Borsberry S, Dobson H. Periparturient diseases and their effect on reproductive performance in five dairy herds. Vet Rec. 1989;124:217.
Article
CAS
PubMed
Google Scholar
Esslemont RJ, Peeler EJ. The scope for raising margins in dairy herds by improving fertility and health. Br Vet J. 1993;149:537–47.
Article
CAS
PubMed
Google Scholar
Lewis GS. Symposium: health problems of the postpartum cow, uterine health and disorders. J Dairy Sci. 1997;80:984–94.
Article
CAS
PubMed
Google Scholar
Sheldon IM, Dobson H. Postpartum uterine health in cattle. Anim Reprod Sci. 2004;82:295–306.
Article
PubMed
Google Scholar
Ball PJ, Peters AR. Reproductive efficiency in cattle production. In: Ball PJ, Peters AR, editors. Reproduction in cattle. Oxford, United Kingdom: Blackwell Publishing Ltd.; 2004. p. 1–12.
Chapter
Google Scholar
Grossi DA, Frizzas OG, Paz CCP, Bezerra LAF, Lôbo RB, Oliveira JA, et al. Genetic associations between accumulated productivity, and reproductive and growth traits in Nelore cattle. Livest Sci. 2008;117:139–46.
Article
Google Scholar
Mwansa PB, Crews DH, Wilton JW, Kemp RA. Multiple trait selection for maternal productivity in beef cattle. J Anim Breed Genet. 2002;119:391–9. https://doi.org/10.1046/j.1439-0388.2002.00363.x.
Article
Google Scholar
Diskin MG, Waters SM, Parr MH, Kenny DA. Pregnancy losses in cattle: potential for improvement. Reprod Fertil Dev. 2015;28:83–93.
Article
Google Scholar
Griffin JFT, Hartigan PJ, Nunn WR. Non-specific uterine infection and bovine fertility: I. infection patterns and endometritis during the first seven weeks post-partum. Theriogenology. 1974;1:91–106.
Article
CAS
PubMed
Google Scholar
Parsonson IM, Clark BL, Dufty JH. Early pathogenesis and pathology of Tritrichomonas foetus infection in virgin heifers. J Comp Pathol. 1976;86:59–66.
Article
CAS
PubMed
Google Scholar
Clark BL, Dufty JH, Parsonson IM. The effect of Tritrichomonas foetus infection on calving rates in beef cattle. Aust Vet J. 1983;60:71–4. https://doi.org/10.1111/j.1751-0813.1983.tb05873.x.
Article
CAS
PubMed
Google Scholar
Azawi OI. Postpartum uterine infection in cattle. Anim Reprod Sci. 2008;105:187–208.
Article
CAS
PubMed
Google Scholar
Noakes DE, Parkinson TJ, England GCW, Arthur GH. Infertility in the cow: structural and functional abnormalities, management deficiencies and non-specific infections. In: Noakes DE, Parkinson TJ, England GCW, Arthur GH, editors. Arthur's veterinary reproduction and obstetrics. 8th ed. Oxford: W.B. Saunders; 2001. p. 383–472.
Google Scholar
Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU, Dobson H. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction. 2002;123:837–45.
Article
CAS
PubMed
Google Scholar
Hussain AM, Daniel RCW. Phagocytosis by uterine fluid and blood neutrophils and hematological changes in postpartum cows following normal and abnormal parturition. Theriogenology. 1992;37:1253–67.
Article
Google Scholar
LeBlanc SJ, Duffield TF, Leslie KE, Bateman KG, Keefe GP, Walton JS, et al. Defining and diagnosing postpartum clinical fndometritis and its impact on reproductive performance in dairy cows. J Dairy Sci. 2002;85:2223–36.
Article
CAS
PubMed
Google Scholar
Mshelia GD, Amin JD, Woldehiwet Z, Murray RD, Egwu GO. Epidemiology of bovine venereal campylobacteriosis: geographic distribution and recent advances in molecular diagnostic techniques. Reprod Domest Anim. 2010;45:e221–e30.
CAS
PubMed
Google Scholar
Michi AN, Favetto PH, Kastelic J, Cobo ER. A review of sexually transmitted bovine trichomoniasis and campylobacteriosis affecting cattle reproductive health. Theriogenology. 2016;85:781–91.
Article
PubMed
Google Scholar
Anderson ML, Barr BC, Conrad PA. Protozoal causes of reproductive failure in domestic ruminants. Vet Clin North Am Food Anim Pract. 1994;10:439–61.
