Johnson DI. Bacterial virulence factors. Bacterial pathogens and their virulence factors. Berlin: Springer; 2018. p. 1–38.
Book
Google Scholar
Homei A, Worboys M. Candida: a disease of antibiotics. Fungal disease in Britain and the United States 1850–2000 mycoses and modernity. Berlin: Springer; 2013.
Google Scholar
Megarbane B, Bruneel F, Chevret S, Thuong M, Wolff M, Regnier B, et al. Severe community-acquired bacterial pneumonia from Streptococcus pneumonia in HIV-infected patients: epidemiology and prognostic features of mortality. Pathol Biol (Paris). 1999;47:422–9.
CAS
Google Scholar
Casadevall A, Pirofski LA. Host-pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184:337–44.
Article
CAS
PubMed
Google Scholar
Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol. 2003;1:17–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casadevall A, Pirofski LA. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun. 2000;68:6511–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casadevall A, Pirofski LA. What is a host? Attributes of individual susceptibility. Infect Immun. 2018;86:1–12.
Article
Google Scholar
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adair KL, Douglas AE. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–9.
Article
PubMed
Google Scholar
Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science (80- ). 2012;336:1255–62.
Article
CAS
Google Scholar
Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 2015;32:904–36.
Article
PubMed
Google Scholar
IUCN. IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist.org. [Internet]. 2021 [cited 2021 May 11]. www.iucnredlist.org
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science (80- ). 2019;1463:1459–63.
Article
CAS
Google Scholar
Donachie SP, Fraser CJ, Hill EC, Butler MA. The problem with ‘microbiome.’ Diversity. 2021;13:138.
Article
CAS
Google Scholar
Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC. Amphibian immune defenses against chytridiomycosis: Impacts of changing environments. Integr Comp Biol. 2011;51:552–62.
Article
CAS
PubMed
Google Scholar
Jani AJ, Briggs CJ. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci. 2014;111:E5049–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, et al. Amphibian skin may select for rare environmental microbes. ISME J. 2014;8:2207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varga JFA, Bui-Marinos MP, Katzenback BA. Frog skin innate immune defences: sensing and surviving pathogens. Front Immunol. 2019;10:1–21.
CAS
Google Scholar
Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B. Microbiome variation across amphibian skin regions: implications for chytridiomycosis mitigation efforts. Microb Ecol. 2016;71:221–32.
Article
PubMed
Google Scholar
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental factors and host microbiomes shape host–pathogen dynamics. Trends Parasitol. 2020;36:616–33.
Article
CAS
PubMed
Google Scholar
Rebollar EA, Martínez-Ugalde E, Orta AH. The amphibian skin microbiome and its protective role against chytridiomycosis. Herpetologica. 2020;76:167–77.
Article
Google Scholar
Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24.
Article
CAS
PubMed
Google Scholar
Harris RN, Lauer A, Simon MA, Banning JL, Alford RA. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquat Org. 2009;83:11–6.
Article
Google Scholar
Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ, et al. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc R Soc B Biol Sci. 2016;283:20161553.
Article
CAS
Google Scholar
Longo AV, Savage AE, Hewson I, Zamudio KR. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R Soc Open Sci. 2015;2:140377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen JM, Venesky MD, Sauer EL, Civitello DJ, McMahon TA, Roznik EA, et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol Lett. 2017;20:184–93.
Article
PubMed
Google Scholar
Greenspan SE, Bower DS, Webb RJ, Roznik EA, Stevenson LA, Berger L, et al. Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Funct Ecol. 2017;31:2274–86.
Article
Google Scholar
Neely WJ, Greenspan SE, Ribeiro LP, Carvalho T, Martins RA, Rodriguez D, et al. Synergistic effects of warming and disease linked to high mortality in cool-adapted terrestrial frogs. Biol Conserv. 2020;245:108521.
Article
Google Scholar
Preuss JF, Greenspan SE, Rossi EM, Lucas Gonsales EM, Neely WJ, Valiati VH, et al. Widespread pig farming practice linked to shifts in skin microbiomes and disease in pond-breeding amphibians. Environ Sci Technol. 2020;54:11301–12.
