Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Animal behavior and the microbiome. Science. 2012;338(6104):198–9. https://doi.org/10.1126/science.1227412.
Article
CAS
PubMed
Google Scholar
Dearing MD, Kohl KD. Beyond fermentation: other important services provided to endothermic herbivores by their gut microbiota. Int Comp Biol. 2017;57(4):723–31. https://doi.org/10.1093/icb/icx020.
Article
CAS
Google Scholar
McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. PNAS. 2013;110(9):3229–36. https://doi.org/10.1073/pnas.1218525110.
Article
PubMed
PubMed Central
Google Scholar
Redford KH, Segre JA, Salafsky N, Martinez del Rio C, McAloose D. Conservation and the microbiome. Conserv Biol. 2012;26(2):195–7. https://doi.org/10.1111/j.1523-1739.2012.01829.x.
Article
PubMed
PubMed Central
Google Scholar
Stumpf R, Gomez A, Amato KR, Yeoman CJ, Polk JD, Wilson BA, et al. Microbiomes, metagenomics, and primate conservation: new strategies, tools, and applications. Biol Conserv. 2016;199:56–66. https://doi.org/10.1016/j.biocon.2016.03.035.
Article
Google Scholar
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Royal Soc B. 2019;286(1895):20182448. https://doi.org/10.1098/rspb.2018.2448.
Article
Google Scholar
West AG, Waite DW, Deines P, Bourne DG, Digby A, McKenzie VJ, et al. The microbiome in threatened species conservation. Biol Conserv. 2019;229:85–98. https://doi.org/10.1016/j.biocon.2018.11.016.
Article
Google Scholar
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, et al. Captivity humanizes the primate microbiome. PNAS. 2016;113(37):10376–81. https://doi.org/10.1073/pnas.1521835113.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Int Comp Biol. 2017;57(4):690–704. https://doi.org/10.1093/icb/icx090.
Article
Google Scholar
Clayton JB, Al-Ghalith GA, Long HT, Tuan BV, Cabana F, Huang H, et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci Rep. 2018;8(1):11159. https://doi.org/10.1038/s41598-018-29277-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allan N, Knotts TA, Pesapane R, Ramsey JJ, Castle S, Clifford D, et al. Conservation implications of shifting gut microbiomes in captive-reared endangered voles intended for reintroduction into the wild. Microorganisms. 2018;6(3):94. https://doi.org/10.3390/microorganisms6030094.
Article
CAS
PubMed Central
Google Scholar
Amato KR. Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci Med. 2013;1:10–29. https://doi.org/10.2478/micsm-2013-0002.
Carrier TJ, Reitzel AM. The hologenome across environments and the implications of a host-associated microbial repertoire. Front Microbiol. 2017;8:802. https://doi.org/10.3389/fmicb.2017.00802.
Article
PubMed
PubMed Central
Google Scholar
Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:725. https://doi.org/10.3389/fmicb.2017.00725.
Article
PubMed
PubMed Central
Google Scholar
Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am J Primatol. 2019;81:e23061.
Article
PubMed
Google Scholar
Greene LK, Bornbusch SL, McKenney EA, Harris RL, Gorvetzian SR, Yoder AD, et al. The importance of scale in comparative microbiome research: new insights from the gut and glands of captive and wild lemurs. Am J Primatol. 2019;81:e22974.
Article
PubMed
Google Scholar
Kohl KD, Skopec MM, Dearing MD. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Physiol. 2014;2:cou009.
Article
PubMed
PubMed Central
Google Scholar
Martínez-Mota R, Kohl KD, Orr TJ, Dearing MD. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 2020;14(1):67–78. https://doi.org/10.1038/s41396-019-0497-6.
Article
CAS
PubMed
Google Scholar
Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Int Comp Biol. 2002;42(2):319–26. https://doi.org/10.1093/icb/42.2.319.
Article
Google Scholar
Wong JM, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43. https://doi.org/10.1097/00004836-200603000-00015.
Article
CAS
PubMed
Google Scholar
Kohl KD, Stengel A, Dearing DM. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol. 2016;18(6):1720–9. https://doi.org/10.1111/1462-2920.12841.
