mansour E, Boulander A, Débard H, Francisco C, Combaut G. 6-bromoindole-3-carbaldehyde, from an Acinetobacter Sp. bacterium associated with the ascidian Stomozoa murrayi. J Chem Ecol. 1997;23:2507–21. https://doi.org/10.1023/B:JOEC.0000006663.28348.03.
Article
CAS
Google Scholar
Starliper CE. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res. 2011;2:97–108.
Article
Google Scholar
Declercq AM, Haesebrouck F, Van Den Broeck W, Bossier P, Decostere A. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res. 2013;44:1–17. https://doi.org/10.1186/1297-9716-44-27.
Article
Google Scholar
Wegley L, Yu Y, Breitbart M, Casas V, Kline DI, Rohwer F. Coral-associated archaea. Mar Ecol Prog Ser. 2004;273:89–96. https://doi.org/10.3354/meps273089.
Article
CAS
Google Scholar
Radax R, Hoffmann F, Rapp HT, Leininger S, Schleper C. Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges. Environ Microbiol. 2012;14:909–23. https://doi.org/10.1111/j.1462-2920.2011.02661.x.
Article
CAS
PubMed
Google Scholar
Dridi B, Raoult D, Drancourt M. Archaea as emerging organisms in complex human microbiomes. Anaerobe. 2011;17:56–63.
Article
PubMed
Google Scholar
Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci. 1992;89:5685–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massana R, Murray AE, Preston CM, DeLong EF. Vertical distribution and phylogenetic characterization of marine planktonic archaea in the Santa Barbara Channel. Appl Environ Microbiol. 1997;63:50–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev. 2015;39:631–48. https://doi.org/10.1093/femsre/fuv010.
Article
CAS
PubMed
Google Scholar
Probst AJ, Auerbach AK, Moissl-Eichinger C. Archaea on human skin. PLoS One. 2013;8:e65388. https://doi.org/10.1371/journal.pone.0065388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parfrey LW, Knight R. Spatial and temporal variability of the human microbiota. Clin Microbiol Infect. 2012;18:5–7. https://doi.org/10.1111/J.1469-0691.2012.03861.X.
Article
Google Scholar
Moisander PH, Sexton AD, Daley MC. Stable associations masked by temporal variability in the marine copepod microbiome. PLoS One. 2015;10:e0138967. https://doi.org/10.1371/journal.pone.0138967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiarello M, Auguet JC, Bettarel Y, Bouvier C, Claverie T, Graham NAJ, et al. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome. 2018;6:1–14.
Article
Google Scholar
Gerber GK. The dynamic microbiome. FEBS Lett. 2014;588:4131–9. https://doi.org/10.1016/j.febslet.2014.02.037.
Article
CAS
PubMed
Google Scholar
Lowry L, Hobbs R, O’Corry-Crowe G. Delphinapterus leucas (Cook Inlet subpopulation). The IUCN Red List of Threatened Species 2019: eT61442A50384653; 2019.
Google Scholar
Suydam RS, Lowry LF, Frost KJ. Distribution and movements of beluga whales from the eastern Chukchi Sea stock during summer and early autumn. OCS Study Report MMS. 2005;2005–035:i.
Google Scholar
Colbeck GJ, Duchesne P, Postma LD, Lesage V, Hammill MO, Turgeon J. Groups of related belugas (Delphinapterus leucas) travel together during their seasonal migrations in and around Hudson Bay. Proc R Soc B Biol Sci. 2012;280:20122552. https://doi.org/10.1098/rspb.2012.2552.
Article
Google Scholar
Turgeon J, Duchesne P, Colbeck GJ, Postma LD, Hammill MO. Spatiotemporal segregation among summer stocks of beluga (Delphinapterus leucas) despite nuclear gene flow: implication for the endangered belugas in eastern Hudson Bay (Canada). Conserv Genet. 2012;13:419–33.
Article
Google Scholar
O’Corry-Crowe G. Beluga whales. In: Perrin WF, Wursig B, JGM T, editors. Encyclopedia of marine mammals. San Diego: Academic Press; 2002.
Google Scholar
Smith TG, Hammill M, Martin A. Herd composition and behaviour of white whales (Delphinapterus leucas) in two Canadian arctic estuaries. In: Born E, Dietz R, Reeves R, editors. Studies of white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) in Greenland and adjacent waters. Copenhagen: Commission for Scientific Research in Greenland; 1994. p. 175–84.
Google Scholar
Tierney BT, He Y, Church GM, Segal E, Kostic AD, Patel CJ. The predictive power of the microbiome exceeds that of genome-wide association studies in the discrimination of complex human disease. bioRxiv. 2020; 2019.12.31.891978.
Salosensaari A, Laitinen V, Havulinna AS, Meric G, Cheng S, Perola M, et al. Taxonomic signatures of long-term mortality risk in human gut microbiota. medRxiv. 2020; 2019.12.30.19015842.
Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177:1600–1618.e17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27. https://doi.org/10.1016/j.immuni.2010.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu M, Mcnulty NP, Rodionov DA, Khoroshkin MS, Griffin NW, Cheng J, et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides HHS public access. Science. 2015;350:5992.
Article
CAS
Google Scholar
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science. 2013;341. https://doi.org/10.1126/science.1241214.
Lysenko AM, Stackebrandt E, Romanenko LA, Rohde M, Schumann P, Mikhailov VV. Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol. 2002;52:1291–7.
PubMed
Google Scholar
Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol. 2000;50:835–46.
Article
CAS
PubMed
Google Scholar
Bozal N, Montes MJ, Tudela E, Guinea J. Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp nov and Psychrobacter fozii sp nov. Int J Syst Evol Microbiol. 2003;53:1093–100.
Article
CAS
PubMed
Google Scholar
Winn WC, Koneman EW. Koneman’s color atlas and textbook of diagnostic microbiology. Philadelphia: Lippincott Williams & Wilkins; 2006.
Google Scholar
Bagley ST. Habitat association of Klebsiella species. Infect Control. 1985;6:52–8.
Article
CAS
PubMed
Google Scholar
Ristuccia PA, Cunha BA. Klebsiella. Infect Control. 1984;5:343–8. https://doi.org/10.2307/30144997.
Article
Google Scholar
Podder MP, Rogers L, Daley PK, Keefe GP, Whitney HG, Tahlan K. Klebsiella species associated with bovine mastitis in Newfoundland. PLoS One. 2014;9:e106518. https://doi.org/10.1371/journal.pone.0106518.
Article
CAS
PubMed
PubMed Central
Google Scholar