Article
CAS
PubMed
Google Scholar
McMahon TA, Romansic JM, Rohr JR. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ Sci Technol. 2013;47:7958–64.
Article
CAS
PubMed
Google Scholar
Gervasi S, Gondhalekar C, Olson DH, Blaustein AR. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen. PLoS ONE. 2013;8:e54490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bresciano JC, Salvador CA, Paz-y-Miño C, Parody-Merino AM, Bosch J, Woodhams DC. Variation in the presence of anti-Batrachochytrium dendrobatidis bacteria of amphibians across life stages and elevations in Ecuador. EcoHealth. 2015;12:310–9.
Article
CAS
PubMed
Google Scholar
Rowley JJL, Alford RA. Behaviour of Australian rainforest stream frogs may affect the transmission of chytridiomycosis. Dis Aquat Organ. 2007;77:1–9.
Article
PubMed
Google Scholar
Brem FMR, Lips KR. Batrachochytrium dendrobatidis infection patterns among Panamanian amphibian species, habitats and elevations during epizootic and enzootic stages. Dis Aquat Organ. 2008;81:189–202.
Article
PubMed
Google Scholar
Richards-Zawacki CL. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc Biol Sci. 2010;277:519–28.
PubMed
Google Scholar
McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, et al. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature. 2014;511:224–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D, Mcfadden M, et al. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc B. 2015;282:20143127.
Google Scholar
Savage AE, Gratwicke B, Hope K, Bronikowski E, Fleischer RC. Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus. Mol Ecol. 2020;29:2889–903.
Article
CAS
PubMed
Google Scholar
Demori I, El Rashed Z, Corradino V, Catalano A, Rovegno L, Queirolo L, et al. Peptides for skin protection and healing in amphibians. Molecules. 2019;24:347.
Article
CAS
PubMed Central
Google Scholar
Becker CG, Bletz MC, Greenspan SE, Rodriguez D, Lambertini C, Jenkinson TS, et al. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc R Soc B Biol Sci. 2019;286:20191114.
Article
Google Scholar
Becker CG, Rodriguez D, Longo AV, Toledo LF, Lambertini C, Leite DS, et al. Deforestation, host community structure, and amphibian disease risk. Basic Appl Ecol. 2016;17:72–80.
Article
Google Scholar
Becker CG, Rodriguez D, Toledo LF, Longo AV, Leite DS, Lambertini C, et al. Partitioning the net effect of host diversity on an emerging amphibian pathogen. Proc R Soc B Biol Sci. 2014;281:20141796.
Article
Google Scholar
Haddad CFB, Toledo LF, Prado CPA, Loebmann D, Gasparini JL, Sazima I. Guia dos anfíbios da Mata Atlântica: diversidade e biologia. São Paulo: Anolis Books; 2013.
Google Scholar
Lambertini C, Becker CG, Belasen AM, Valencia-Aguilar A, Nunes-de-Almeida CHL, Betancourt-Román CM, et al. Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fungal Ecol. 2021;49:100995.
Article
Google Scholar
Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI. Habitat split and the global decline of amphibians. Science(80- ). 2007;318:1775–7.
CAS
Google Scholar
Lips KR, Reeve JD, Witters LR. Ecological traits predicting amphibian population declines in Central America. Conserv Biol. 2003;17:1078–88.
Article
Google Scholar
Longo AV, Burrowes PA, Joglar RL. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis Aquat Organ. 2010;92:253–60.
Article
PubMed
Google Scholar
Moura-Campos D, Greenspan SE, DiRenzo GV, Neely WJ, Toledo LF, Becker CG. Fungal disease cluster in tropical terrestrial frogs predicted by low rainfall. Biol Conserv. 2021;261:109246.
