Colwell RK, Coddington JA. Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci. 1994;345:101–18.
Article
CAS
Google Scholar
Hölldobler B, Wilson EO. The ants. Berlin: Springer - Verlag; 1990.
Book
Google Scholar
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: diversification in the age of angiosperms. Science. 2006;312:101–4.
Article
CAS
Google Scholar
Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA. 2009;106:21236–41.
Article
CAS
Google Scholar
Davidson DW, Cook SC, Snelling RR, Chua TH. Explaining the abundance of ants in lowland tropical rainforest canopies. Science. 2003;300:969–72.
Article
CAS
Google Scholar
Sanders JG, Łukasik P, Frederickson ME, Russell JA, Koga R, Knight R, et al. Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr Comp Biol. 2017;57:705–22.
Article
CAS
Google Scholar
Schultz TR, Brady SG. Major evolutionary transitions in ant agriculture. Proc Nat Acad Sci. 2008;105(14):5435–40.
Article
CAS
Google Scholar
Pringle EG, Moreau CS. Community analysis of microbial sharing and specialization in a Costa Rican ant–plant–hemipteran symbiosis. Proc R Soc B Biol Sci. 2017;284:20162770.
Article
Google Scholar
Nixon G. The association of ants with aphids and coccids. London: Commonwealth Institute of Entomology; 1951.
Google Scholar
Del-Claro K, Oliveira PS. Ant-Homoptera interaction: Do alternative sugar sources distract tending ants? Oikos. 1993;68:202.
Article
Google Scholar
Russell JA, Funaro CF, Giraldo YM, Goldman-Huertas B, Suh D, Kronauer DJC, et al. A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: broad molecular surveys and a systematic review. PLoS ONE. 2012;7: e51027.
Article
CAS
Google Scholar
Buchner P. Endosymbiosis of animals with plant microorganisms. New York: Interscience Publishers, Google Acadêmico; 1965.
Google Scholar
Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller M, et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007;5:48.
Article
Google Scholar
Kautz S, Rubin BER, Russell JA, Moreau CS. Surveying the microbiome of ants: comparing 454 pyrosequencing with traditional methods to uncover bacterial diversity. Appl Environ Microbiol. 2013;79:525–34.
Article
CAS
Google Scholar
Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer DJC, et al. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol. 2017;26:3808–25.
Article
Google Scholar
Moreau CS, Rubin BER. Diversity and persistence of the gut microbiome of the giant neotropical bullet ant. Integr Comp Biol. 2017;57:682–9.
Article
CAS
Google Scholar
Martins C, Moreau CS. Influence of host phylogeny, geographical location and seed harvesting diet on the bacterial community of globally distributed Pheidole ants. PeerJ. 2020;2020: e8492.
Article
Google Scholar
Moreau CS. Symbioses among ants and microbes. Curr Opin Insect Sci. 2020;39:1–5.
Article
Google Scholar
Salem H, Kaltenpoth M, Florez L, Gerardo N. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc B. 2015;282:20142957.
Article
Google Scholar
Van Borm S, Wenseleers T, Billen J, Boomsma JJ. Wolbachia in leafcutter ants: a widespread symbiont that may induce male killing or incompatible matings. J Evol Biol. 2008;14:805–14.
Article
Google Scholar
Cook SC, Davidson DW. Nutritional and functional biology of exudate-feeding ants. Entomol Exp Appl. 2006;118:1–10.
Article
Google Scholar
Stoll S, Gadau J, Gross R, Feldhaar H. Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linn Soc. 2007;90:399–412.
Article
Google Scholar
Bution M, Caetano F. Ileum of the Cephalotes ants: a specialized structure to harbor symbionts microorganisms. Micron. 2008;39:897–909.
Article
CAS
Google Scholar
Bution ML, Caetano FH. The midgut of Cephalotes ants (Formicidae: Myrmicinae): ultrastructure of the epithelium and symbiotic bacteria. Micron. 2010;41:448–54.
