Tacon AGJ, Metian M. Food matters: fish, income, and food supply—a comparative analysis. Rev Fish Sci Aquacult. 2017;26:1–14.
Google Scholar
FAO. The state of world fisheries and aquaculture. 2016.
Hai FI, Visvanathan C, Boopathy R. Sustainable aquaculture. 2018.
Sundberg L-R, Ketola T, Laanto E, Kinnula H, Bamford JKH, Penttinen R, Mappes J. Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proc Biol Sci. 2016;283:20153069.
PubMed
PubMed Central
Google Scholar
Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response: the 1997 hans selye memorial lecture. Ann N Y Acad Sci. 1998;851:311–35.
Article
CAS
PubMed
Google Scholar
Schreck CB, Tort L. The concept of stress in fish. In: Biology of stress in fish: fish physiology fish physiology. Elsevier, 2016, p. 1–34.
Barton BA. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 2002;42:517–25.
Article
CAS
PubMed
Google Scholar
Conte FS. Stress and the welfare of cultured fish. Appl Anim Behav Sci. 2004;86:205–23.
Article
Google Scholar
Ellison AR, Uren Webster TM, Rey O, Garcia de Leaniz C, Consuegra S, Orozco-terWengel P, Cable J. Transcriptomic response to parasite infection in Nile tilapia (Oreochromis niloticus) depends on rearing density. BMC Genomics. 2018;19:723.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dias MS, Tedesco PA, Hugueny B, Jézéquel C, Beauchard O, Brosse S, Oberdorff T. Anthropogenic stressors and riverine fish extinctions. Ecol Ind. 2017;79:37–46.
Article
Google Scholar
Teichert N, Borja A, Chust G, Uriarte A, Lepage M. Restoring fish ecological quality in estuaries: implication of interactive and cumulative effects among anthropogenic stressors. Sci Total Environ. 2016;542:383–93.
Article
CAS
PubMed
Google Scholar
Kalogianni E, Vourka A, Karaouzas I, Vardakas L, Laschou S, Skoulikidis NT. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river. Sci Total Environ. 2017;603–604:639–50.
Article
PubMed
CAS
Google Scholar
Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, et al. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl. 2014;7:812–55.
Article
PubMed
PubMed Central
Google Scholar
Yada T, Tort L. Stress and disease resistance: immune system and immunoendocrine interactions. In: Biology of stress in fish—fish physiology fish physiology. Elsevier, 2016, p. 365–403.
Uren Webster TM, Rodriguez-Barreto D, Martin SAM, Van Oosterhout C, Orozco-terWengel P, Cable J, Hamilton A, Garcia De Leaniz C, Consuegra S. Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon. Epigenetics. 2018;13:1191–207.
Article
PubMed
PubMed Central
Google Scholar
Dash S, Nanda J, Barik S, Rath BP. Mucosal defense mechanism in fish: an overview. Res Rev A J Immunol. 2018;7:1–5.
Google Scholar
Austin B. The bacterial microflora of fish, revised. Sc World J. 2006;6:931–45.
Article
CAS
Google Scholar
Bower CK, Avena-Bustillos RJ, Olsen CW, McHugh TH, Bechtel PJ. Characterization of fish-skin gelatin gels and films containing the antimicrobial enzyme lysozyme. J Food Sci. 2006;71:M141–5.
Article
CAS
Google Scholar
Rakers S, Gebert M, Uppalapati S, Meyer W, Maderson P, Sell AF, Kruse C, Paus R. “Fish matters”: the relevance of fish skin biology to investigative dermatology. Exp Dermatol. 2010;19:313–24.
Article
PubMed
Google Scholar
Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol. 2013;85:483–94.
Article
CAS
PubMed
Google Scholar
Sar N, Rosenberg E. Fish skin bacteria: production of friction-reducing polymers. Microb Ecol. 1989;17:27–38.
Article
CAS
PubMed
Google Scholar
Ringelberg J, Van Gool E. Do bacteria, not fish, produce ‘fish kairomone’? J Plankton Res. 1998;20:1847–52.
Article
Google Scholar
Boutin S, Sauvage C, Bernatchez L, Audet C, Derome N. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PLOS ONE. 2014;9:e102649.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karlsen C, Ottem KF, Brevik ØJ, Davey M, Sørum H, Winther-Larsen HC. The environmental and host-associated bacterial microbiota of Arctic seawater-farmed Atlantic salmon with ulcerative disorders. J Fish Dis. 2017;40:1645–63.
