Unger SA, Bogaert D. The respiratory microbiome and respiratory infections. J Inf Secur. 2017;74(Suppl 1):S84–8.
Google Scholar
Atherton JC, Blaser MJ. Coadaptation of helicobacter pylori and humans: ancient history, modern implications. J Clin Invest. 2009;119(9):2475–87. https://doi.org/10.1172/JCI38605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooper LV, Falk PG, Gordon JI. Analyzing the molecular foundations of commensalism in the mouse intestine. Curr Opin Microbiol. 2000;3(1):79–85. https://doi.org/10.1016/S1369-5274(99)00055-7.
Article
CAS
PubMed
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–51. https://doi.org/10.1126/science.1155725.
Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105(46):17994–9. https://doi.org/10.1073/pnas.0807920105.
Article
PubMed
PubMed Central
Google Scholar
Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66. https://doi.org/10.1038/ismej.2007.3.
Article
CAS
PubMed
Google Scholar
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5. https://doi.org/10.1038/nature25973.
Raman AS, Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Subramanian S, et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science. 2019;365:1–11.
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, et al. A catalog of the mouse gut metagenome. Nat Biotechnol. 2015;33(10):1103–8. https://doi.org/10.1038/nbt.3353.
Limborg MT, Heeb P. Special issue: coevolution of hosts and their microbiome. Genes (Basel). 2018;9(11):549. https://doi.org/10.3390/genes9110549.
Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548(7665):43–51. https://doi.org/10.1038/nature23292.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Brien PA, Webster NS, Miller DJ, Bourne DG. Host-microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio. 2019;10:1–14.
Korach-Rechtman H, Freilich S, Gerassy-Vainberg S, Buhnik-Rosenblau K, Danin-Poleg Y, Bar H, et al. Murine genetic background has a stronger impact on the composition of the gut microbiota than maternal inoculation or exposure to unlike exogenous microbiota. Appl Environ Microbiol. 2019;85(18):1–12. https://doi.org/10.1128/AEM.00826-19.
Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48:1413–7.
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–43. https://doi.org/10.1016/j.chom.2016.04.017.
Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353(6297):380–2. https://doi.org/10.1126/science.aaf3951.
Rosas-Salazar C, Shilts MH, Tovchigrechko A, Chappell JD, Larkin EK, Nelson KE, et al. Nasopharyngeal microbiome in respiratory syncytial virus resembles profile associated with increased childhood asthma risk. Am J Respir Crit Care Med. 2016;193(10):1180–3. https://doi.org/10.1164/rccm.201512-2350LE.
Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc Natl Acad Sci U S A. 2011;108(13):5354–9. https://doi.org/10.1073/pnas.1019378108.
Prince GA, Hemming VG, Horswood RL, Baron PA, Chanock RM. Effectiveness of topically administered neutralizing antibodies in experimental immunotherapy of respiratory syncytial virus infection in cotton rats. J Virol. 1987;61(6):1851–4. https://doi.org/10.1128/JVI.61.6.1851-1854.1987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco JC, Pletneva LM, Wan H, Araya Y, Angel M, Oue RO, et al. Receptor characterization and susceptibility of cotton rats to avian and 2009 pandemic influenza virus strains. J Virol. 2013;87(4):2036–45. https://doi.org/10.1128/JVI.00638-12.
Ottolini MG, Blanco JCG, Eichelberger MC, Porter DD, Pletneva L, Richardson JY, et al. The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol. 2005;86(10):2823–30. https://doi.org/10.1099/vir.0.81145-0.
Ottolini MG, Porter DD, Hemming VG, Prince GA. Enhanced pulmonary pathology in cotton rats upon challenge after immunization with inactivated parainfluenza virus 3 vaccines. Viral Immunol. 2000;13(2):231–6. https://doi.org/10.1089/vim.2000.13.231.
Article
CAS
PubMed
Google Scholar
Ottolini MG, Porter DD, Blanco JC, Prince GA. A cotton rat model of human parainfluenza 3 laryngotracheitis: virus growth, pathology, and therapy. J Infect Dis. 2002;186(12):1713–7. https://doi.org/10.1086/345834.