Article
CAS
PubMed
Google Scholar
Modolo JR, Lopes CAM, Genari T. Occurrence of Campylobacter in the genitals of teaser bulls maintained at an embryo transfer center. Brazillian Archive of Veterinary Medicine and Zootechnics. 2000;52:96–7.
Google Scholar
Lindberg ALE. Bovine viral diarrhoea virus infections and its control. A review Vet Q. 2003;25:1–16.
Article
CAS
PubMed
Google Scholar
Dubey JP, Schares G, Ortega-Mora LM. Epidemiology and control of Neosporosis and Neospora caninum. Clin Microbiol Rev. 2007;20:323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poester FP, Samartino LE, Santos RL. Pathogenesis and pathobiology of brucellosis in livestock. Rev Sci Tech. 2013;32:105–15.
Article
CAS
PubMed
Google Scholar
Lilenbaum W, Martins G. Leptospirosis in cattle: a challenging scenario for the understanding of the epidemiology. Transbound Emerg Dis. 2014;61:63–8.
Article
PubMed
Google Scholar
Williams EJ, Fischer DP, Noakes DE, England GCW, Rycroft A, Dobson H, et al. The relationship between Uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology. 2007;68:549–59. doi: https://doi.org/10.1016/j.theriogenology.2007.04.056.
Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE, et al. Ovarian follicular cells have innate immune capabilities that modulate their dndocrine function. Reproduction. 2007;134:683–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert RO, Bosu WTK, Peter AT. The effect of Escherichia coli endotoxin on luteal function in Holstein heifers. Theriogenology. 1990;33:645–51. doi: https://doi.org/10.1016/0093-691X(90)90541-Z.
Karsch FJ, Battaglia DF, Breen KM, Debus N, Harris TG. Mechanisms for ovarian cycle disruption by immune/inflammatory stress. Stress. 2002;5:101–12. https://doi.org/10.1080/10253890290027868.
Article
CAS
PubMed
Google Scholar
Mann G, Lamming G. The influence of progesterone during early pregnancy in cattle. Reprod Domest Anim. 1999;34:269–74. https://doi.org/10.1111/j.1439-0531.1999.tb01250.x.
Article
CAS
Google Scholar
Brusveen DJ, Souza AH, Wiltbank MC. Effects of additional prostaglandin F2α and estradiol-17β during ovsynch in lactating dairy cows. J Dairy Sci. 2009;92:1412–22. doi: https://doi.org/10.3168/jds.2008-1289.
Martins JPN, Policelli RK, Neuder LM, Raphael W, Pursley JR. Effects of cloprostenol sodium at final prostaglandin F2α of ovsynch on complete luteolysis and pregnancy per artificial insemination in lactating dairy cows. J Dairy Sci. 2011;94:2815–24. doi: https://doi.org/10.3168/jds.2010-3652.
Manns JG, Nkuuhe JR, Bristol F. Prostaglandin concentrations in uterine fluid of cows with pyometra. Can J Comp Med. 1985;49:436–8 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236208/; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236208/pdf/compmed00004-0088.pdf.
CAS
PubMed
PubMed Central
Google Scholar
Herath S, Lilly ST, Fischer DP, Williams EJ, Dobson H, Bryant CE, et al. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F(2α) to prostaglandin E(2) in bovine endometrium. Endocrinology. 2009;150:1912–20. https://doi.org/10.1210/en.2008-1379.
Article
CAS
PubMed
Google Scholar
Hill J, Gilbert R. Reduced quality of bovine embryos cultured in media conditioned by exposure to an inflamed endometrium. Aust Vet J. 2008;86:312–6. https://doi.org/10.1111/j.1751-0813.2008.00326.x.
Article
CAS
PubMed
Google Scholar
Williams EJ, Fischer DP, Pfeiffer DU, England GC, Noakes DE, Dobson H, et al. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenology. 2005;63:102–17. https://doi.org/10.1016/j.theriogenology.2004.03.017.
Article
PubMed
Google Scholar
Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth H-J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol Reprod. 2009;81:1025–32. https://doi.org/10.1095/biolreprod.109.077370.
Article
CAS
PubMed
Google Scholar
Gilbert RO. Symposium review: mechanisms of disruption of fertility by infectious diseases of the reproductive tract. J Dairy Sci. 2019;102:3754–65. doi: https://doi.org/10.3168/jds.2018-15602.
