Gurdon JB, Hopwood N. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol. 2000;44:43–50 www.lg.ehu.es/ijdb.
CAS
PubMed
Google Scholar
Elkan ER. The Xenopus pregnancy test. Br Med J. 1938;2:1253–6.
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol. 2017;426:325–35.
Article
CAS
PubMed
Google Scholar
Harland RM, Grainger RM. Xenopus research: metamorphosed by genetics and genomics. Trends Genet. 2011;27:507–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segerdell E, Bowes JB, Pollet N, Vize PD. An ontology for Xenopus anatomy and development. BMC Dev Biol. 2008;8:92.
Article
PubMed
PubMed Central
Google Scholar
McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A. 2013;110:3229–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (plethodon cinereus). ISME J. 2014;8:830–40.
Article
CAS
PubMed
Google Scholar
Woodhams DC, Vredenburg VT, Simon MA, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN. Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv. 2007;138:390–8.
Article
Google Scholar
Jiménez RR, Sommer S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers Conserv. 2017;26:763–86.
Article
Google Scholar
McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 2012;6:588–96.
Article
CAS
PubMed
Google Scholar
Tinsley R. Amphibians, with special reference to xenopus. In: The UFAW handbook on the care and management of laboratory and other research animals. Hoboken: Wiley-Blackwell; 2010. p. 741–60.
Chapter
Google Scholar
Green SL. The laboratory Xenopus sp. Boca Raton: CRC Press; 2010.
Google Scholar
Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates. Microbiome. 2019;7:1–14.
Article
Google Scholar
Albecker MA, Belden LK, McCoy MW. Comparative analysis of anuran amphibian skin microbiomes across inland and coastal wetlands. Microb Ecol. 2018;78(2):348–60.
Article
PubMed
Google Scholar
Duellman WE. In: William E, Trueb L, editors. Biology of amphibians. Baltimore: Johns Hopkins University Press; 1994.
Google Scholar
Abarca JG, Vargas G, Zuniga I, Whitfield SM, Woodhams DC, Kerby J, McKenzie VJ, Murillo-Cruz C, Pinto-Tomás AA. Assessment of bacterial communities associated with the skin of Costa Rican amphibians at la Selva biological station. Front Microbiol. 2018;9:1–12.
Article
Google Scholar
Lopes NP, Andrade LE, Prado BM, Haddad CFB, Pupo MT, Palacios-Rodríguez P, Brunetti AE, Melo WGP, Lyra ML. Symbiotic skin bacteria as a source for sex-specific scents in frogs. Proc Natl Acad Sci. 2019;116:2124–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23:1238–50.
Article
PubMed
Google Scholar
Kueneman JG, Weiss S, McKenzie VJ. Composition of micro-eukaryotes on the skin of the cascades frog (Rana cascadae) and patterns of correlation between skin microbes and Batrachochytrium dendrobatidis. Front Microbiol. 2017;8:1–10.
Article
Google Scholar
Bell SC, Garland S, Alford RA. Increased numbers of culturable inhibitory bacterial taxa may mitigate the effects of Batrachochytrium dendrobatidis in Australian wet tropics frogs. Front Microbiol. 2018;9:1–14.
Article
CAS
Google Scholar
Ellison S, Knapp RA, Sparagon W, Swei A, Vredenburg VT. Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol Ecol. 2018;28:127–40.
Article
PubMed
Google Scholar
Weitzman CL, Gibb K, Christian K. Skin bacterial diversity is higher on lizards than sympatric frogs in tropical Australia. PeerJ. 2018;6:e5960.
Article
PubMed
PubMed Central
Google Scholar
Stecher B, Hardt W-D. The role of microbiota in infectious disease. Trends Microbiol. 2008;16:107–14.
Article
CAS
PubMed
Google Scholar
Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, Minbiole KPC, Harris RN, Belden LK, Gratwicke B. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc R Soc B Biol Sci. 2015;282:20142881.
Article
CAS
Google Scholar
Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Host microbiome richness predicts resistance to disturbance by pathogenic infection in a vertebrate host. bioRxiv. 2017;44:158428.
