Johnson KV-A, Foster KR. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018;16:647–55.
Article
CAS
PubMed
Google Scholar
Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10:644–54.
Article
PubMed
CAS
Google Scholar
Sylvain F-É, Derome N. Vertically and horizontally transmitted microbial symbionts shape the gut microbiota ontogenesis of a skin-mucus feeding discus fish progeny. Sci Rep. 2017;7:5263.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sherrill-Mix S, McCormick K, Lauder A, Bailey A, Zimmerman L, Li Y, et al. Allometry and ecology of the bilaterian gut microbiome. mBio. 2018;9:e00319–8.
Article
PubMed
PubMed Central
Google Scholar
Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems. 2016;1-2:e00028-16.
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
Article
CAS
PubMed
Google Scholar
Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.
Article
PubMed
PubMed Central
Google Scholar
Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.
Article
PubMed
Google Scholar
Tucker CM, Shoemaker LG, Davies KF, Nemergut DR, Melbourne BA. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos. 2016;125:778–89.
Article
Google Scholar
Bell G. Neutral macroecology. Science. 2001;293:2413–8.
Article
CAS
PubMed
Google Scholar
Hubbell SP. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol. 2005;19:166–72.
Article
Google Scholar
Hubbell SP. Neutral theory and the evolution of ecological equivalence. Ecology. 2006;87:1387–98.
Article
PubMed
Google Scholar
Chase JM, Leibold MA. Ecological niches: linking classical and contemporary approaches. Chicago: University of Chicago Press; 2003.
Book
Google Scholar
Harris K, Parsons TL, Ijaz UZ, Lahti L, Holmes I, Quince C. Linking statistical and ecological theory: Hubbell #x0027;s unified neutral theory of biodiversity as a hierarchical Dirichlet process. Proc IEEE. 2017;105:516–29.
Article
Google Scholar
Jayathilake PG, Gupta P, Li B, Madsen C, Oyebamiji O, González-Cabaleiro R, et al. A mechanistic individual-based model of microbial communities. PLoS One. 2017;12:e0181965.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.
Article
PubMed
Google Scholar
Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng Q, Sukumaran J, Wu S, Rodrigo A. Neutral models of microbiome evolution. PLoS Comput Biol. 2015;11:e1004365.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng Q, Wu S, Sukumaran J, Rodrigo A. Models of microbiome evolution incorporating host and microbial selection. Microbiome. 2017;5:127.
Article
PubMed
PubMed Central
Google Scholar
Foster JA, Krone SM, Forney LJ. Application of ecological network theory to the human microbiome. Interdiscip Perspect Infect Dis. 2008;2008:839501 https://www.hindawi.com/journals/ipid/2008/839501/. Accessed 17 Sep 2018.
Article
PubMed
PubMed Central
Google Scholar
Taxis TM, Wolff S, Gregg SJ, Minton NO, Zhang C, Dai J, et al. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity. Nucleic Acids Res. 2015;43:9600–12.
CAS
PubMed
PubMed Central
Google Scholar
Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655.
Article
CAS
PubMed
Google Scholar
Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci. 2010;107:15345–50.
Article
PubMed
PubMed Central
Google Scholar
Morrison-Whittle P, Goddard MR. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 2015;9:2003–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Dwyer JP, Kembel SW, Sharpton TJ. Backbones of evolutionary history test biodiversity theory for microbes. Proc Natl Acad Sci. 2015;112:8356–61.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yeh Y-C, Peres-Neto PR, Huang S-W, Lai Y-C, Tu C-Y, Shiah F-K, et al. Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography. 2015;38:198–212.
Article
Google Scholar
Heys C, Cheaib B, Busetti A, Kazlauskaite R, Maier L, Sloan WT, et al. Neutral Processes Dominate Microbial Community Assembly in Atlantic Salmon, Salmo salar. Appl Environ Microbiol 2020;86:e02283-19. .
Jeraldo P, Sipos M, Chia N, Brulc JM, Dhillon AS, Konkel ME, et al. Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proc Natl Acad Sci. 2012;109:9692–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langenheder S, Székely AJ. Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J. 2011;5:1086–94.
Article
PubMed
PubMed Central
Google Scholar
Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio. 2014;5-1:e00682-13.