Piersanti RL, Block J, Ma Z, Jeong KC, Santos JEP, Yu F, et al. Uterine infusion of bacteria alters the transcriptome of bovine oocytes. FASEB Bio Adv. 2020;2:506–20.
Article
CAS
Google Scholar
Bush LJ, Ludwick TM, Ferguson LC, Ely F. The effect of bacteria on the fertility of bovine semen. J Dairy Sci. 1950;33:633–8. doi: https://doi.org/10.3168/jds.S0022-0302(50)91947-3.
Huwe P, Diemer T, Ludwig M, Liu J, Schiefer HG, Weidner W. Influence of different uropathogenic microorganisms on human sperm motility parameters in an in vitro experiment. Andrologia. 1998;30:55–9. doi: https://doi.org/10.1111/j.1439-0272.1998.tb02827.x.
Diemer T, Weidner W, MicheImann HW, Schiefer H-G, Rovan E, Mayer F. Influence of Escherichia coli on motility parameters of human spermatozoa in vitro. Int J Androl. 1996;19:271–7. https://doi.org/10.1111/j.1365-2605.1996.tb00475.x.
Article
CAS
PubMed
Google Scholar
Kumaresan A, Das Gupta M, Datta TK, Morrell JM. Sperm DNA integrity and male fertility in farm animals: a review. Front Vet Sci. 2020;7:321.
Article
PubMed
PubMed Central
Google Scholar
Djønne B. Infections and perinatal diseases – a comparative overview. Acta Vet Scand. 2007;49:S10. https://doi.org/10.1186/1751-0147-49-S1-S10.
Article
Google Scholar
Bondurant R. Inflammation in the bovine female reproductive tract. J Anim Sci. 1999;77:101–10.
Article
CAS
PubMed
Google Scholar
Carneiro LC, Cronin JG, Sheldon IM. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod Biol. 2016;16:1–7.
Article
PubMed
Google Scholar
Machado VS, Oikonomou G, Bicalho MLS, Knauer WA, Gilbert R, Bicalho RC. Investigation of postpartum dairy cows’ uterine microbial diversity using metagenomic pyrosequencing of the 16S rRNA gene. Vet Microbiol. 2012;159:460–9.
Article
CAS
PubMed
Google Scholar
Santos TMA, Bicalho RC. Diversity and succession of bacterial communities in the uterine fluid of postpartum metritic, endometritic and healthy dairy cows. PLoS One. 2012;7:e53048. https://doi.org/10.1371/journal.pone.0053048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Y, Wang Y, Hang S, Zhu W. Microbial diversity in uterus of healthy and metritic postpartum Holstein dairy cows. Folia Microbiol (Praha). 2013;58:593–600. https://doi.org/10.1007/s12223-013-0238-6.
Article
CAS
Google Scholar
Knudsen LRV, Karstrup CC, Pedersen HG, Agerholm JS, Jensen TK, Klitgaard K. Revisiting bovine pyometra - new insights into the disease using a culture-independent deep sequencing approach. Vet Microbiol. 2015;175:319–24.
Article
PubMed
Google Scholar
Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
Article
PubMed
PubMed Central
Google Scholar
Sjöling S, Cowan DA. Metagenomics: microbial community genomes revealed. In: Margesin R, Schinner F, Marx J-C, Gerday C, editors. Psychrophiles: From Biodiversity to Biotechnology: Springer Berlin Heidelberg; 2008. p. 313–32.
Shade A, Hogan CS, Klimowicz AK, Linske M, McManus PS, Handelsman J. Culturing captures members of the soil rare biosphere. Environ Microbiol. 2012;14:2247–52.
Article
PubMed
PubMed Central
Google Scholar
Bragg L, Tyson GW. Metagenomics using next-generation sequencing. Methods Mol Biol. 2014;1096:183–201.
Article
CAS
PubMed
Google Scholar
Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, et al. Sequencing and beyond: integrating molecular ‘omics' for microbial community profiling. Nat Rev Microbiol. 2015;13:360. https://doi.org/10.1038/nrmicro3451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol. 2019;4:35–45.
Article
CAS
PubMed
Google Scholar
Jeon SJ, Cunha F, Vieira-Neto A, Bicalho RC, Lima S, Bicalho ML, et al. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome. 2017;5:109.
