Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16(4):7493–519. https://doi.org/10.3390/ijms16047493.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills S, et al. Precision nutrition and the microbiome, part i: current state of the science. Nutrients. 2019;11(4):923.
Article
CAS
PubMed Central
Google Scholar
Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–4. https://doi.org/10.1126/science.1198719.
Article
CAS
PubMed
PubMed Central
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.
Article
CAS
PubMed
Google Scholar
Middelbos IS, Vester Boler BM, Qu A, White BA, Swanson KS, Fahey GC. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One. 2010;5(3):e9768. https://doi.org/10.1371/journal.pone.0009768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panasevich MR, Kerr KR, Dilger RN, Fahey GC Jr, Guérin-Deremaux L, Lynch GL, et al. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. Br J Nutr. 2015;113(1):125–33. https://doi.org/10.1017/S0007114514003274.
Article
CAS
PubMed
Google Scholar
Panasevich MR, Rossoni Serao MC, de Godoy MRC, Swanson KS, Guérin-Deremaux L, Lynch GL, et al. Potato fiber as a dietary fiber source in dog foods. J Anim Sci. 2013;91(11):5344–52. https://doi.org/10.2527/jas.2013-6842.
Article
CAS
PubMed
Google Scholar
Beloshapka AN, Dowd SE, Suchodolski JS, Steiner JM, Duclos L, Swanson KS. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol Ecol. 2013;84(3):532–41. https://doi.org/10.1111/1574-6941.12081.
Article
CAS
PubMed
Google Scholar
Hang I, Rinttila T, Zentek J, Kettunen A, Alaja S, Apajalahti J, et al. Effect of high contents of dietary animal-derived protein or carbohydrates on canine faecal microbiota. BMC Vet Res. 2012;8(1):90. https://doi.org/10.1186/1746-6148-8-90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilla R, Suchodolski JS. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front Vet Sci. 2020;6:498. https://doi.org/10.3389/fvets.2019.00498.
Article
PubMed
PubMed Central
Google Scholar
Vanhoutte T, Huys G, Brandt E, Fahey GC Jr, Swings J. Molecular monitoring and characterization of the faecal microbiota of healthy dogs during fructan supplementation. FEMS Microbiol Lett. 2005;249(1):65–71. https://doi.org/10.1016/j.femsle.2005.06.003.
Article
CAS
PubMed
Google Scholar
Jia J, Frantz N, Khoo C, Gibson GR, Rastall RA, McCartney AL. Investigation of the faecal microbiota associated with canine chronic diarrhoea. FEMS Microbiol Ecol. 2010;71(2):304–12. https://doi.org/10.1111/j.1574-6941.2009.00812.x.
Article
CAS
PubMed
Google Scholar
Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI. Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. Microb Ecol. 2002;44(2):186–97. https://doi.org/10.1007/s00248-002-0001-z.
Article
CAS
PubMed
Google Scholar
Barry KA, Hernot DC, Middelbos IS, Francis C, Dunsford B, Swanson KS, et al. Low-level fructan supplementation of dogs enhances nutrient digestion and modifies stool metabolite concentrations, but does not alter fecal microbiota populations. J Anim Sci. 2009;87(10):3244–52. https://doi.org/10.2527/jas.2008-1659.
Article
CAS
PubMed
Google Scholar
Biagi G, Cipollini I, Grandi M, Zaghini G. Influence of some potential prebiotics and fibre-rich foodstuffs on composition and activity of canine intestinal microbiota. Anim Feed Sci Technol. 2010;159(1):50–8. https://doi.org/10.1016/j.anifeedsci.2010.04.012.
Article
CAS
Google Scholar
Graham PA, et al. Influence of a high fibre diet on glycaemic control and quality of life in dogs with diabetes mellitus. J Small Anim Pract. 2002;43(2):67–73. https://doi.org/10.1111/j.1748-5827.2002.tb00031.x.
Article
CAS
PubMed
Google Scholar
Herstad KMV, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, et al. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet Res. 2017;13(1):147. https://doi.org/10.1186/s12917-017-1073-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hang I, Heilmann RM, Grützner N, Suchodolski JS, Steiner JM, Atroshi F, et al. Impact of diets with a high content of greaves-meal protein or carbohydrates on faecal characteristics, volatile fatty acids and faecal calprotectin concentrations in healthy dogs. BMC Vet Res. 2013;9(1):201. https://doi.org/10.1186/1746-6148-9-201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ. 2017;5:e3019. https://doi.org/10.7717/peerj.3019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018;6(1):72. https://doi.org/10.1186/s40168-018-0450-3.