Article
PubMed
Google Scholar
Pfeuffer J, Puschel K, Meulen V, Schneider-Schaulies J, Niewiesk S. Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model (Sigmodon hispidus). J Virol. 2003;77(1):150–8. https://doi.org/10.1128/JVI.77.1.150-158.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamelin ME, Yim K, Kuhn KH, Cragin RP, Boukhvalova M, Blanco JC, et al. Pathogenesis of human metapneumovirus lung infection in BALB/c mice and cotton rats. J Virol. 2005;79(14):8894–903. https://doi.org/10.1128/JVI.79.14.8894-8903.2005.
Patel MC, Wang W, Pletneva LM, Rajagopala SV, Tan Y, Hartert TV, et al. Enterovirus D-68 infection, prophylaxis, and vaccination in a novel permissive animal model, the cotton rat (Sigmodon hispidus). PLoS One. 2016;11(11):e0166336. https://doi.org/10.1371/journal.pone.0166336.
Blanco JC, Core S, Pletneva LM, March TH, Boukhvalova MS, Kajon AE. Prophylactic antibody treatment and intramuscular immunization reduce infectious human rhinovirus 16 load in the lower respiratory tract of challenged cotton rats. Trials Vaccinol. 2014;3:52–60. https://doi.org/10.1016/j.trivac.2014.02.003.
Article
PubMed
PubMed Central
Google Scholar
Boukhvalova MS, Prince GA, Blanco JC. The cotton rat model of respiratory viral infections. Biologicals. 2009;37(3):152–9. https://doi.org/10.1016/j.biologicals.2009.02.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burian M, Rautenberg M, Kohler T, Fritz M, Krismer B, Unger C, et al. Temporal expression of adhesion factors and activity of global regulators during establishment of Staphylococcus aureus nasal colonization. J Infect Dis. 2010;201(9):1414–21. https://doi.org/10.1086/651619.
Carrara AS, Coffey LL, Aguilar PV, Moncayo AC, Da Rosa AP, Nunes MR, et al. Venezuelan equine encephalitis virus infection of cotton rats. Emerg Infect Dis. 2007;13(8):1158–65. https://doi.org/10.3201/eid1308.061157.
Rollin PE, Ksiazek TG, Elliott LH, Ravkov EV, Martin ML, Morzunov S, et al. Isolation of black creek canal virus, a new hantavirus from Sigmodon hispidus in Florida. J Med Virol. 1995;46(1):35–9. https://doi.org/10.1002/jmv.1890460108.
Holsomback TS, McIntyre NE, Nisbett RA, Strauss RE, Chu YK, Abuzeineh AA, et al. Bayou virus detected in non-oryzomyine rodent hosts: an assessment of habitat composition, reservoir community structure, and marsh rice rat social dynamics. J Vector Ecol. 2009;34(1):9–21. https://doi.org/10.1111/j.1948-7134.2009.00003.x.
Winn WC Jr, Murphy FA. Tamiami virus infection in mice and cotton rats. Bull World Health Organ. 1975;52(4-6):501–6.
PubMed
PubMed Central
Google Scholar
Dietrich G, Montenieri JA, Panella NA, Langevin S, Lasater SE, Klenk K, et al. Serologic evidence of west nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. Vector Borne Zoonotic Dis. 2005;5(3):288–92. https://doi.org/10.1089/vbz.2005.5.288.
Ehlen L, Todtmann J, Specht S, Kallies R, Papies J, Muller MA, et al. Epithelial cell lines of the cotton rat (Sigmodon hispidus) are highly susceptible in vitro models to zoonotic Bunya-, Rhabdo-, and Flaviviruses. Virol J. 2016;13(1):74. https://doi.org/10.1186/s12985-016-0531-5.
Prince GA, Jenson AB, Horswood RL, Camargo E, Chanock RM. The pathogenesis of respiratory syncytial virus infection in cotton rats. Am J Pathol. 1978;93(3):771–91.
CAS
PubMed
PubMed Central
Google Scholar
Gitiban N, Jurcisek JA, Harris RH, Mertz SE, Durbin RK, Bakaletz LO, et al. Chinchilla and murine models of upper respiratory tract infections with respiratory syncytial virus. J Virol. 2005;79(10):6035–42. https://doi.org/10.1128/JVI.79.10.6035-6042.2005.
Graham BS, Perkins MD, Wright PF, Karzon DT. Primary respiratory syncytial virus infection in mice. J Med Virol. 1988;26(2):153–62. https://doi.org/10.1002/jmv.1890260207.
Article
CAS
PubMed
Google Scholar
Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Pathol. 2007;20(1):108–19. https://doi.org/10.1038/modpathol.3800725.