Article
Google Scholar
Ramalho M, Duplais C, Orivel J, Gibson J, Dejan A, Suarez A, et al. Development but not diet alters microbial communities in the Neotropical arboreal trap jaw ant Daceton armigerum: an exploratory study. Sci Rep. 2020;10:1–2.
Article
Google Scholar
Vieira AS, Ramalho MO, Martins C, Martins VG, Bueno OC. Microbial communities in different tissues of Atta sexdens rubropilosa leaf-cutting ants. Curr Microbiol. 2017;74:1216–25.
Article
CAS
Google Scholar
Ramalho M, Martins C, Morini M, Bueno O. What can the bacterial community of Atta sexdens (Linnaeus, 1758) tell us about the habitats in which this ant species evolves? Insects. 2020;11:332.
Article
Google Scholar
Kautz S, Rubin BER, Moreau CS. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche A J Entomol. 2013;2013:1–11.
Article
Google Scholar
Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio. 2020. https://doi.org/10.1128/mBio.02901-19.
Article
Google Scholar
Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS. One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol Biol. 2009;9:292.
Article
Google Scholar
Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol. 2014. https://doi.org/10.1111/mec.12611.
Article
Google Scholar
Ramalho MO, Bueno OC, Moreau CS. Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evol Biol. 2017;17:96.
Article
Google Scholar
Flynn PJ, D’Amelio CL, Sanders JG, Russell JA, Moreau CS. Localization of bacterial communities within gut compartments across Cephalotes turtle ants. Appl Environ Microbiol. 2021. https://doi.org/10.1128/aem.02803-20.
Article
Google Scholar
Hu Y, Łukasik P, Moreau CS, Russell JA. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol Ecol. 2014;23:1284–300.
Article
Google Scholar
Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9:964.
Article
Google Scholar
De Andrade M, Urbani C. Diversity and adaptation in the ant genus Cephalotes, past and present. In: tuttgarter Beitraege Zur Naturkunde. Serie B: Geologie Und Palaeontologie. 1999.
Byk J, Del-Claro K. Nectar-and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities. Acta Ethol. 2010;13:33–8.
Article
Google Scholar
Gordon DM. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus. PLoS ONE. 2012;7: e50472.
Article
CAS
Google Scholar
Weber NA. The nest of an anomalous colony of the arboreal ant Cephalotes atratus. Psyche (New York). 1957;64:60–9.
Google Scholar
Adams ES. Interaction between the ants Zacryptocerus maculatus and Azteca trigona: interspecific parasitization of information. Biotropica. 1990;22:200.
Article
Google Scholar
Jaffe K, Caetano FH, Sánchez P, Hernández JV, Caraballo L, Vitelli-Flores J, et al. Sensitivity of ant (Cephalotes) colonies and individuals to antibiotics implies feeding symbiosis with gut microorganisms. Can J Zool. 2001;79:1120–4.
Article
Google Scholar
Powell S. Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Funct Ecol. 2008;22:902–11.
Article
Google Scholar
Duplais C, Sarou-Kanian V, Massiot D, Hassan A, Perrone B, Estevez Y, et al. Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nat Commun. 2021;12:1–6.
Article
Google Scholar
Lanan MC, Augusto P, Rodrigues P, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2015;12.
Price SL, Blanchard BD, Powell S, Blaimer BB, Moreau CS. Phylogenomics and fossil data inform the systematics and geographic range evolution of a diverse Neotropical ant lineage. Insect Syst Divers. 2022. https://doi.org/10.1093/isd/ixab023.
Article
Google Scholar
Astudillo-García C, Bell JJ, Webster NS, Glasl B, Jompa J, Montoya JM, et al. Evaluating the core microbiota in complex communities: a systematic investigation. Environ Microbiol. 2017;19:1450–62.
Article
Google Scholar
Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol. 2012;14:4–12.
Article
CAS
Google Scholar
Ren T, Wu M. PhyloCore: a phylogenetic approach to identifying core taxa in microbial communities. Gene. 2016;593:330–3.
Article
CAS
Google Scholar
Ramalho MO, Bueno OC, Moreau CS. Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0187461.