Article
PubMed
PubMed Central
Google Scholar
Lima SF, Bicalho MLdS, Bicalho RC The Bos taurus maternal microbiome: role in determining the progeny early-life upper respiratory tract microbiome and health. PLoS One 2019;14:e0208014.
Thomas RK, Nickerson E, Simons JF, Jänne PA, Tengs T, Yuza Y, et al. Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med. 2006;12:852.
Article
CAS
PubMed
Google Scholar
Heil BA, Paccamonti DL, Sones JL. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genomics. 2019;51:390–9.
Article
CAS
PubMed
Google Scholar
Wickware CL, Johnson TA, Koziol JH. Composition and diversity of the preputial microbiota in healthy bulls. Theriogenology. 2020;145:231–7. https://doi.org/10.1016/j.theriogenology.2019.11.002.
Article
CAS
PubMed
Google Scholar
Popovic A, Parkinson J. Characterization of eukaryotic microbiome using 18S amplicon sequencing. In: Beiko RG, Hsiao W, Parkinson J, editors. Microbiome analysis: methods and protocols. New York: Springer New York; 2018. p. 29–48.
Chapter
Google Scholar
Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods. 2015;421:112–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmalenberger A, Schwieger F, Tebbe CC. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol. 2001;67:3557. https://doi.org/10.1128/AEM.67.8.3557-3563.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012;6:1440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One. 2014;9:e93827. https://doi.org/10.1371/journal.pone.0093827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun. 2016;469:967–77.
Article
CAS
PubMed
Google Scholar
Tessler M, Neumann JS, Afshinnekoo E, Pineda M, Hersch R, Velho LFM, et al. Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Sci Rep. 2017;7:6589.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35:833.
Article
CAS
PubMed
Google Scholar
The Endnote Team. Endnote. EndNote X9 ed. Philadelphia: Clarivate; 2013.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535.
Article
PubMed
PubMed Central
Google Scholar
Microsoft Coorporation. Microsoft® excel for mac. 2020.
Google Scholar
RStudio Team. RStudio: Integrated development environment for R.: RStudio, PBC, Boston, MA; 2020.
Hadley Wickham RF, Henry L, Müller K. dplyr: A grammar of data manipulation; 2020.
Google Scholar
Wickham. H. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. 2016.
Wickham H. Reshaping data with the reshape package. 2007. 2007;21:20. doi: https://doi.org/10.18637/jss.v021.i12.
World Health Organisation (WHO). Definition of regional groupings: World Health Organisation (WHO); [cited 2020 15th December]. Available from: https://www.who.int/healthinfo/global_burden_disease/definition_regions/en/.
Hart ML, Meyer A, Johnson PJ, Ericsson AC. Comparative evaluation of DNA extraction methods from feces of multiple host species for downstream next-generation sequencing. PLoS One. 2015;10:e0143334. https://doi.org/10.1371/journal.pone.0143334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swartz JD, Lachman M, Westveer K, O'Neill T, Geary T, Kott RW, et al. Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lactobacilli and near-neutral pH. Front Vet Sci. 2014;1:19.
Article
PubMed
PubMed Central
Google Scholar
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7. https://doi.org/10.1073/pnas.1002611107.
Article
PubMed
Google Scholar
O'Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One. 2013;8:e80074. https://doi.org/10.1371/journal.pone.0080074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemmons BA, Reese ST, Dantas FG, Franco GA, Smith TPL, Adeyosoye OI, et al. Vaginal and uterine bacterial communities in postpartum lactating cows. Front Microbiol. 2017;8:1047. https://doi.org/10.3389/fmicb.2017.01047.
Article
PubMed
PubMed Central
Google Scholar
Yeoman CJ, Ishaq SL, Bichi E, Olivo SK, Lowe J, Aldridge BM. Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract. Scientific Reports. 2018;8:3197-.
Klein-Jöbstl D, Quijada NM, Dzieciol M, Feldbacher B, Wagner M, Drillich M, et al. Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves' gastrointestinal microbiota. PLoS One. 2019;14:e0220554. https://doi.org/10.1371/journal.pone.0220554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling Y, Zhang X, Qi G, Yang S, Jingjiao L, Shen Q, et al. Viral metagenomics reveals significant viruses in the genital tract of apparently healthy dairy cows. Arch Virol. 2019;164:1059–67. https://doi.org/10.1007/s00705-019-04158-4.
