Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc B Biol Sci. 2011;366(1569):1389–400. https://doi.org/10.1098/rstb.2010.0226.
Article
Google Scholar
Alizon S, De Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett. 2013;16(4):556–67. https://doi.org/10.1111/ele.12076.
Article
PubMed
Google Scholar
Zélé F, Magalhães S, Kéfi S, Duncan AB. Ecology and evolution of facilitation among symbionts. Nat Commun. 2018;9(1):1–12. https://doi.org/10.1038/s41467-018-06779-w.
Article
CAS
Google Scholar
Comolli LR. Intra- and inter-species interactions in microbial communities. Front Microbiol. 2014;5:629. https://doi.org/10.3389/fmicb.2014.00629.
Article
PubMed
PubMed Central
Google Scholar
Seth EC, Taga ME. Nutrient cross-feeding in the microbial world. Front Microbiol. 2014;5:350. https://doi.org/10.3389/fmicb.2014.00350.
Article
PubMed
PubMed Central
Google Scholar
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6(1):1–17. https://doi.org/10.1186/s40168-018-0445-0.
Article
Google Scholar
Wargo MJ, Hogan DA. Fungal–bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol. 2006;9(4):359–64. https://doi.org/10.1016/j.mib.2006.06.001.
Article
CAS
PubMed
Google Scholar
Newell PD, Douglas AE. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol. 2014;80(2):788–96. https://doi.org/10.1128/AEM.02742-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callens M, Watanabe H, Kato Y, Miura J, Decaestecker E. Microbiota inoculum composition affects holobiont assembly and host growth in Daphnia. Microbiome. 2018;6(1):1–12. https://doi.org/10.1186/s40168-018-0444-1.
Article
Google Scholar
Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, Gavryushkin A, Carlson JM, Beerenwinkel N, Ludington WB. Microbiome interactions shape host fitness. Proc Natl Acad Sci. 2018;115(51):e11951-11960. https://doi.org/10.1073/pnas.1809349115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sommer AJ, Newell PD. Metabolic basis for mutualism between gut bacteria and its impact on the Drosophila melanogaster host. Appl Environ Microbiol. 2019;85(2):e01882-e1918. https://doi.org/10.1128/AEM.01882-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82. https://doi.org/10.1146/annurev-phyto-080508-081729.
Article
CAS
PubMed
Google Scholar
Jouhten P, Ponomarova O, Gonzalez R, Patil KR. Saccharomyces cerevisiae metabolism in ecological context. FEMS Yeast Res. 2016;16(7):fow80. https://doi.org/10.1093/femsyr/fow080.
Carbonetto B, Ramsayer J, Nidelet T, Legrand J, Sicard D. Bakery yeasts, a new model for studies in ecology and evolution. Yeast. 2018;35(11):591–603. https://doi.org/10.1002/yea.3350.
Article
CAS
PubMed
Google Scholar
Kodio A, Menu E, Ranque S. Eukaryotic and prokaryotic microbiota interactions. Microorganisms. 2020;8(12):2018. https://doi.org/10.3390/microorganisms8122018.
Article
PubMed Central
Google Scholar
Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science. 2008;319(5864):777–82. https://doi.org/10.1126/science.1149357.
Article
CAS
PubMed
Google Scholar
Anagnostou C, Dorsch M, Rohlfs M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl. 2010;136(1):1–11. https://doi.org/10.1111/j.1570-7458.2010.00997.x.
Article
Google Scholar
Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 2011;334(6056):670–4. https://doi.org/10.1126/science.1212782.
Article
CAS
PubMed
Google Scholar
Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14(3):403–14. https://doi.org/10.1016/j.cmet.2011.07.012.
Article
CAS
PubMed
Google Scholar
Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol. 2012;26(4):822–8. https://doi.org/10.1111/j.1365-2435.2012.02006.x.
Article
Google Scholar
Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut microbes. 2012;3(4):307–21. https://doi.org/10.4161/gmic.19896.
Article
PubMed
PubMed Central
Google Scholar
Wong ACN, Dobson AJ, Douglas AE. Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol. 2014;217(11):1894–901. https://doi.org/10.1242/jeb.101725.
Article
PubMed
PubMed Central
Google Scholar
Bakula M. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol. 1969;14(3):365–74. https://doi.org/10.1016/0022-2011(69)90163-3.