Article
Google Scholar
Mesquita AFC, Lambertini C, Lyra M, Malagoli LR, James TY, Toledo LF, et al. Low resistance to chytridiomycosis in direct-developing amphibians. Sci Rep. 2017;7:16605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piovia-Scott J, Rejmanek D, Woodhams DC, Worth SJ, Kenny H, McKenzie V, et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb Ecol. 2017;74:217–26.
Article
PubMed
Google Scholar
Greenspan SE, Migliorini GH, Lyra ML, Pontes MR, Carvalho T, Ribeiro LP, et al. Warming drives ecological community changes linked to host-associated microbiome dysbiosis. Nat Clim Change. 2020;10:1057–61.
Article
Google Scholar
Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Gardener BBM, Kinkel LL, et al. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Anal Theor Plant Pathol. 2016;106:1083–96.
CAS
Google Scholar
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
Article
CAS
PubMed
Google Scholar
Ribeiro JW, Siqueira T, DiRenzo GV, Lambertini C, Lyra ML, Toledo LF, et al. Assessing amphibian disease risk across tropical streams while accounting for imperfect pathogen detection. Oecologia. 2020;193:237–48.
Article
PubMed
Google Scholar
Ruthsatz K, Lyra ML, Lambertini C, Belasen AM, Jenkinson TS, da Silva LD, et al. Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil’s Atlantic Forest treefrogs. Sci Rep. 2020;10:22311.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 2012;6:588–96.
Article
CAS
PubMed
Google Scholar
Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23:1238–50.
Article
PubMed
Google Scholar
Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 2016;10:1682–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abarca JG, Vargas G, Zuniga I, Whitfield SM, Woodhams DC, Kerby J, et al. Assessment of bacterial communities associated with the skin of Costa Rican amphibians at La Selva Biological Station. Front Microbiol. 2018;9:1–12.
Article
Google Scholar
Walke JB, Becker MH, Hughey MC, Swartwout MC, Jensen RV, Belden LK. Dominance-function relationships in the amphibian skin microbiome. Environ Microbiol. 2017;19:3387–97.
Article
CAS
PubMed
Google Scholar
Risely A. Applying the core microbiome to understand host–microbe systems. J Anim Ecol. 2020;89:1549–58.
Article
PubMed
Google Scholar
Martín González AM, Dalsgaard B, Olesen JM. Centrality measures and the importance of generalist species in pollination networks. Ecol Complex. 2010;7:36–43.
Article
Google Scholar
Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome. 2015;3:44.
Article
PubMed
PubMed Central
Google Scholar
Baldassano SN, Bassett DS. Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease. Sci Rep. 2016;6:1–14.
Article
CAS
Google Scholar
Guimerà R, Nunes Amaral LA. Functional cartography of complex metabolic networks. Nature. 2005;433:895–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papin JA, Reed JL, Palsson BO. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci. 2004;29:641–7.
Article
CAS
PubMed
Google Scholar
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity in metabolic networks. Science (80- ). 2002;297:1551–5.
Article
CAS
Google Scholar
Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47-52.
Article
CAS
PubMed
Google Scholar
Rezende EL, Albert EM, Fortuna MA, Bascompte J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol Lett. 2009;12:779–88.
Article
PubMed
Google Scholar
Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun. 2019;10:992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:1–19.
Article
Google Scholar
Muletz CR, Myers JM, Domangue RJ, Herrick JB, Harris RN. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv. 2012;152:119–26.
Article
Google Scholar
Brucker RM, Baylor CM, Walters RL, Lauer A, Harris RN, Minbiole KPC. The identification of 2,4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus. J Chem Ecol. 2008;34:39–43.
Article
CAS
PubMed
Google Scholar
Lauer A, Simon MA, Banning JL, Andre E, Duncan K, Harris RN. Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia. 2007;2007:630–40.
Article
Google Scholar
Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, et al. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol. 2008;34:1422–9.
Article
CAS
PubMed
Google Scholar
Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol. 2014;5:441.