Article
CAS
PubMed
Google Scholar
Otero C, De Ruiz CS, Ibañez R, Wilde O, de Ruiz HA, Nader-Macias M. Lactobacilli and Enterococci isolated from the bovine vagina during the estrous cycle. Anaerobe. 1999;3:305–7.
Article
Google Scholar
Otero C, Saavedra L, Silva de Ruiz C, Wilde O, Holgado AR, Nader-Macías ME. Vaginal bacterial microflora modifications during the growth of healthy cows. Lett Appl Microbiol. 2001;31:251–4. https://doi.org/10.1046/j.1365-2672.2000.00809.x.
Article
Google Scholar
Zambrano-Nava S, Boscan-Ocando J, Nava J. Normal bacterial flora from vaginas of Criollo Limonero cows. Trop Anim Health Prod. 2011;43:291–4.
Article
PubMed
Google Scholar
Olson JD, Ball L, Mortimer RG, Farin PW, Adney WS, Huffman EM. Aspects of bacteriology and endocrinology of cows with pyometra and retained fetal membranes. Am J Vet Res. 1984;45:2251–5.
CAS
PubMed
Google Scholar
Farin PW, Ball L, Olson JD, Mortimer RG, Jones RL, Adney WS, et al. Effect of Actinomyces pyogenes and gram-negative anaerobic bacteria on the development of bovine pyometra. Theriogenology. 1989;31:979–89.
Article
CAS
PubMed
Google Scholar
Dohmen MJ, Joop K, Sturk A, Bols PE, Lohuis JA. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta. Theriogenology. 2000;54:1019–32.
Article
CAS
PubMed
Google Scholar
Bicalho RC, Machado VS, Bicalho ML, Gilbert RO, Teixeira AG, Caixeta LS, et al. Molecular and epidemiological characterization of bovine intrauterine Escherichia coli. J Dairy Sci. 2010;93:5818–30.
Article
CAS
PubMed
Google Scholar
Amos MR, Healey GD, Goldstone RJ, Mahan SM, Duvel A, Schuberth HJ, et al. Differential endometrial cell sensitivity to a cholesterol-dependent cytolysin links Trueperella pyogenes to uterine disease in cattle. Biol Reprod. 2014;90:54.
Article
PubMed
CAS
Google Scholar
Jeon SJ, Vieira-Neto A, Gobikrushanth M, Daetz R, Mingoti RD, Parize ACB, et al. Uterine microbiota progression from calving until establishment of metritis in dairy cows. Appl Environ Microbiol. 2015;81:6324–32. https://doi.org/10.1128/AEM.01753-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knudsen LRV, Karstrup CC, Pedersen HG, Angen Ø, Agerholm JS, Rasmussen EL, et al. An investigation of the microbiota in uterine flush samples and endometrial biopsies from dairy cows during the first 7 weeks postpartum. Theriogenology. 2016;86:642–50.
Article
PubMed
Google Scholar
Hristov AN, Callaway TR, Lee C, Dowd SE. Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid. J Anim Sci. 2012;90:4449–57.
Article
CAS
PubMed
Google Scholar
Ziemer CJ. Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol. 2014;80:574. https://doi.org/10.1128/AEM.03016-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim M, Kim J, Kuehn LA, Bono JL, Berry ED, Kalchayanand N, et al. Investigation of bacterial diversity in the feces of cattle fed different diets. J Anim Sci. 2014;92:683–94. https://doi.org/10.2527/jas.2013-6841.
Article
CAS
PubMed
Google Scholar
Laguardia-Nascimento M, Branco KMGR, Gasparini MR, Giannattasio-Ferraz S, Leite LR, Araujo FMG, et al. Vaginal microbiome characterization of Nellore cattle using metagenomic analysis. PLoS One. 2015;10:e0143294. https://doi.org/10.1371/journal.pone.0143294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues NF, Kastle J, Coutinho TJ, Amorim AT, Campos GB, Santos VM, et al. Qualitative analysis of the vaginal microbiota of healthy cattle and cattle with genital-tact disease. Genet Mol Res. 2015;14:6518–28. https://doi.org/10.4238/2015.June.12.4.
Article
CAS
PubMed
Google Scholar
Santos TMA, Gilbert RO, Bicalho RC. Metagenomic analysis of the uterine bacterial microbiota in healthy and metritic postpartum dairy cows. J Dairy Sci. 2011;94:291–302.