Article
CAS
PubMed
Google Scholar
Starmer WT, Peris F, Fontdevila A. The transmission of yeasts by Drosophila buzzatii during courtship and mating. Anim Behav. 1988;36(6):1691–5. https://doi.org/10.1016/S0003-3472(88)80109-X.
Article
Google Scholar
Hoang D, Kopp A, Chandler JA. Interactions between Drosophila and its natural yeast symbionts—is Saccharomyces cerevisiae a good model for studying the fly–yeast relationship? PeerJ. 2015;3:e1116. https://doi.org/10.7717/peerj.1116.
Article
PubMed
PubMed Central
Google Scholar
Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species–specific mutualistic interaction with stable gut–colonizing bacteria. PLoS Biol. 2018;16(7):e2005710. https://doi.org/10.1371/journal.pbio.2005710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. Elife. 2017;6:e18855. https://doi.org/10.7554/eLife.18855.
Article
PubMed
PubMed Central
Google Scholar
McMullen JG, Peters–Schulze G, Cai J, Patterson AD, Douglas AE. How gut microbiome interactions affect nutritional traits of Drosophila melanogaster. J Exp Biol. 2020;223(19):jeb227843. https://doi.org/10.1242/jeb.227843.
Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MD, Ribeiro C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 2017;15(4):e2000862. https://doi.org/10.1371/journal.pbio.2000862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert DG. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia. 1980;46(1):135–7. https://doi.org/10.1007/BF00346979.
Article
PubMed
Google Scholar
Ganter PF. The vectoring of cactophilic yeasts by Drosophila. Oecologia. 1988;75(3):400–4. https://doi.org/10.1007/BF00376943.
Article
PubMed
Google Scholar
Chandler JA, Eisen JA, Kopp A. Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts. Appl Environ Microbiol. 2012;78(20):7327–36. https://doi.org/10.1128/AEM.01741-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamps JA, Yang LH, Morales VM, Boundy-Mills KL. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS ONE. 2012;7(7):e42238. https://doi.org/10.1371/journal.pone.0042238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buser CC, Newcomb RD, Gaskett AC, Goddard MR. Niche construction initiates the evolution of mutualistic interactions. Ecol Lett. 2014;17(10):1257–64. https://doi.org/10.1111/ele.12331.
Article
PubMed
Google Scholar
Rohlfs M, Hoffmeister TS. Maternal effects increase survival probability in Drosophila subobscura larvae. Entomol Exp Appl. 2005;117(1):51–8. https://doi.org/10.1111/j.1570-7458.2005.00334.x.
Article
Google Scholar
Ridley EV, Wong AC, Westmiller S, Douglas AE. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE. 2012;7(5):e36765. https://doi.org/10.1371/journal.pone.0036765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duneau DF, Lazzaro BP. Persistence of an extracellular systemic infection across metamorphosis in a holometabolous insect. Biol Let. 2018;14(2):20170771. https://doi.org/10.1098/rsbl.2017.0771.
Article
CAS
Google Scholar
Guilhot R, Rombaut A, Xuéreb A, Howell K, Fellous S. Environmental specificity in Drosophila–bacteria symbiosis affects host developmental plasticity. Evol Ecol. 2020;34(5):693–712. https://doi.org/10.1007/s10682-020-10068-8.
Article
Google Scholar
Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 2011;7(9):e1002272. https://doi.org/10.1371/journal.pgen.1002272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong ACN, Ng P, Douglas AE. Low–diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol. 2011;13(7):1889–900. https://doi.org/10.1111/j.1462-2920.2011.02511.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE. 2013;8(8):e70749. https://doi.org/10.1371/journal.pone.0070749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han G, Lee HJ, Jeong SE, Jeon CO, Hyun S. Comparative analysis of Drosophila melanogaster gut microbiota with respect to host strain, sex, and age. Microb Ecol. 2017;74(1):207–16. https://doi.org/10.1007/s00248-016-0925-3.
Article
PubMed
Google Scholar
Winans NJ, Walter A, Chouaia B, Chaston JM, Douglas AE, Newell PD. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria. Mol Ecol. 2017;26(17):4536–50. https://doi.org/10.1111/mec.14232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martino ME, Joncour P, Leenay R, Gervais H, Shah M, Hughes S, Gillet B, Beisel C, Leulier F. Bacterial adaptation to the host’s diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis. Cell Host Microbe. 2018;24(1):109–19. https://doi.org/10.1016/j.chom.2018.06.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam SS, Howell KS. Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol Lett. 2015;362(20):fnv170. https://doi.org/10.1093/femsle/fnv170.
Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek. 1998;73(4):331–71. https://doi.org/10.1023/A:1001761008817.
Article
CAS
PubMed
Google Scholar
Lachance MA, Gilbert DG, Starmer WT. Yeast communities associated with Drosophila species and related flies in an eastern oak–pine forest: a comparison with western communities. J Ind Microbiol Biotechnol. 1995;14(6):484–94. https://doi.org/10.1007/BF01573963.
Article
CAS
Google Scholar
Quan AS, Eisen MB. The ecology of the Drosophila–yeast mutualism in wineries. PLoS ONE. 2018;13(5):e0196440. https://doi.org/10.1371/journal.pone.0196440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sokolowski MB, Bauer SJ, Wai-Ping V, Rodriguez L, Wong JL, Kent C. Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Anim Behav. 1986;34(2):403–8. https://doi.org/10.1016/S0003-3472(86)80109-9.
Article
Google Scholar
Woltz JM, Lee JC. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol Control. 2017;110:62–9. https://doi.org/10.1016/j.biocontrol.2017.04.007.
Article
Google Scholar
Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21(12):568–72. https://doi.org/10.1016/j.pt.2005.09.011.
Article
PubMed
Google Scholar
Fellous S, Koella JC. Infectious dose affects the outcome of the within–host competition between parasites. Am Nat. 2009;173(6):e177-184. https://doi.org/10.1086/598490.
Article
PubMed
Google Scholar
Gendrin M, Christophides GK. The Anopheles mosquito microbiota and their impact on pathogen transmission. In: Manguin S, editor. Anopheles mosquitoes—new insights into malaria vectors. InTechOpen; 2013.
Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol. 2015;15:97–102. https://doi.org/10.1016/j.coviro.2015.08.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lass S, Hudson PJ, Thakar J, Saric J, Harvill E, Albert R, Perkins SE. Generating super–shedders: co–infection increases bacterial load and egg production of a gastrointestinal helminth. J R Soc Interface. 2013;10(80):20120588. https://doi.org/10.1098/rsif.2012.0588.
Article
PubMed
PubMed Central
Google Scholar
Barret M, Guimbaud JF, Darrasse A, Jacques MA. Plant microbiota affects seed transmission of phytopathogenic microorganisms. Mol Plant Pathol. 2016;17(6):791. https://doi.org/10.1111/mpp.12382.
Article
PubMed
PubMed Central
Google Scholar
Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236. https://doi.org/10.3389/fcimb.2017.00236.
Article
PubMed
PubMed Central
Google Scholar
Johnston PR, Rolff J. Host and symbiont jointly control gut microbiota during complete metamorphosis. PLoS Pathog. 2015;11(11):e1005246. https://doi.org/10.1371/journal.ppat.1005246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Téfit MA, Gillet B, Joncour P, Hughes S, Leulier F. Stable association of a Drosophila-derived microbiota with its animal partner and the nutritional environment throughout a fly population’s life cycle. J Insect Physiol. 2018;106:2–12. https://doi.org/10.1016/j.jinsphys.2017.09.003.
Article
CAS
PubMed
Google Scholar
Radvan R. Persistence of bacteria during development in flies. Folia Microbiol. 1960;5(1):50–6. https://doi.org/10.1007/BF02930896.
Article
Google Scholar
Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V. ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol. 2005;55(4):1641–7. https://doi.org/10.1099/ijs.0.63653-0.
Article
CAS
PubMed
Google Scholar
Rochon K, Lysyk TJ, Selinger LB. Retention of Escherichia coli by house fly and stable fly (Diptera: Muscidae) during pupal metamorphosis and eclosion. J Med Entomol. 2005;42(3):397–403. https://doi.org/10.1093/jmedent/42.3.397.
Article
CAS
PubMed
Google Scholar
Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Esposito F, Bandi C, Daffonchio D, Favia G. Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008;18(23):R1087–8. https://doi.org/10.1016/j.cub.2008.10.040.
Article
CAS
PubMed
Google Scholar
Lauzon CR, McCombs SD, Potter SE, Peabody NC. Establishment and vertical passage of Enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the Mediterranean fruit fly (Diptera: Tephritidae). Ann Entomol Soc Am. 2009;102(1):85–95. https://doi.org/10.1603/008.102.0109.