Article
CAS
PubMed
Google Scholar
Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett. 2014;17(10):1238–46. https://doi.org/10.1111/ele.12329.
Article
PubMed
Google Scholar
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–8. https://doi.org/10.1016/j.copbio.2012.08.005.
Article
CAS
PubMed
Google Scholar
Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13(3):576–87. https://doi.org/10.1038/s41396-018-0175-0.
Article
CAS
PubMed
Google Scholar
Nishida AH, Ochman H. Rates of gut microbiome divergence in mammals. Mol Ecol. 2018;27(8):1884–97. https://doi.org/10.1111/mec.14473.
Article
PubMed
PubMed Central
Google Scholar
Kohl KD, Varner J, Wilkening JL, Dearing MD. Gut microbial communities of American pikas (Ochotona princeps): evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol. 2018;87(2):323–30. https://doi.org/10.1111/1365-2656.12692.
Article
PubMed
Google Scholar
Greene LK, Clayton JB, Rothman RS, Semel BP, Semel MA, Gillespie TR, et al. Local habitat, not phylogenetic relatedness, predicts gut microbiota better within folivorous than frugivorous lemur lineages. Biol Lett. 2019;15(6):20190028. https://doi.org/10.1098/rsbl.2019.0028.
Article
PubMed
PubMed Central
Google Scholar
Grond K, Bell KC, Demboski JR, Santos M, Sullivan JM, Hird SM. No evidence for phylosymbiosis in western chipmunk species. FEMS Microbiol Ecol. 2020;96:fiz182.
Article
CAS
PubMed
Google Scholar
Greene LK, McKenney EA, O'Connell TM, Drea CM. The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas. Sci Rep. 2018;8(1):14482. https://doi.org/10.1038/s41598-018-32759-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, et al. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (Propithecus verreauxi). Ecol Evol. 2017;7(15):5732–45. https://doi.org/10.1002/ece3.3148.
Article
PubMed
PubMed Central
Google Scholar
Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K, Umaña JD, et al. Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 2016;10(2):514–526.32. https://doi.org/10.1038/ismej.2015.146.
Article
CAS
PubMed
Google Scholar
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol. 2015;69(2):434–43. https://doi.org/10.1007/s00248-014-0554-7.
Article
CAS
PubMed
Google Scholar
Bergmann GT, Craine J, RObeson MS, Fierer N. Seasonal shifts in diet and gut microbiota of the American Bison (Bison bison). PLoS One. 2015;10(11):e0142409. https://doi.org/10.1371/journal.pone.0142409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda I, Bernard H, Tuuga A, Nathan SKSS, Sha JCM, Osman I, et al. Fecal nutrients suggest diets of higher Fiber levels in free-ranging than in captive proboscis monkeys (Nasalis larvatus). Front Vet Sci. 2018;4:246. https://doi.org/10.3389/fvets.2017.00246.
Article
PubMed
PubMed Central
Google Scholar
Dierenfeld ES, Mueller PJ, Hall MB. Duikers: native food composition, micronutrient assessment, and implications for improving captive diets. Zoo Biol. 2002;21(2):185–96. https://doi.org/10.1002/zoo.10037.
Article
Google Scholar
Clauss M, Dierenfeld E. The nutrition of browsers. In: Fowler ME, Miller RE, editors. Zoo and wild animal medicine: current therapy, vol. 6. St Louis: Elsevier; 2008. p. 444–54. https://doi.org/10.1016/B978-141604047-7.50058-0.
Chapter
Google Scholar
Campbell JL, Eisemann JH, Williams CV, Glenn KM. Description of the gastrointestinal tract of five lemur species: Propithecus tattersalli, Propithecus verreauxi coquereli, Varecia variegata, Hapalemur griseus, and Lemur catta. Am J Primatol. 2000;52(3):133–42. https://doi.org/10.1002/1098-2345(200011)52:3<133::AID-AJP2>3.0.CO;2-#.
Article
CAS
PubMed
Google Scholar
Sato H, Santini L, Patel ER, Campera M, Yamashita N, Colquhoun IC, et al. Dietary flexibility and feeding strategies of Eulemur: a comparison with Propithecus. Int J Primatol. 2016;37(1):109–29. https://doi.org/10.1007/s10764-015-9877-6.