Article
CAS
PubMed
Google Scholar
Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, Cros J, Mertz SE, Jewell NA, et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J Virol. 2006;80(3):1130–9. https://doi.org/10.1128/JVI.80.3.1130-1139.2006.
Grieves JL, Yin Z, Durbin RK, Durbin JE. Acute and chronic airway disease after human respiratory syncytial virus infection in cotton rats (Sigmodon hispidus). Comp Med. 2015;65(4):315–26.
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez WJ, Gruber WC, Welliver RC, Groothuis JR, Simoes EA, Meissner HC, et al. Respiratory syncytial virus (RSV) immune globulin intravenous therapy for RSV lower respiratory tract infection in infants and young children at high risk for severe RSV infections: respiratory syncytial virus immune globulin study group. Pediatrics. 1997;99(3):454–61. https://doi.org/10.1542/peds.99.3.454.
Prince GA, Curtis SJ, Yim KC, Porter DD. Vaccine-enhanced respiratory syncytial virus disease in cotton rats following immunization with lot 100 or a newly prepared reference vaccine. J Gen Virol. 2001;82(12):2881–8. https://doi.org/10.1099/0022-1317-82-12-2881.
Article
CAS
PubMed
Google Scholar
Prince GA, Jenson AB, Hemming VG, Murphy BR, Walsh EE, Horswood RL, et al. Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactiva ted virus. J Virol. 1986;57(3):721–8. https://doi.org/10.1128/JVI.57.3.721-728.1986.
Ottolini MG, Curtis SR, Mathews A, Ottolini SR, Prince GA. Palivizumab is highly effective in suppressing respiratory syncytial virus in an immunosuppressed animal model. Bone Marrow Transplant. 2002;29(2):117–20. https://doi.org/10.1038/sj.bmt.1703326.
Article
CAS
PubMed
Google Scholar
Chiba E, Tomosada Y, Vizoso-Pinto MG, Salva S, Takahashi T, Tsukida K, et al. Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int Immunopharmacol. 2013;17(2):373–82. https://doi.org/10.1016/j.intimp.2013.06.024.
Fonseca W, Lucey K, Jang S, Fujimura KE, Rasky A, Ting HA, et al. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. Mucosal Immunol. 2017;10(6):1569–80. https://doi.org/10.1038/mi.2017.13.
Hyde ER, Petrosino JF, Piedra PA, Camargo CA Jr, Espinola JA, Mansbach JM. Nasopharyngeal Proteobacteria are associated with viral etiology and acute wheezing in children with severe bronchiolitis. J Allergy Clin Immunol. 2014;133(4):1220–2. https://doi.org/10.1016/j.jaci.2013.10.049.
Article
PubMed
Google Scholar
Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, et al. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol. 2013;14(1):40. https://doi.org/10.1186/1471-2172-14-40.
Casero D, Gill K, Sridharan V, Koturbash I, Nelson G, Hauer-Jensen M, et al. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. Microbiome. 2017;5(1):105. https://doi.org/10.1186/s40168-017-0325-z.
Piccolo BD, Graham JL, Stanhope KL, Nookaew I, Mercer KE, Chintapalli SV, et al. Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis type 2 diabetes mellitus rat model. Am J Physiol Endocrinol Metab. 2018;315(5):E961–72. https://doi.org/10.1152/ajpendo.00203.2018.
Chaves-Moreno D, Plumeier I, Kahl S, Krismer B, Peschel A, Oxley AP, et al. The microbial community structure of the cotton rat nose. Environ Microbiol Rep. 2015;7(6):929–35. https://doi.org/10.1111/1758-2229.12334.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boulesteix AL, Slawski M. Stability and aggregation of ranked gene lists. Brief Bioinform. 2009;10(5):556–68. https://doi.org/10.1093/bib/bbp034.
Article
CAS
PubMed
Google Scholar
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962–8. https://doi.org/10.1038/s41592-018-0176-y.
Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46(D1):D633–9. https://doi.org/10.1093/nar/gkx935.
Henson DD, Bradley RD. Molecular systematics of the genus Sigmodon: results from mitochondrial and nuclear gene sequences. Can J Zool. 2009;87(3):211–20. https://doi.org/10.1139/Z09-005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen MK. Interactions between the cotton rats, sigmodon fulviventer and S. hispidus. Am Midland Nat. 1973;90(2):319–33.