Article
Google Scholar
Nayduch D, Burrus RG. Flourishing in filth: house fly–microbe interactions across life history. Ann Entomol Soc Am. 2017;110(1):6–18. https://doi.org/10.1093/aesa/saw083.
Article
CAS
Google Scholar
Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms. 2020;8(6):795. https://doi.org/10.3390/microorganisms8060795.
Article
CAS
PubMed Central
Google Scholar
Hammer TJ, Moran NA. Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc B. 2019;374(1783):20190068. https://doi.org/10.1098/rstb.2019.0068.
Article
CAS
Google Scholar
Kaltenpoth M, Goettler W, Koehler S, Strohm E. Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol. 2010;24(2):463–77. https://doi.org/10.1007/s10682-009-9319-z.
Article
Google Scholar
Wang Y, Rozen DE. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl Environ Microbiol. 2017;83(9):e03250-e3316. https://doi.org/10.1128/AEM.03250-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moll RM, Romoser WS, Modrakowski MC, Moncayo AC, Lerdthusnee K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol. 2001;38(1):29–32. https://doi.org/10.1603/0022-2585-38.1.29.
Article
CAS
PubMed
Google Scholar
Ramiro RS, Pollitt LC, Mideo N, Reece SE. Facilitation through altered resource availability in a mixed-species rodent malaria infection. Ecol Lett. 2016;19(9):1041–50. https://doi.org/10.1111/ele.12639.
Article
PubMed
PubMed Central
Google Scholar
Starmer WT, Lachance MA. Yeast ecology. In: Kurtzman C, Fell JW, Boekhout, editors. The yeasts: a taxonomic study. Elsevier, 2011. p. 65–83.
Palanca L, Gaskett AC, Günther CS, Newcomb RD, Goddard MR. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE. 2013;8(9):e75332. https://doi.org/10.1371/journal.pone.0075332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z. Volatile codes: correlation of olfactory signals and reception in Drosophila–yeast chemical communication. Sci Rep. 2015;5(1):1–13. https://doi.org/10.1038/srep14059.
Article
CAS
Google Scholar
Bellutti N, Gallmetzer A, Innerebner G, Schmidt S, Zelger R, Koschier EH. Dietary yeast affects preference and performance in Drosophila suzukii. J Pest Sci. 2018;91(2):651–60. https://doi.org/10.1007/s10340-017-0932-2.
Article
Google Scholar
Günther CS, Knight SJ, Jones R, Goddard MR. Are Drosophila preferences for yeasts stable or contextual? Ecol Evol. 2019;9(14):8075–86. https://doi.org/10.1002/ece3.5366.
Article
PubMed
PubMed Central
Google Scholar
Lewis MT, Hamby KA. Differential impacts of yeasts on feeding behavior and development in larval Drosophila suzukii (Diptera: Drosophilidae). Sci Rep. 2019;9(1):1–12. https://doi.org/10.1038/s41598-019-48863-1.
Article
CAS
Google Scholar
Günther CS, Goddard MR. Do yeasts and Drosophila interact just by chance? Fungal Ecol. 2019;38:37–43. https://doi.org/10.1016/j.funeco.2018.04.005.
Article
Google Scholar
Ebert D. The epidemiology and evolution of symbionts with mixed–mode transmission. Annu Rev Ecol Evol Syst. 2013;44:623–43. https://doi.org/10.1146/annurev-ecolsys-032513-100555.
Article
Google Scholar
Blum JE, Fischer CN, Miles J, Handelsman J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio. 2013;4(6):e00860–13. https://doi.org/10.1128/mBio.00860-13.
Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, William WJ, Ludington WB. Probabilistic invasion underlies natural gut microbiome stability. Curr Biol. 2017;27(13):1999–2006. https://doi.org/10.1016/j.cub.2017.05.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Álvarez-Pérez S, Lievens B, Fukami T. Yeast–bacterium interactions: the next frontier in nectar research. Trends Plant Sci. 2019;24(5):393–401. https://doi.org/10.1016/j.tplants.2019.01.012.
Article
CAS
PubMed
Google Scholar
Mathé-Hubert H, Kaech H, Hertaeg C, Jaenike J, Vorburger C. Nonrandom associations of maternally transmitted symbionts in insects: The roles of drift versus biased cotransmission and selection. Mol Ecol. 2019;28(24):5330–46. https://doi.org/10.1111/mec.15206.
Article
PubMed
Google Scholar