Article
PubMed
PubMed Central
Google Scholar
Li Q, et al. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. mBio. 2017;8(1):e01703–16. https://doi.org/10.1128/mBio.01703-16.
Kim J, An JU, Kim W, Lee S, Cho S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog. 2017;9(1):68. https://doi.org/10.1186/s13099-017-0218-5.
Article
PubMed
PubMed Central
Google Scholar
Sandri M, Dal Monego S, Conte G, Sgorlon S, Stefanon B. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Vet Res. 2017;13(1):65. https://doi.org/10.1186/s12917-017-0981-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9(10):599–608. https://doi.org/10.1038/nrgastro.2012.152.
Article
CAS
PubMed
Google Scholar
Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, et al. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes. 2015;6(1):33–47. https://doi.org/10.1080/19490976.2014.997612.
Article
CAS
PubMed
PubMed Central
Google Scholar
AlShawaqfeh MK, et al. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol Ecol. 2017;93(11). https://doi.org/10.1093/femsec/fix136.
Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, et al. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One. 2012;7(12):e51907. https://doi.org/10.1371/journal.pone.0051907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honneffer JB, Minamoto Y, Suchodolski JS. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J Gastroenterol. 2014;20(44):16489–97. https://doi.org/10.3748/wjg.v20.i44.16489.
Article
PubMed
PubMed Central
Google Scholar
Simpson KW, Jergens AE. Pitfalls and progress in the diagnosis and management of canine inflammatory bowel disease. Vet Clin North Am Small Anim Pract. 2011;41(2):381–98. https://doi.org/10.1016/j.cvsm.2011.02.003.
Article
PubMed
Google Scholar
Cave NJ. Hydrolyzed protein diets for dogs and cats. Vet Clin North Am Small Anim Pract. 2006;36(6):1251–68, vi. https://doi.org/10.1016/j.cvsm.2006.08.008.
Article
PubMed
Google Scholar
Simpson JW. Diet and large intestinal disease in dogs and cats. J Nutr. 1998;128(12 Suppl):2717s–22s.
Article
CAS
PubMed
Google Scholar
Wang S, Martins R, Sullivan MC, Friedman ES, Misic AM, el-Fahmawi A, et al. Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiome. 2019;7(1):126. https://doi.org/10.1186/s40168-019-0740-4.
Article
PubMed
PubMed Central
Google Scholar
Mandigers PJ, et al. A randomized, open-label, positively-controlled field trial of a hydrolyzed protein diet in dogs with chronic small bowel enteropathy. J Vet Intern Med. 2010;24(6):1350–7. https://doi.org/10.1111/j.1939-1676.2010.0632.x.
Article
CAS
PubMed
Google Scholar
Suchodolski JS. Intestinal microbiota of dogs and cats: a bigger world than we thought. Vet Clin North Am Small Anim Pract. 2011;41(2):261–72. https://doi.org/10.1016/j.cvsm.2010.12.006.
Article
PubMed
PubMed Central
Google Scholar
Nakagawa S, Johnson PCD, Schielzeth H. The coefficient of determination R(2) and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface. 2017;14(134):20170213. https://doi.org/10.1098/rsif.2017.0213.
Garcia-Mazcorro JF, Dowd SE, Poulsen J, Steiner JM, Suchodolski JS. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen. 2012;1(3):340–7. https://doi.org/10.1002/mbo3.36.
Article
PubMed
PubMed Central
Google Scholar
Hooda S, Boler BMV, Serao MCR, Brulc JM, Staeger MA, Boileau TW, et al. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr. 2012;142(7):1259–65. https://doi.org/10.3945/jn.112.158766.
Article
CAS
PubMed
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21. https://doi.org/10.1038/nbt.2676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bresciani F, Minamoto Y, Suchodolski JS, Galiazzo G, Vecchiato CG, Pinna C, et al. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J Vet Intern Med. 2018;32(6):1903–10. https://doi.org/10.1111/jvim.15227.
Article
PubMed
PubMed Central
Google Scholar
Suchodolski JS, Camacho J, Steiner JM. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol. 2008;66(3):567–78. https://doi.org/10.1111/j.1574-6941.2008.00521.x.
Article
CAS
PubMed
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–51. https://doi.org/10.1126/science.1155725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander DD, Cushing CA. Red meat and colorectal cancer: a critical summary of prospective epidemiologic studies. Obes Rev. 2011;12(5):e472–93. https://doi.org/10.1111/j.1467-789X.2010.00785.x.
Article
CAS
PubMed
Google Scholar
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. https://doi.org/10.1101/gr.126516.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown RG. Digestibility of pet foods. Can Vet J. 1987;28(6):314–5.