Article
Google Scholar
Sadowski W, Semkow R, Wilczynski J, Krus S, Kantoch M. [The cotton rat (Sigmodon hispidus) as an experimental model for studying viruses in human respiratory tract infections. I. Para-influenza virus type 1, 2 and 3, adenovirus type 5 and RS virus]. Med Dosw Mikrobiol. 1987;39:33–42.
CAS
PubMed
Google Scholar
McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48(1):39–49. https://doi.org/10.1002/eji.201646721.
Article
CAS
PubMed
Google Scholar
Ding T, Song T, Zhou B, Geber A, Ma Y, Zhang L, et al. Microbial composition of the human nasopharynx varies according to influenza virus type and vaccination status. mBio. 2019;10:1–15.
Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the microbiota in the modulation of vaccine immune responses. Front Microbiol. 2019;10:1305. https://doi.org/10.3389/fmicb.2019.01305.
Article
PubMed
PubMed Central
Google Scholar
Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell. 2019;178:1313–1328.e13.
Harris VC, Armah G, Fuentes S, Korpela KE, Parashar U, Victor JC, et al. Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana. J Infect Dis. 2017;215(1):34–41. https://doi.org/10.1093/infdis/jiw518.
Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med. 2010;60(5):336–47.
CAS
PubMed
PubMed Central
Google Scholar
Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25(10):1558–69. https://doi.org/10.1101/gr.194118.115.
Tabrett A, Horton MW. The influence of host genetics on the microbiome. F1000Res. 2020;9:1–9.
Kumpu M, Kekkonen RA, Korpela R, Tynkkynen S, Jarvenpaa S, Kautiainen H, et al. Effect of live and inactivated Lactobacillus rhamnosus GG on experimentally induced rhinovirus colds: randomised, double blind, placebo-controlled pilot trial. Benef Microbes. 2015;6(5):631–9. https://doi.org/10.3920/BM2014.0164.
Rosas-Salazar C, Shilts MH, Tovchigrechko A, Schobel S, Chappell JD, Larkin EK, et al. Nasopharyngeal Lactobacillus is associated with a reduced risk of childhood wheezing illnesses following acute respiratory syncytial virus infection in infancy. J Allergy Clin Immunol. 2018;142:1447–1456.e9.
Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011;334(6053):249–52. https://doi.org/10.1126/science.1211057.
Rajagopala SV, Singh H, Patel MC, Wang W, Tan Y, Shilts MH, et al. Cotton rat lung transcriptome reveals host immune response to respiratory syncytial virus infection. Sci Rep. 2018;8(1):11318. https://doi.org/10.1038/s41598-018-29374-x.
Hiippala K, Jouhten H, Ronkainen A, Hartikainen A, Kainulainen V, Jalanka J, et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients. 2018;10(8):1–23. https://doi.org/10.3390/nu10080988.
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20. https://doi.org/10.1128/AEM.01043-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. https://doi.org/10.1128/AEM.01541-09.
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200. https://doi.org/10.1093/bioinformatics/btr381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37(Database):D141–5. https://doi.org/10.1093/nar/gkn879.
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96. https://doi.org/10.1093/nar/gkm864.
ari Oksanen FGB, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs and Helene Wagner. 2019. vegan: community ecology package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan. Accessed 24 Sept 2020.
Hill MO. Diversity and evenness: a unifying notation and its consequences: Ecology; Ecological Society of America; 1973.
Google Scholar
Nicolai Meinshausen PB. Stability selection. J R Stat Soc. 2010;72(4):417–73. https://doi.org/10.1111/j.1467-9868.2010.00740.x.
Article
Google Scholar
Andrews S. 2015. FastQC: a quality control tool for high throughput sequence data [online]. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 24 Sept 2020.
Google Scholar
Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8. https://doi.org/10.1093/bioinformatics/btw354.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4. https://doi.org/10.1038/nmeth.2066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt C. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31(6):926–32. https://doi.org/10.1093/bioinformatics/btu739.
Article
CAS
PubMed
Google Scholar
Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology (Reading). 2002;148(1):257–66. https://doi.org/10.1099/00221287-148-1-257.
Article
CAS
Google Scholar
Delroisse JM, Boulvin AL, Parmentier I, Dauphin RD, Vandenbol M, Portetelle D. Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol Res. 2008;163(6):663–70. https://doi.org/10.1016/j.micres.2006.09.004.
Article
CAS
PubMed
Google Scholar
Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun. 2008;76(3):907–15. https://doi.org/10.1128/IAI.01432-07.