Article
Google Scholar
Ramalho MO, Moreau CS, Bueno OC. The potential role of environment in structuring the microbiota of Camponotus across parts of the body. Adv Entomol. 2019;7:47–70.
Article
Google Scholar
De Oliveira TB, Ferro M, Bacci M, De Souza DJ, Fontana R, Delabie JHC, et al. Bacterial communities in the midgut of Ponerine ants (Hymenoptera: Formicidae: Ponerinae). Scopus. 2016;63:637–44.
Google Scholar
Harmon LJ, Glor RE. Poor statistical performance of the mantel test in phylogenetic comparative analyses. Evolution (N Y). 2010;64:2173–8.
Google Scholar
Schuelke T, Pereira TJ, Hardy SM, Bik HM. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol. 2018;27:1930–51.
Article
Google Scholar
Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.
Article
CAS
Google Scholar
Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
Article
CAS
Google Scholar
McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.
Article
CAS
Google Scholar
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.
Article
CAS
Google Scholar
Dheilly NM, Bolnick D, Bordenstein S, Brindley PJ, Figuères C, Holmes EC, et al. Parasite microbiome project: systematic investigation of microbiome dynamics within and across parasite-host interactions. MSystems. 2017. https://doi.org/10.1128/mSystems.00050-17.
Article
Google Scholar
Nunes-Alves C. Commensal bacterium prevents wasting. Nat Rev Microbiol. 2015;13:738–738.
Google Scholar
Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol. 2011;2:153.
Article
Google Scholar
Rubin BE, Kautz S, Wray BD, Moreau CS. Dietary specialization in mutualistic acacia-ants affects relative abundance but not identity of host-associated bacteria. Mol Ecol. 2019;28(4):900–16. https://doi.org/10.1111/mec.14834.
Article
CAS
Google Scholar
Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, et al. Dynamic microbiome evolution in social bees. Sci Adv. 2017;3: e1600513.
Article
Google Scholar
Brown BP, Wernegreen JJ. Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol. 2016. https://doi.org/10.1186/s12866-016-0721-8.
Article
Google Scholar
Bisch G, Neuvonen M-M, Pierce NE, Russell JA, Koga R, Sanders JG, et al. Genome evolution of Bartonellaceae symbionts of ants at the opposite ends of the trophic scale. Genome Biol Evol. 2018;10:1687–704.
Article
CAS
Google Scholar
Larson HK, Goffredi SK, Parra EL, Vargas O, Pinto-Tomas AA, McGlynn TP. Distribution and dietary regulation of an associated facultative Rhizobiales-related bacterium in the omnivorous giant tropical ant, Paraponera clavata. Naturwissenschaften. 2014;101:397–406.
Article
CAS
Google Scholar
Neuvonen M-M, Tamarit D, Näslund K, Liebig J, Feldhaar H, Moran NA, et al. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Rep. 2016;6:39197.
Article
CAS
Google Scholar
Dussutour A, Simpson SJ. Ant workers die young and colonies collapse when fed a high-protein diet. Proc R Soc B Biol Sci. 2012;279:2402–8.
Article
CAS
Google Scholar
Lin JY, Russell JA, Sanders JG, Wertz JT. Cephaloticoccus gen. Nov., a new genus of ‘Verrucomicrobia’ containing two novel species isolated from Cephalotes ant guts. Int J Syst Evol Microbiol. 2016;66:3034–40.
Article
CAS
Google Scholar
Zhu L, Zhang Y, Cui X, Zhu Y, Dai Q, Chen H, et al. Host bias in diet-source microbiome transmission in wild cohabitating herbivores: new knowledge for the evolution of herbivory and plant defense. Microbiol Spectr. 2021. https://doi.org/10.1128/Spectrum.00756-21.
Article
Google Scholar
Ramalho MDO, Kim Z, Wang S, Moreau CS. Wolbachia across social insects: patterns and Implications. Ann Entomol Soc Am. 2021;114:206–18.