CAS
PubMed
PubMed Central
Google Scholar
Badiani A, Nanni N, Gatta PP, Tolomelli B, Manfredini M. Nutrient profile of horsemeat. J Food Compos Anal. 1997;10(3):254–69. https://doi.org/10.1006/jfca.1997.0540.
Article
CAS
Google Scholar
Lorenzo JM, Sarriés MV, Tateo A, Polidori P, Franco D, Lanza M. Carcass characteristics, meat quality and nutritional value of horsemeat: a review. Meat Sci. 2014;96(4):1478–88. https://doi.org/10.1016/j.meatsci.2013.12.006.
Article
CAS
PubMed
Google Scholar
Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet−Microbe−Host interaction. Microorganisms. 2019;7(1):19. https://doi.org/10.3390/microorganisms7010019.
Article
CAS
PubMed Central
Google Scholar
Schmidt M, Unterer S, Suchodolski JS, Honneffer JB, Guard BC, Lidbury JA, et al. The fecal microbiome and metabolome differs between dogs fed bones and raw food (BARF) diets and dogs fed commercial diets. PLoS One. 2018;13(8):e0201279. https://doi.org/10.1371/journal.pone.0201279.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. https://doi.org/10.1073/pnas.1005963107.
Article
PubMed
PubMed Central
Google Scholar
Marks SL, Laflamme DP, McAloose D. Dietary trial using a commercial hypoallergenic diet containing hydrolyzed protein for dogs with inflammatory bowel disease. Vet Ther. 2002;3(2):109–18.
PubMed
Google Scholar
Pilla R, et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J Vet Intern Med. 2020;34(5):1853–66.
Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17(12):742–53. https://doi.org/10.1038/s41579-019-0256-8.
Article
CAS
PubMed
Google Scholar
Mills S, et al. Precision nutrition and the microbiome part ii: potential opportunities and pathways to commercialisation. Nutrients. 2019;11(7):1468. https://doi.org/10.3390/nu11071468.
Hewson-Hughes AK, Hewson-Hughes VL, Colyer A, Miller AT, McGrane SJ, Hall SR, et al. Geometric analysis of macronutrient selection in breeds of the domestic dog, Canis lupus familiaris. Behav Ecol. 2013;24(1):293–304. https://doi.org/10.1093/beheco/ars168.
Article
PubMed
Google Scholar
Frame LA, Costa E, Jackson SA. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr Rev. 2020;78(10):798–812. https://doi.org/10.1093/nutrit/nuz106.
Article
PubMed
Google Scholar
Christodoulides S, Dimidi E, Fragkos KC, Farmer AD, Whelan K, Scott SM. Systematic review with meta-analysis: effect of fibre supplementation on chronic idiopathic constipation in adults. Aliment Pharmacol Ther. 2016;44(2):103–16. https://doi.org/10.1111/apt.13662.
Article
CAS
PubMed
Google Scholar
Kerr KR, Forster G, Dowd SE, Ryan EP, Swanson KS. Effects of dietary cooked navy bean on the fecal microbiome of healthy companion dogs. PLoS One. 2013;8(9):e74998. https://doi.org/10.1371/journal.pone.0074998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.
Article
PubMed
PubMed Central
Google Scholar
Kasiraj AC, et al. The effects of feeding and withholding food on the canine small intestinal microbiota. FEMS Microbiol Ecol. 2016;92(6):fiw085.
Article
PubMed
Google Scholar
Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol. 2014;90(3):883–94. https://doi.org/10.1111/1574-6941.12442.
Article
CAS
PubMed
Google Scholar
Laflamme D. Development and validation of a body condition score system for dogs.: a clinical tool. Canine Pract. 1997;22:10–5.
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72. https://doi.org/10.1128/AEM.03006-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bates D, et al. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. https://doi.org/10.18637/jss.v067.i01.
Bartoń, K. Package ‘MuMIn’:Multi-Model inference. 2020; Available from: https://CRAN.R-project.org/package=MuMIn.
Google Scholar
Lenth, R., et al. Package ‘emmeans’: estimated marginal means, aka least-squares means. 2020; Available from: https://CRAN.R-project.org/package=emmeans.
Google Scholar
Douma JC, Weedon JT. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol Evol. 2019;10(9):1412–30. https://doi.org/10.1111/2041-210X.13234.
Article
Google Scholar
Team RC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.
Google Scholar
Bürkner P-C.brms: An R Package for Bayesian Multilevel Models Using Stan. J Stat Softw. 2017;80(1):1–28.