Google Scholar
Pearl EJ, Grainger RM, Guille M, Horb ME. Development of xenopus resource centers: The National Xenopus Resource and the European Xenopus Resource Center. Genesis. 2012;50:155–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trott KA, Stacy BA, Lifland BD, Diggs HE, Harland RM, Khokha MK, Grammer TC, Parker JM. Characterization of a mycobacterium ulcerans-like infection in a colony of African tropical clawed frogs (Xenopus tropicalis). Comp Med. 2004;54:309–17.
CAS
PubMed
Google Scholar
Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Nicolas M, Lafond T, Boujard D, Audic Y, Guillet B, Kashiwagi A, Kashiwagi K, Suzuki N, Tazawa I, Ochi H, et al. Xenopus resources: transgenic, inbred and mutant animals, training opportunities, and web-based support. Front Physiol. 2019;10:387.
Article
PubMed
PubMed Central
Google Scholar
Wlizla M, McNamara S, Horb ME. Generation and care of Xenopus laevis and Xenopus tropicalis embryos. In: Methods in molecular biology, vol. 1865. Totowa: Humana Press Inc.; 2018. p. 19–32.
Google Scholar
The biology of xenopus - R. C. Tinsley, H. R. Kobel - Oxford University Press. https://global.oup.com/academic/product/the-biology-of-xenopus-9780198549741?cc=gb&lang=en&.
Martel A, Boyen F, Bletz MC, Vences M, Bert W, Steinfartz S, Sabino-Pinto J, Bales E, Kelly M, Pasmans F, Van Praet S. Disruption of skin microbiota contributes to salamander disease. Proc R Soc B Biol Sci. 2018;285:20180758.
Article
CAS
Google Scholar
Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KPC, Harris RN. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett. 2013;16:807–20.
Article
PubMed
Google Scholar
Piovia-Scott J, Rejmanek D, Woodhams DC, Worth SJ, Kenny H, McKenzie V, Lawler SP, Foley JE. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium Dendrobatidis. Microb Ecol. 2017;74:217–26.
Article
PubMed
Google Scholar
Bitschar K, Sauer B, Focken J, Dehmer H, Moos S, Konnerth M, Schilling NA, Grond S, Kalbacher H, Kurschus FC, Götz F, Krismer B, Peschel A, Schittek B. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat Commun. 2019;10:2730.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276:734–40.
Article
CAS
PubMed
Google Scholar
Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knutie SA, Wilkinson CL, Kohl KD, Rohr JR. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun. 2017;8:1–8.
Article
CAS
Google Scholar
Estrada A, Hughey MC, Medina D, Rebollar EA, Walke JB, Harris RN, Belden LK. Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling. PeerJ. 2019;7:e7044.
Article
PubMed
PubMed Central
Google Scholar
Colombo BM, Scalvenzi T, Benlamara S, Pollet N. Microbiota and mucosal immunity in amphibians. Front Immunol. 2015;6:1–15.
Article
CAS
Google Scholar
Antwis RE, Haworth RL, Engelmoer DJP, Ogilvy V, Fidgett AL, Preziosi RF. Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (agalychnis callidryas). PLoS One. 2014;9:1–8.
Article
CAS
Google Scholar
Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK. Amphibian skin may select for rare environmental microbes. ISME J. 2014;8:2207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 2016;10:1682–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Passos LF, Garcia G, Young RJ. Comparing the bacterial communities of wild and captive golden mantella frogs: implications for amphibian conservation. PLoS One. 2018;13:1–12.
Article
Google Scholar
Woodhams DC, Kueneman JG, McKenzie VJ, Archer HM, Harris R, Knight R. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc R Soc B Biol Sci. 2016;283:20161553.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Ross DV, Suzina NE, Gafarov AB, Machulin AV, Esikova TZ, Shorokhova AP, Duda VI, Boronin AM. Characterization of ultrasmall chryseobacterium strains FM1 and FM2 isolated from Xenopus laevis skin. Microbiology. 2019;88:172–82.
Article
CAS
Google Scholar
Kostanjšek R, Prodan Y, Stres B, Trontelj P. Composition of the cutaneous bacterial community of a cave amphibian, Proteus anguinus. FEMS Microbiol Ecol. 2019;95:1–7.
Article
CAS
Google Scholar
Bates KA, Clare FC, O’Hanlon S, Bosch J, Brookes L, Hopkins K, McLaughlin EJ, Daniel O, Garner TW, Fisher MC, Harrison XA. Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat Commun. 2018;9:693.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bletz MC, Perl RGB, Bobowski BTC, Japke LM, Tebbe CC, Dohrmann AB, Bhuju S, Geffers R, Jarek M, Vences M. Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function. ISME J. 2017;11:1521–34.