Article
CAS
PubMed
Google Scholar
Llewellyn MS, Leadbeater S, Garcia C, Sylvain FE, Custodio M, Ang KP, Powell F, Carvalho GR, Creer S, Elliot J, et al. Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci Rep. 2017;7:43465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly C, Salinas I. Under pressure: interactions between commensal microbiota and the teleost immune system. Front Immunol. 2017;8:559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carlson JM, Leonard AB, Hyde ER, Petrosino JF, Primm TP. Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broad-spectrum antibiotic. Infect Drug Resist. 2017;10:143–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brumlow CE, Luna RA, Hollister EB, Gomez JA, Burcham LA, Cowdrey MB, Primm TP. Biochemical but not compositional recovery of skin mucosal microbiome communities after disruption. Infect Drug Resist. 2019;12:399–416.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol. 2018;94:161.
Article
CAS
Google Scholar
Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Van Kim V, Srichaiyo S. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture. 2018;491:94–100.
Article
Google Scholar
Yu L, Qiao N, Li T, Yu R, Zhai Q, Tian F, Zhao J, Zhang H, Chen W. Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ. 2019;7:e6963.
Article
PubMed
PubMed Central
Google Scholar
Alonso S, Carmen Castro M, Berdasco M, de la Banda IG, Moreno-Ventas X, de Rojas AH. Isolation and partial characterization of lactic acid bacteria from the gut microbiota of marine fishes for potential application as probiotics in aquaculture. Probiotics Antimicrob Proteins. 2019;11:569–79.
Article
CAS
PubMed
Google Scholar
Caruffo M, Navarrete N, Salgado O, Díaz A, López P, García K, Feijóo CG, Navarrete P. Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio) from a Vibrio anguillarum challenge. Front Microbiol. 2015;6:1093.
Article
PubMed
PubMed Central
Google Scholar
Fuks G, Elgart M, Amir A, Zeisel A, Turnbaugh PJ, Soen Y, Shental N. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbiome. 2018;6:17.
Article
PubMed
PubMed Central
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4516–22.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
Article
CAS
PubMed
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science 2018.
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
PubMed
Google Scholar
Hill TCJ, Walsh KA, Harris JA, Moffett BF. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 2003;43:1–11.
Article
CAS
PubMed
Google Scholar
Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101.
Article
PubMed
PubMed Central
Google Scholar
Keylock CJ. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy. Oikos. 2005;109:203–7.
Article
Google Scholar
Oksanen FJ, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH et al. Vegan: community ecology package. In: R package version 2, 2018.
Faith DP, Baker AM. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform Online. 2007;2:121–8.
PubMed
PubMed Central
Google Scholar
Tsirogiannis C, Sandel B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography. 2016;39:709–14.
Article
Google Scholar
Wybrow M, Rodgers P, Dib FK. Euler diagrams drawn with ellipses area-proportionally (Edeap). BMC Bioinform. 2021;22:214.
Article
Google Scholar
Digby PGN, Kempton RA. Multivariate analysis of ecological communities. Dordrecht: Springer; 1987.
Book
Google Scholar
Heath AG, Iwama GK, Pickering AD, Sumpter JP, Schreck CB. Fish stress and health in aquaculture. Estuaries. 1998;21:501.
Article
Google Scholar
Pękala-Safińska A. Contemporary threats of bacterial infections in freshwater fish. J Vet Res. 2018;62:261–7.
Article
PubMed
PubMed Central
Google Scholar
Pujalte MJ, Sitjà-Bobadilla A, Alvarez-Pellitero P, Garay E. Carriage of potentially fish-pathogenic bacteria in Sparus aurata cultured in Mediterranean fish farms. Dis Aquat Org. 2003;54:119–26.
Article
CAS
Google Scholar
Salgueiro V, Manageiro V, Bandarra NM, Reis L, Ferreira E, Caniça M. Bacterial diversity and antibiotic susceptibility of Sparus aurata from aquaculture. Microorganisms. 2020;8:1343.
Article
CAS
PubMed Central
Google Scholar
Kang C-H, Shin Y, Kim W, Kim Y, Song K, Oh E-G, Kim S, Yu H, So J-S. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from oysters in Korea. Environ Sci Pollut Res Int. 2016;23:918–26.
Article
CAS
PubMed
Google Scholar
Park J, Kim EB. Insights into the gut and skin microbiome of freshwater fish, smelt (Hypomesus nipponensis). Curr Microbiol. 2021;78:1798–806.
Article
CAS
PubMed
Google Scholar
Han QF, Zhao S, Zhang XR, Wang XL, Song C, Wang SG. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea. North China Environ Int. 2020;138:105551.
CAS
PubMed
Google Scholar
Ng C, Chen H, Goh SG, Haller L, Wu Z, Charles FR, Trottet A, Gin K. Microbial water quality and the detection of multidrug resistant E. coli and antibiotic resistance genes in aquaculture sites of Singapore. Mar Pollut Bull. 2018;135:475–80.