Article
Google Scholar
Irwin MT. Ecologically enigmatic lemurs: the sifakas of the eastern forests (Propithecus candidus, P. diadema, P. edwardsi, P. perrieri, and P. tattersalli). In: Gould L, Sauther ML, editors. Lemurs ecology and adaptation. New York: Springer; 2007. p. 305–26.
Flint HJ, Scott KP, Ducnan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306. https://doi.org/10.4161/gmic.19897.
Article
PubMed
PubMed Central
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–40. https://doi.org/10.3390/d5030627.
Article
Google Scholar
Richard A. Intra-specific variation in the social organization and ecology of Propithecus verreauxi. Folia Primatol. 1974;22(2-3):178–207. https://doi.org/10.1159/000155624.
Article
CAS
Google Scholar
Rasoanaivo HA. Interaction entre les pratiques alimentaire/médicinale chez les humains et les Propithecus coquereli Á Anjajavy. Masters Thesis. Antananarivo: University of Antananarivo, Faculty of Medicine; 2019.
Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc R Soc B. 2017;284(1868):20172274. https://doi.org/10.1098/rspb.2017.2274.
Article
PubMed
PubMed Central
Google Scholar
Sarkar A, Harty S, Johnson KV-A, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4(8):1020–35. https://doi.org/10.1038/s41559-020-1220-8.
Article
PubMed
Google Scholar
Kohl KD, Dearing MD. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ Microbiol Rep. 2014;6(2):191–5. https://doi.org/10.1111/1758-2229.12118.
Article
PubMed
Google Scholar
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. https://doi.org/10.1016/j.cell.2014.09.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCann KS. The diversity–stability debate. Nature. 2000;405(6783):228–33. https://doi.org/10.1038/35012234.
Article
CAS
PubMed
Google Scholar
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2020;0:1–11. https://doi.org/10.1136/gutjnl-2020-321747.
Article
CAS
Google Scholar
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:1–11.
Article
Google Scholar
Zaneveld JR, McMinds R, Thurber RV. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2(9):17121. https://doi.org/10.1038/nmicrobiol.2017.121.
Article
CAS
PubMed
Google Scholar
Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295–308. https://doi.org/10.1038/ismej.2013.155.
Article
CAS
PubMed
Google Scholar
Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61(4):543–53. https://doi.org/10.1136/gutjnl-2011-301012.
Article
CAS
PubMed
Google Scholar
Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA. Archaea are interactive components of complex microbiomes. Trends Microbiol. 2018;26(1):70–85. https://doi.org/10.1016/j.tim.2017.07.004.
Article
CAS
PubMed
Google Scholar
Jackson MI, Jewell DE. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes. 2019;10(3):298–320. https://doi.org/10.1080/19490976.2018.1526580.
Article
CAS
PubMed
Google Scholar
Desai MS, Seekatz AM, Koropatkin N, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167:1339–1353.E21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tottey W, Feria-Gervasio D, Gaci N, Laillet B, Pujos E, Martin J-F, et al. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. J Neurogastroenterol Motil. 2017;23(1):124–34. https://doi.org/10.5056/jnm16042.
Article
PubMed
PubMed Central
Google Scholar
Charles-Smith LE, Cowen P, Schopler R. Environmental and physiological factors contributing to outbreaks of Cryptosporidium in Coquerel’s sifaka (Propithecus coquereli) at the Duke Lemur Center: 1999-2007. J Zoo Wildl Med. 2010;41(3):438–44. https://doi.org/10.1638/2009-0160.1.
Article
PubMed
Google Scholar
Cassady K, Cullen JM, Williams CV. Mortality in coquerel’s sifakas (Propithecus coquereli) under human care: a retrospective survey from the Duke Lemur Center 1990–2015. J Zoo Wildl Med. 2018;49(2):315–23. https://doi.org/10.1638/2017-0242.1.
Article
PubMed
Google Scholar
Rasambainarivo FT, Gillespie TR, Wright PC, Arsenault J, Villeneuve A, Lair S. Survey of Giardia and Cryptosporidium in lemurs from the Ranomafana National Park, Madagascar. J Wildl Dis. 2013;49(3):741–3. https://doi.org/10.7589/2012-10-264.