Article
CAS
PubMed
Google Scholar
Bicalho MLS, Santin T, Rodrigues MX, Marques CE, Lima SF, Bicalho RC. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: associations with uterine diseases and reproductive outcome. J Dairy Sci. 2017;100:3043–58. https://doi.org/10.3168/jds.2016-11623.
Article
CAS
PubMed
Google Scholar
Jeon SJ, Lima FS, Vieira-Neto A, Machado VS, Lima SF, Bicalho RC, et al. Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows. Vet Microbiol. 2018;214:132–9.
Article
PubMed
Google Scholar
Bicalho MLS, Machado VS, Higgins CH, Lima FS, Bicalho RC. Genetic and functional analysis of the bovine uterine microbiota. Part I: metritis versus healthy cows. J Dairy Sci. 2017;100:3850–62.
Article
CAS
PubMed
Google Scholar
Bicalho MLS, Lima S, Higgins CH, Machado VS, Lima FS, Bicalho RC. Genetic and functional analysis of the bovine uterine microbiota. Part II: purulent vaginal discharge versus healthy cows. J Dairy Sci. 2017;100:3863–74.
Article
CAS
PubMed
Google Scholar
Miranda-CasoLuengo R, Lu J, Williams EJ, Miranda-CasoLuengo AA, Carrington SD, Evans ACO, et al. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS One. 2019;14:e0200974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno I, Simon C. Deciphering the effect of reproductive tract microbiota on human reproduction. Reprod Med Biol. 2018;18:40–50. https://doi.org/10.1002/rmb2.12249.
Article
PubMed
PubMed Central
Google Scholar
Torres E, Enriquez J, Vizmanos M. Bacteriologic profile of the vagina and uterus of postpartum dairy cows. Philippine J Vet Med. 1994;31:1–4.
Google Scholar
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00057.
Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: between Pprobiotic potential and safety concerns-an update. Front Microbiol. 2018;9:1791.
Article
PubMed
PubMed Central
Google Scholar
Md T, Huch M, Cho G-S, Franz CM. The genus Streptococcus. In: Holzapfel WH, Wood BJ, editors. Lactic Acid Bacteria; 2014. p. 457–505.
Google Scholar
Cunha F, Jeon S, Daetz R, Vieira Neto A, Laporta J, Jeong KC, et al. Quantifying known and emerging uterine pathogens, and evaluating their association with metritis and fever in dairy cows. Theriogenology. 2018;114:25–33. https://doi.org/10.1016/j.theriogenology.2018.03.016.
Article
PubMed
Google Scholar
Ruder CA, Sasser RG, Williams RJ, Ely JK, Bull RC, Butler JE. Uterine infections in the postpartum cow: II. Possible synergistic effect of Fusobacterium necrophorum and Corynebacterium pyogenes. Theriogenology. 1981;15:573–80.
Article
Google Scholar
Price SB, McCallum RE. Enhancement of Bacteroides intermedius growth by Fusobacterium necrophorum. J Clin Microbiol. 1986;23:22–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan Z, Nagaraja T, Chengappa M. Fusobacterium necrophorum infections: virulence factors, pathogenic mechanism and control measures. Vet Res Commun. 1996;20:113–40.
Article
CAS
PubMed
Google Scholar
Kaufman E, Mashimo P, Hausmann E, Hanks C, Ellison S. Fusobacterial infection: enhancement by cell free extracts of Bacteroides melaninogenicus possessing collagenolytic activity. Arch Oral Biol. 1972;17:577–80 IN15.
Article
CAS
PubMed
Google Scholar
Stirling G, Wilsey B. Empirical relationships between species richness, evenness, and proportional diversity. Am Nat. 2001;158:286–99.
Article
CAS
PubMed
Google Scholar
Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16:1024–33. https://doi.org/10.1111/cmi.12308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker WA. Dysbiosis. In: Floch MH, Ringel Y, Allan Walker W, editors. The microbiota in gastrointestinal pathophysiology. Boston: Academic Press; 2017. p. 227–32.
Chapter
Google Scholar
Ault TB, Clemmons BA, Reese ST, Dantas FG, Franco GA, Smith TPL, et al. Uterine and vaginal bacterial community diversity prior to artificial insemination between pregnant and nonpregnant postpartum cows. J Anim Sci. 2019;97:4298–304. https://doi.org/10.1093/jas/skz210.