Article
CAS
PubMed
Google Scholar
Pereira AMPT, Silva LJG, Meisel LM, Pena A. Fluoroquinolones and tetracycline antibiotics in a portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact. J Toxicol Environ Health Part A. 2015;78:959–75.
Article
CAS
Google Scholar
Scarano C, Piras F, Virdis S, Ziino G, Nuvoloni R, Dalmasso A, De Santis EPL, Spanu C. Antibiotic resistance of Aeromonas ssp. strains isolated from Sparus aurata reared in Italian mariculture farms. Int J Food Microbiol. 2018;284:91–7.
Article
CAS
PubMed
Google Scholar
Minich JJ, Poore GD, Jantawongsri K, Johnston C, Bowie K, Bowman J, Knight R, Nowak B, Allen EE. Microbial ecology of Atlantic Salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl Environ Microbiol. 2020;86:e00411-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landeira-Dabarca A, Sieiro C, Álvarez M. Change in food ingestion induces rapid shifts in the diversity of microbiota associated with cutaneous mucus of Atlantic salmon Salmo salar. J Fish Biol. 2013;82:893–906.
Article
CAS
PubMed
Google Scholar
Kuebutornye FKA, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, Xie CX, Hlordzi V. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020;97:83–95.
Article
CAS
PubMed
Google Scholar
Srisapoome P, Areechon N. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): laboratory and on-farm trials. Fish Shellfish Immunol. 2017;67:199–210.
Article
CAS
PubMed
Google Scholar
Essam HM, Abdellrazeq GS, Tayel SI, Torky HA, Fadel AH. Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea bream. Microb Pathog. 2016;99:41–50.
Article
CAS
PubMed
Google Scholar
Bakopoulos V, Volpatti D, Gusmani L, Galeotti M, Adams A, Dimitriadis GJ. Vaccination trials of sea bass, Dicentrarchus labrax (L.), against Photobacterium damsela subsp. piscicida, using novel vaccine mixtures. J Fish Dis. 2003;26:77–90.
Article
CAS
PubMed
Google Scholar
Shirakashi S, Nishimura T, Kameshima N, Yamashita H, Ishitani H, Ishimaru K, Yokoyama H. Effectiveness of ultraviolet irradiation of seawater for the prevention of Kudoa yasunagai and Kudoa amamiensis (Myxozoa: Multivalvulida) infections in Seriola fish. Fish Pathol. 2014;49:141–4.
Article
Google Scholar
Mizuno S, Urawa S, Miyamoto M, Hatakeyama M, Koide N, Ueda H. Experimental evidence on prevention of infection by the ectoparasitic protozoans Ichthyobodo salmonis and Trichodina truttae in juvenile chum salmon using ultraviolet disinfection of rearing water. J Fish Dis. 2019;42:129–40.
Article
PubMed
Google Scholar
Rafeeq S, Shiroodi S, Schwarz MH, Nitin N, Ovissipour R. Inactivation of Aeromonas hydrophila and Vibrio parahaemolyticus by Curcumin-mediated photosensitization and nanobubble-ultrasonication approaches. Foods. 2020;9:1306.
Article
CAS
PubMed Central
Google Scholar
Bazyar Lakeh AA, Kloas W, Jung R, Ariav R, Knopf K. Low frequency ultrasound and UV-C for elimination of pathogens in recirculating aquaculture systems. Ultrason Sonochem. 2013;20:1211–6.
Article
CAS
PubMed
Google Scholar
Attramadal KJK, Øien JV, Kristensen E, Evjemo JO, Kjørsvik E, Vadstein O, Bakke I. UV treatment in RAS influences the rearing water microbiota and reduces the survival of European lobster larvae (Homarus gammarus). Aquacult Eng. 2021;94:102176.
Article
Google Scholar
Vestrum RI, Attramadal KJK, Winge P, Li K, Olsen Y, Bones AM, Vadstein O, Bakke I. Rearing water treatment induces microbial selection influencing the microbiota and pathogen associated transcripts of cod (Gadus morhua) Larvae. Front Microbiol. 2018;9:851.
Article
PubMed
PubMed Central
Google Scholar
Attramadal KJK, Truong TMH, Bakke I, Skjermo J, Olsen Y, Vadstein O. RAS and microbial maturation as tools for K-selection of microbial communities improve survival in cod larvae. Aquaculture. 2014;432:483–90.
Article
Google Scholar
Dahle SW, Bakke I, Birkeland M, Nordøy K, Dalum AS, Attramadal KJK. Production of lumpfish (Cyclopterus lumpus L.) in RAS with distinct water treatments: effects on fish survival, growth, gill health and microbial communities in rearing water and biofilm. Aquaculture. 2020;522:735097.