Article
PubMed
Google Scholar
Rasambainarivo FT, Junge RE, Lewis RJ. Biomedical evaluation of Verreaux's sifaka (Propithecus verreauxi) from Kirindy Mitea National Park in Madagascar. J Zoo Wildl Med. 2014;45(2):247–55. https://doi.org/10.1638/2013-0038R1.1.
Article
PubMed
Google Scholar
Springer A, Fichtel C, Kappeler PM. Low diversity of intestinal parasites in an arboreal primate, Verreaux’s sifaka, at Kirindy Forest, Madagascar. Hannover: University of Veterinary Medicine Hannover; 2015. DVM thesis Ch5. p. 46–65.
Loudon JE, Patel ER, Faulkner C, Schopler R, Kramer RA, Williams CV, et al. An ethnoprimatological assessment of human impact on the parasite ecology of silky sifaka (Propithecus candidus). In: Dore KM, Riley EP, Fuentes A, editors. Ethnoprimatology: a practical guide to research on the human-nonhuman primate interface; 2017. p. 89–110.
Chapter
Google Scholar
Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol. 2014;426(23):3838–50. https://doi.org/10.1016/j.jmb.2014.07.028.
Article
CAS
PubMed
Google Scholar
Gloux K, Berteau O, El Oumami H, Béguet F, Leclerc M, Doré J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. PNAS. 2011;108:4539–46.
Article
CAS
PubMed
Google Scholar
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47. https://doi.org/10.1093/ajcn/79.5.727.
Article
CAS
PubMed
Google Scholar
Powzyk JA, Mowry CB. Dietary and feeding differences between sympatric Propithecus diadema diadema and Indri indri. Int J Primatol. 2003;24(6):1143–62. https://doi.org/10.1023/B:IJOP.0000005984.36518.94.
Article
Google Scholar
Greene LK, Williams CV, Junge RE, Mahefarisoa K, Rajonarivelo T, Rakotodrainibe H, et al. A role for gut microbiota in host niche differentiation. ISME J. 2020;14(7):1675–87. https://doi.org/10.1038/s41396-020-0640-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newsome SD, Feeser KL, Bradley CJ, Wolf C, Takacs-Vesbach C, Fogel ML. Isotopic and genetic methods reveal the role of the gut microbiome in mammalian host essential amino acid metabolism. Proc Royal Soc B. 2020;287(1922):20192995. https://doi.org/10.1098/rspb.2019.2995.
Article
CAS
Google Scholar
Roullet D. The European captive population of crowned sifaka: 25 years of management. Primate Conserv. 2014;28(1):99–107. https://doi.org/10.1896/052.028.0118.
Article
Google Scholar
Eppley TM, Santini L, Tinsman JC, Donati G. Do functional traits offset the effects of fragmentation? The case of large-bodied diurnal lemur species. Am J Primatol. 2020;82:e23104.
Article
PubMed
Google Scholar
McKenney EA, Greene LK, Drea CM, Yoder AD. Down for the count: Cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb Ecol Health Dis. 2017;28(1):1335165. https://doi.org/10.1080/16512235.2017.1335165.
Article
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(D1):D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5(2):169–72. https://doi.org/10.1038/ismej.2010.133.
Article
PubMed
Google Scholar
RStudio Team. RStudio: integrated development for R. RStudio. Boston: PBC; 2020. http://www.rstudio.com/
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna; 2017. https://www.R-project.org/
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-7. 2020. http://www.CRAN.R-project.org/package=vegan
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;1:289–300.
Google Scholar
Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. Oral metallo-beta-lactamase protects the gut microbiome from carbapenem-mediated damage and reduces propagation of antibiotic resistance in pigs. Front Microbiol. 2019;10:101. https://doi.org/10.3389/fmicb.2019.00101.
Article
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Hudson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. https://doi.org/10.1038/nmeth.3176.
Article
CAS
PubMed
Google Scholar
Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods. 2018;15(11):962–8. https://doi.org/10.1038/s41592-018-0176-y.
Article
CAS
PubMed
PubMed Central
Google Scholar