McCafferty J, Mühlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, Sha W, et al. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME J. 2013;7:2116–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA. Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol. 2015;24:2537–50.
Article
PubMed
Google Scholar
Pyle GG, Rajotte JW, Couture P. Effects of industrial metals on wild fish populations along a metal contamination gradient. Ecotoxicol Environ Saf. 2005;61:287–312.
Article
CAS
PubMed
Google Scholar
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
Article
CAS
PubMed
Google Scholar
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
Article
CAS
PubMed
Google Scholar
Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.
Article
PubMed
PubMed Central
Google Scholar
Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.
Article
CAS
PubMed
Google Scholar
Pester M, Bittner N, Deevong P, Wagner M, Loy A. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J. 2010;4:1591–602.
Article
CAS
PubMed
Google Scholar
Cheaib B, Seghouani H, Ijaz UZ, Derome N. Community recovery dynamics in yellow perch microbiome after gradual and constant metallic perturbations. Microbiome. 2020;8:14.
Article
PubMed
PubMed Central
Google Scholar
Dautremepuits C, Marcogliese DJ, Gendron AD, Fournier M. Gill and head kidney antioxidant processes and innate immune system responses of yellow perch (Perca flavescens) exposed to different contaminants in the St. Lawrence River, Canada. Sci Total Environ. 2009;407:1055–64.
Article
CAS
PubMed
Google Scholar
Couture P, Rajender Kumar P. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens). Aquat Toxicol. 2003;64:107–20.
Article
CAS
PubMed
Google Scholar
Azizishirazi A, Dew WA, Bougas B, Dashtban M, Bernatchez L, Pyle GG. Chemosensory mediated behaviors and gene transcription profiles in wild yellow perch (Perca flavescens) from metal contaminated lakes. Ecotoxicol Environ Saf. 2014;106:239–45.
Article
CAS
PubMed
Google Scholar
Marcogliese DJ, Brambilla LG, Gagné F, Gendron AD. Joint effects of parasitism and pollution on oxidative stress biomarkers in yellow perch Perca flavescens. Dis Aquat Org. 2005;63:77–84.
Article
CAS
Google Scholar
Marcogliese DJ, Dautremepuits C, Gendron AD, Fournier M. Interactions between parasites and pollutants in yellow perch (Perca flavescens) in the St. Lawrence River, Canada: implications for resistance and tolerance to parasites. Can J Zool. 2010;88:247–58.
Article
CAS
Google Scholar
Ryman JE, Walleghem JLAV, Blanchfield PJ. Methylmercury levels in a parasite (Apophallus brevis metacercariae) and its host, yellow perch (Perca flavescens). Aquat Ecol. 2008;42:495–501.
Article
CAS
Google Scholar
Bougas B, Normandeau E, Pierron F, Campbell PGC, Bernatchez L, Couture P. How does exposure to nickel and cadmium affect the transcriptome of yellow perch (Perca flavescens) – results from a 1000 candidate-gene microarray. Aquat Toxicol. 2013;142–143:355–64.
Article
PubMed
CAS
Google Scholar
Cheaib B, Le Boulch M, Mercier P-L, Derome N. Taxon-function decoupling as an adaptive signature of lake microbial metacommunities under a chronic polymetallic pollution gradient. Front Microbiol. 2018;9:869.
Couture P, Rajotte JW, Pyle G. Seasonal and regional variations in metal contamination and condition indicators in yellow perch (Perca flavescens) along two polymetallic gradients. Factors Influencing Tissue Metal Concentrations, Human and Ecological Risk Assessment: An International Journal. 2008;14(1):97-125.
Pierron F, Bourret V, St-Cyr J, Campbell PGC, Bernatchez L, Couture P. Transcriptional responses to environmental metal exposure in wild yellow perch (Perca flavescens) collected in lakes with differing environmental metal concentrations (Cd, Cu, Ni). Ecotoxicology. 2009;18:620–31.
Werner JJ, Zhou D, Caporaso JG, Knight R, Angenent LT. Comparison of Illumina paired-end and single-direction sequencing for microbial 16S rRNA gene amplicon surveys. ISME J. 2012;6:1273–76.
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio 2013.
Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One. 2011;6:e17288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagkouvardos I, Fischer S, Kumar N, Clavel T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ. 2017;5:e2836.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012;28:2106–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–504.
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, et al. clusterMaker: a multi-algorithm clustering plugin for cytoscape. BMC Bioinformatics. 2011;12:436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji X, Machiraju R, Ritter A, Yen P-Y. Examining the distribution, modularity, and community structure in article networks for systematic reviews. AMIA Annu Symp Proc. 2015;2015:1927–36.
PubMed
PubMed Central
Google Scholar
Ning D, Deng Y, Tiedje JM, Zhou J. A general framework for quantitatively assessing ecological stochasticity. Proc Natl Acad Sci. 2019;116:16892–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall CV, Lord A, Betzel R, Zakrzewski M, Simms LA, Zalesky A, et al. Co-existence of network architectures supporting the human gut microbiome. iScience. 2019;22:380–91.
Article
PubMed
PubMed Central
Google Scholar
Johnson KV-A, Burnet PWJ. Microbiome: should we diversify from diversity? Gut Microbes. 2016;7:455–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooks KB, O’Malley MA. Dysbiosis and its discontents. mBio. 2017;8:e01492–17.
Article
PubMed
PubMed Central
Google Scholar
Bao Y, Li Y, Qiu C, Wang W, Yang Z, Huang L, et al. Bronchoalveolar lavage fluid microbiota dysbiosis in infants with protracted bacterial bronchitis. J Thorac Dis. 2018;10:168–74.
Article
PubMed
PubMed Central
Google Scholar
Sai Prashanthi G, Jayasudha R, Chakravarthy SK, Padakandla SR, SaiAbhilash CR, Sharma S, et al. Alterations in the ocular surface fungal microbiome in fungal keratitis patients. Microorganisms. 2019;7:309.
Article
PubMed Central
CAS
Google Scholar
Wang Z, Bafadhel M, Haldar K, Spivak A, Mayhew D, Miller BE, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47:1082–92.
Article
PubMed
Google Scholar
Vázquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol. 2016;1:16177.
Article
PubMed
CAS
Google Scholar
Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5-207.
de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol. 2018;94:fix161.
Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Nostrand JDV, et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci. 2014;111:E836–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv. 2018;4:eaau1908.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ponisio LC, Valdovinos FS, Allhoff KT, Gaiarsa MP, Barner A, Guimarães PRJ, et al. A network perspective for community assembly. Front Ecol Evol. 2019;7:103.
Liu Z, Cichocki N, Hübschmann T, Süring C, Ofiţeru ID, Sloan WT, et al. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ Microbiol. 2019;21:164–81.
Article
CAS
PubMed
Google Scholar
Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cadena AM, Ma Y, Ding T, Bryant M, Maiello P, Geber A, et al. Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome. 2018;6:180.
Article
PubMed
PubMed Central
Google Scholar
Brown RM, Wiens GD, Salinas I. Analysis of the gut and gill microbiome of resistant and susceptible lines of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2018;86:497–506.
Article
PubMed
CAS
PubMed Central
Google Scholar
Holben WE, Williams P, Saarinen M, Särkilahti LK, Apajalahti JHA. Phylogenetic analysis of intestinal microflora indicates a novel mycoplasma Phylotype in farmed and wild Salmon. Microb Ecol. 2002;44:175–85.
Article
CAS
PubMed
Google Scholar
Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR, et al. The biogeography of the Atlantic salmon (Salmo salar) gut microbiome. ISME J. 2016;10:1280–4.
Article
PubMed
Google Scholar
Bano N, DeRae SA, Bennett W, Vasquez L, Hollibaugh JT. Dominance of mycoplasma in the guts of the long-jawed Mudsucker, Gillichthys mirabilis, from five California salt marshes. Environ Microbiol. 2007;9:2636–41.
Article
CAS
PubMed
Google Scholar
Givens C, Ransom B, Bano N, Hollibaugh J. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser. 2015;518:209–23.
Article
Google Scholar
Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snedeker SM, Hay AG. Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ Health Perspect. 2012;120:332–9.
Article
CAS
PubMed
Google Scholar
Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121:2126–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63:1513–21.
Article
CAS
PubMed
Google Scholar