Article
PubMed
PubMed Central
Google Scholar
Longo AV, Zamudio KR. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME J. 2017;11:349–61.
Article
PubMed
Google Scholar
Berry DL, Schwartzman R and Brown D D. Metamorphosis: The Eighth Symposium of the British Society for Developmental... - British Society for Developmental Biology. Symposium, Senior Lecturer Department of Human Morphology Michael Balls, British Society for Developmental Biology - Google Books. 59–87 https://books.google.co.uk/books/about/Metamorphosis.html?id=8hAyAAAAMAAJ&redir_esc=y (1985).
Hernández-Gómez O, Hoverman JT, Williams RN. Cutaneous microbial community variation across populations of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). Front Microbiol. 2017;8:1379.
Article
PubMed
PubMed Central
Google Scholar
Bird AK, Prado-Irwin SR, Vredenburg VT, Zink AG. Skin microbiomes of California terrestrial salamanders are influenced by habitat more than host phylogeny. Front Microbiol. 2018;9:442.
Article
PubMed
PubMed Central
Google Scholar
Xie ZY, Zhou YC, Wang SF, Mei B, Xu XD, Wen WY, Feng YQ. First isolation and identification of Elizabethkingia meningoseptica from cultured tiger frog, Rana tigerina rugulosa. Vet Microbiol. 2009;138:140–4.
Article
CAS
PubMed
Google Scholar
Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol. 2009;59:3001–5.
Article
CAS
PubMed
Google Scholar
Kirk KE, Hoffman JA, Smith KA, Strahan BL, Failor KC, Krebs JE, Gale AN, Do TD, Sontag TC, Batties AM, Mistiszyn K, Newman JD. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol. 2013;63:4777–83.
Article
CAS
PubMed
Google Scholar
Rebollar EA, Gutiérrez-Preciado A, Noecker C, Eng A, Hughey MC, Medina D, Walke JB, Borenstein E, Jensen RV, Belden LK, Harris RN. The skin microbiome of the neotropical frog Craugastor fitzingeri: inferring potential bacterial-host-pathogen interactions from metagenomic data. Front Microbiol. 2018;9:466.
Article
PubMed
PubMed Central
Google Scholar
Jiménez RR, Alvarado G, Estrella J, Sommer S. Moving beyond the host: unraveling the skin microbiome of endangered Costa Rican amphibians. Front Microbiol. 2019;10:2060.
Article
PubMed
PubMed Central
Google Scholar
Tinsley RC, Coxhead PG, Stott LC, Tinsley MC, Piccinni MZ, Guille MJ. Chytrid fungus infections in laboratory and introduced Xenopus laevis populations: assessing the risks for U.K. native amphibians. Biol Conserv. 2015;184:380–8.
Article
PubMed
PubMed Central
Google Scholar
Robertson SJ, Lemire P, Maughan H, Goethel A, Turpin W, Bedrani L, Guttman DS, Croitoru K, Girardin SE, Philpott DJ. Comparison of Co-housing and littermate methods for microbiota standardization in mouse models. Cell Rep. 2019;27:1910–1919.e2.
Article
CAS
PubMed
Google Scholar
Ma BW, Bokulich NA, Castillo PA, Kananurak A, Underwood MA, Mills DA, Bevins CL. Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice. PLoS One. 2012;7:e47416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katsnelson A. Minding the microbiome of your mice. Lab Anim. 2019;48:313–5.
Article
Google Scholar
Leystra AA, Clapper ML. Gut microbiota influences experimental outcomes in mouse models of colorectal cancer. Genes. 2019;10:900.
Article
CAS
PubMed Central
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
Article
CAS
PubMed
Google Scholar
Babraham bioinformatics - FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Babraham bioinformatics - trim galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pẽa AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
PubMed
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magurran AE. Ecological diversity and its measurement. Dordrecht: Springer Netherlands; 1988.
Book
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Article
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Wickham H. ggplot2. Springer. Berlin: Springer International Publishing; 2016.
Book
Google Scholar
CRAN - package pheatmap. http://cran.nexr.com/web/packages/pheatmap/index.html.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Maintainer HW. Package ‘vegan’ title community ecology package version 2.5–6; 2019.
Google Scholar