Article
PubMed
PubMed Central
Google Scholar
Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KPC. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol. 2009;75:6635–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebollar EA, Bridges T, Hughey MC, Medina D, Belden LK, Harris RN. Integrating the role of antifungal bacteria into skin symbiotic communities of three Neotropical frog species. ISME J. 2019;13:1763–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohmer MEB, Cramp RL, Russo CJM, White CR, Franklin CE. Skin sloughing in susceptible and resistant amphibians regulates infection with a fungal pathogen. Sci Rep. 2017;7:3529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas EM, Molinari De Bastiani VI, Lingnau R. Geographic distribution, habitat use and vocalizations of the leaf-litter frog Ischnocnema henselii (Anura: Brachycephalidae) in the subtropical Atlantic Forest. Rev Bras Zoociências. 2018;19:151–62.
Article
Google Scholar
Levy DL, Heald R. Biological scaling problems and solutions in amphibians. Cold Spring Harb Perspect Biol. 2016;8:1–16.
Article
Google Scholar
Kueneman JG, Woodhams DC, Van Treuren W, Archer HM, Knight R, McKenzie VJ. Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J. 2016;10:934–44.
Article
PubMed
Google Scholar
Kearns PJ, Fischer S, Fernández-Beaskoetxea S, Gabor CR, Bosch J, Bowen JL, et al. Fight fungi with fungi: antifungal properties of the amphibian mycobiome. Front Microbiol. 2017;8:2494.
Article
PubMed
PubMed Central
Google Scholar
Medina D, Hughey MC, Walke JB, Becker MH, Pontarelli K, Sun S, et al. Amphibian skin fungal communities vary across host species and do not correlate with infection by a pathogenic fungus. Environ Microbiol. 2019;21:2905–20.
Article
CAS
PubMed
Google Scholar
Belasen AM, Riolo MA, Bletz MC, Lyra ML, Toledo LF, James TY. Geography, host genetics, and cross-domain microbial networks structure the skin microbiota of fragmented Brazilian Atlantic Forest frog populations. Ecol Evol. 2021;11:9293–307.
Article
PubMed
PubMed Central
Google Scholar
Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect Immun. 2010;78:3981–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KPC. Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun. 2015;83:4565–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernández-Gómez O, Briggler JT, Williams RN. Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol Ecol. 2018;27:1915–29.
Article
PubMed
Google Scholar
Griffiths SM, Harrison XA, Weldon C, Wood MD, Pretorius A, Hopkins K, et al. Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian. ISME J. 2018;12:2506–17.
Article
PubMed
PubMed Central
Google Scholar
Savage AE, Zamudio KR. MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci. 2011;108:16705–10.
Article
PubMed
PubMed Central
Google Scholar
Savage AE, Mulder KP, Torres T, Wells S. Lost but not forgotten: MHC genotypes predict overwinter survival despite depauperate MHC diversity in a declining frog. Conserv Genet. 2018;19:309–22.
Article
CAS
Google Scholar
Dias IR, Lourenço-De-Moraes R, Solé M. Description of the advertisement call and morphometry of Haddadus binotatus (Spix, 1824) from a population from southern Bahia, Brazil. North West J Zool. 2012;8:107–11.
Google Scholar
Carvalho T, Becker CG, Toledo LF. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proc R Soc B Biol Sci. 2017;284:20162254.
Article
Google Scholar
Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, et al. Using “omics” and integrated multi-omics approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases. Front Microbiol. 2016;7:68.
Article
PubMed
PubMed Central
Google Scholar
Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ. 2007;73:175–92.
Article
CAS
PubMed
Google Scholar
Boyle DG, Olsen V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ. 2004;60:141–8.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e0019116.
Article
Google Scholar
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.
Article
CAS
PubMed
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169–72.
Article
PubMed
Google Scholar
Zaneveld JR, McMinds R, Vega TR. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121.
Article
CAS
PubMed
Google Scholar
Jin Song S, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, et al. Engineering the microbiome for animal health and conservation. Exp Biol Med. 2019;244:494–504.
Article
CAS
Google Scholar
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. 2018;44:34–40.
Article
PubMed
PubMed Central
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
Article
PubMed
PubMed Central
Google Scholar