Article
PubMed
PubMed Central
Google Scholar
Wrenn TR, Wood JR, Bitman J, Brinsfield TH. Vaginal glycogen assay for oestrogen: specificity and application to blood and urine. J Reprod Fertil. 1968;16:301–4. https://doi.org/10.1530/jrf.0.0160301.
Article
CAS
PubMed
Google Scholar
Bowman K, Rose J. Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison). Anim Sci J. 2017;88:45–54. doi: https://doi.org/10.1111/asj.12564.
Bitman J, Cecil HC. Mechanism of estrogen action in glycogen synthesis. Arch Biochem Biophys. 1967;118:424–7.
Article
CAS
PubMed
Google Scholar
Nunn KL, Forney LJ. Unraveling the dynamics of the human vaginal microbiome. Yale J Biol Med. 2016;89:331–7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045142/pdf/yjbm_89_3_331.pdf.
PubMed
PubMed Central
Google Scholar
Shpigel NY, Adler-Ashkenazy L, Scheinin S, Goshen T, Arazi A, Pasternak Z, et al. Characterization and identification of microbial communities in bovine necrotic vulvovaginitis. Vet J. 2017;219:34–9.
Article
CAS
PubMed
Google Scholar
Gonzalez Moreno C, Fontana C, Cocconcelli PS, Callegari ML, Otero MC. Vaginal microbial communities from synchronized heifers and cows with reproductive disorders. J Appl Microbiol. 2016;121:1232–41. https://doi.org/10.1111/jam.13239.
Article
CAS
PubMed
Google Scholar
Pascottini OB, Van Schyndel SJ, Spricigo JFW, Rousseau J, Weese JS, LeBlanc SJ. Dynamics of uterine microbiota in postpartum dairy cows with clinical or subclinical endometritis. Sci Rep. 2020;10. https://doi.org/10.1038/s41598-020-69317-z.
Galvão KN, Higgins CH, Zinicola M, Jeon SJ, Korzec H, Bicalho RC. Effect of pegbovigrastim administration on the microbiome found in the vagina of cows postpartum. J Dairy Sci. 2019;102:3439–51. https://doi.org/10.3168/jds.2018-15783.
Article
CAS
PubMed
Google Scholar
Jeon SJ, Cunha F, Ma X, Martinez N, Vieira-Neto A, Daetz R, et al. Uterine microbiota and immune parameters associated with fever in dairy cows with metritis. PLoS One. 2016;11. https://doi.org/10.1371/journal.pone.0165740.
Jeon S, Vieira Neto A, Gobikrushanth M, Daetz R, Mingoti RD, Parize ACB, et al. Uterine microbiota progression from calving until establishment of metritis in dairy cows. Appl Environ Microbiol. 2015;81:6324–32. https://doi.org/10.1128/AEM.01753-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017;8:875. https://doi.org/10.1038/s41467-017-00901-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wang J, Li H, Fu K, Pang B, Yang Y, et al. Characterization of the cervical bacterial community in dairy cows with metritis and during different physiological phases. Theriogenology. 2018;108:306–13. https://doi.org/10.1016/j.theriogenology.2017.12.028.
Article
PubMed
Google Scholar
Peterson JW. Bacterial pathogenesis. In: S. B, editor. Medical Microbiology. 4th ed. Galveston: University of Texas Medical Branch, Department of Microbiology; 1996.
Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA. Mechanisms of bacterial pathogenicity. Postgrad Med J. 2002;78:216. https://doi.org/10.1136/pmj.78.918.216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheldon IM, Rycroft AN, Dogan B, Craven M, Bromfield JJ, Chandler A, et al. Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One. 2010;5:e9192. https://doi.org/10.1371/journal.pone.0009192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raetz CRH, Reynolds CM, Trent MS, Bishop RE. Lipid a modification systems in gram-negative bacteria. Annu Rev Biochem. 2007;76:295–329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 2016;40:480–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Rycke J, Oswald E. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation? FEMS Microbiol Lett. 2001;203:141–8.
Article
PubMed
Google Scholar
Ceelen LM, Decostere A, Ducatelle R, Haesebrouck F. Cytolethal distending toxin generates cell death by inducing a bottleneck in the cell cycle. Microbiol Res. 2006;161:109–20.
Article
CAS
PubMed
Google Scholar
Schaller K, Nomura M. Colicin E2 is DNA endonuclease. Proc Natl Acad Sci U S A. 1976;73:3989–93.
Article
CAS
PubMed
PubMed Central
Google Scholar