Article
CAS
Google Scholar
Zhang X-H, He X, Austin B. Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Mar Life Sci Technol. 2020;2:231–45.
Article
Google Scholar
Strzyżewska-Worotyńska E, Szarek J, Babińska I, Gulda D. Gills as morphological biomarkers in extensive and intensive rainbow trout (Oncorhynchus mykiss, Walbaum 1792) production technologies. Environ Monit Assess. 2017;189:611.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koppang EO, Kvellestad A, Fischer U. Fish mucosal immunity: gill. In: Mucosal health in aquaculture. Elsevier, 2015, p. 93–133.
Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, Pedrós-Alió C. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tongsri P, Meng K, Liu X, Wu Z, Yin G, Wang Q, Liu M, Xu Z. The predominant role of mucosal immunoglobulin IgT in the gills of rainbow trout (Oncorhynchus mykiss) after infection with Flavobacterium columnare. Fish Shellfish Immunol. 2020;99:654–62.
Article
CAS
PubMed
Google Scholar
Guivier E, Martin J-F, Pech N, Ungaro A, Chappaz R, Gilles A. Microbiota diversity within and between the tissues of two wild interbreeding species. Microb Ecol. 2018;75:799–810.
Article
PubMed
Google Scholar
Lowrey L, Woodhams DC, Tacchi L, Salinas I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl Environ Microbiol. 2015;81:6915–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiarello M, Villéger S, Bouvier C, Bettarel Y, Bouvier T. High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol. 2015;91:fiv061.
Article
PubMed
CAS
Google Scholar
Rosado D, Pérez-Losada M, Severino R, Cable J, Xavier R. Characterization of the skin and gill microbiomes of the farmed seabass (Dicentrarchus labrax) and seabream (Sparus aurata). Aquaculture. 2019;500:57–64.
Article
CAS
Google Scholar
Attramadal KJK, Øie G, Størseth TR, Alver MO, Vadstein O, Olsen Y. The effects of moderate ozonation or high intensity UV-irradiation on the microbial environment in RAS for marine larvae. Aquaculture. 2012;330–333:121–9.
Article
CAS
Google Scholar
Wold P-A, Holan AB, Øie G, Attramadal K, Bakke I, Vadstein O, Leiknes TO. Effects of membrane filtration on bacterial number and microbial diversity in marine recirculating aquaculture system (RAS) for Atlantic cod (Gadus morhua L.) production. Aquaculture. 2014;422–423:69–77.
Article
Google Scholar
Rosado D, Pérez-Losada M, Pereira A, Severino R, Xavier R. Effects of aging on the skin and gill microbiota of farmed seabass and seabream. Anim Microbiome. 2021;3:10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Ding L, Yu Y, Kong W, Yin Y, Huang Z, Zhang X, Xu Z. The change of teleost skin commensal microbiota is associated with skin mucosal transcriptomic responses during parasitic infection by Ichthyophthirius multifillis. Front Immunol. 2018;9:2972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosado D, Xavier R, Severino R, Tavares F, Cable J, Pérez-Losada M. Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax). Sci Rep. 2019;9:18946.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urbanczyk H, Ast JC, Dunlap PV. Phylogeny, genomics, and symbiosis of photobacterium. FEMS Microbiol Rev. 2011;35:324–42.
Article
CAS
PubMed
Google Scholar
Derome N, Gauthier J, Boutin S, Llewellyn M. Bacterial opportunistic pathogens of fish. In: Hurst CJ, editor. The rasputin effect: when commensals and symbionts become parasitic advances in environmental microbiology. Cham: Springer International Publishing; 2016. p. 81–108.
Chapter
Google Scholar
Vadstein O, Attramadal KJK, Bakke I, Olsen Y. K-selection as microbial community management strategy: a method for improved viability of larvae in aquaculture. Front Microbiol. 2018;9:2730.
Article
PubMed
PubMed Central
Google Scholar
Nikouli E, Meziti A, Antonopoulou E, Mente E, Kormas KA. Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Microorganisms. 2018;6:92.
Article
CAS
PubMed Central
Google Scholar
Nikouli E, Meziti A, Antonopoulou E, Mente E, Kormas KA. Host-associated bacterial succession during the early embryonic stages and first feeding in farmed gilthead sea bream (Sparus aurata). Genes Basel. 2019;10:483.
Article
CAS
PubMed Central
Google Scholar
Abdel-Aziz M, Eissa AE, Hanna M, Okada MA. Identifying some pathogenic vibrio/photobacterium species during mass mortalities of cultured Gilthead seabream (Sparus aurata ) and European seabass (Dicentrarchus labrax ) from some Egyptian coastal provinces. Int J Vet Sci Med. 2013;1:87–95.
Article
Google Scholar