Article
CAS
Google Scholar
Singh R, Linksvayer TA. Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle. J Exp Biol. 2020. https://doi.org/10.1242/jeb.220079.
Article
Google Scholar
Tseng SP, Wetterer JK, Suarez AV, Lee CY, Yoshimura T, Shoemaker DW, et al. Genetic diversity and Wolbachia infection patterns in a globally distributed invasive ant. Front Genet. 2019;10:838.
Article
CAS
Google Scholar
Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.
Article
CAS
Google Scholar
Engel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA. 2012;109:11002–7.
Article
CAS
Google Scholar
Kwong WK, Moran NA. Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes. 2015;6:214–20.
Article
Google Scholar
Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol. 2013;22:2028–44.
Article
CAS
Google Scholar
Baker LJ, Freed LL, Easson CG, Lopez JV, Fenolio D, Sutton TT, et al. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. Elife. 2019;8:e47606.
Article
CAS
Google Scholar
Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.
Article
CAS
Google Scholar
Kitade O. Comparison of symbiotic flagellate faunae between termites and a wood-feeding cockroach of the genus Cryptocercus. Microbes Environ. 2004;19:215–20.
Article
Google Scholar
Köhler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol. 2012;78:4691–701.
Article
Google Scholar
O’brien PA, Webster NS, Miller DJ, Bourne DG. Host-microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. MBio. 2019;10:1–14.
Article
Google Scholar
Rubin BER, Sanders JG, Hampton-Marcell J, Owens SM, Gilbert JA, Moreau CS. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure. Microbiologyopen. 2014. https://doi.org/10.1002/mbo3.216.
Article
Google Scholar
Moreau CS. A practical guide to DNA extraction, PCR, and gene-based DNA sequencing in insects. Halteres. 2014;5:32–42.
Google Scholar
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.
Article
CAS
Google Scholar
Apprill A, Mcnally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
Article
Google Scholar
Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE. 2009;4: e6372.
Article
Google Scholar
Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19(SUPPL. 1):21–31.
Article
CAS
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
Article
CAS
Google Scholar
Wickham H, François R, Henry L, Müller K. Dplyr: a grammar of data manipulation. R package version 0.4. 3. 2015. 2018.
R Development Core Team (2019) R: A Language and Environment for Statistical Computing. Available from http://www.R-project.org/. 2019.
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
Book
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
Google Scholar
McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The biological observation matrix (BIOM) format or: how i learned to stop worrying and love the ome-ome. Gigascience. 2012;1:7.
Article
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
Google Scholar
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.
Article
CAS
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
Article
Google Scholar
Davis NM, Proctor D, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
Article
Google Scholar
Janssen S, McDonald D, Gonzalez A, Navas-Molina JA, Jiang L, Xu ZZ, et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. MSystems. 2018. https://doi.org/10.1128/mSystems.00021-18.
Article
Google Scholar
Mirarab S, Nguyen N, Warnow T. SEPP: SATé-enabled phylogenetic placement. In: Pacific Symposium on Biocomputing. 2012. p. 247–58.
Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLOS Comput Biol. 2017;13: e1005404.
Article
Google Scholar
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, et al. BugBase predicts organism-level microbiome phenotypes. bioRxiv. 2017:133462.
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar
Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience. 2013;2:16.
Article
Google Scholar
Price SL, Powell S, Kronauer DJC, Tran LAP, Pierce NE, Wayne RK. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J Evol Biol. 2014;27:242–58.
Article
CAS
Google Scholar
Morrone JJ. Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol. 2006;51:467–94.
Article
CAS
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8: e61217.
Article
CAS
Google Scholar
Tenenhaus A, Tenenhaus M. Regularized generalized canonical correlation analysis. Psychometrika. 2011;76:257–84.
Article
Google Scholar
Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLOS Comput Biol. 2017;13: e1005752.
Article
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
Article
CAS
Google Scholar
Balbuena JA, Míguez-Lozano R, Blasco-Costa I. PACo: a novel procrustes application to cophylogenetic analysis. PLoS ONE. 2013;8: e61048.
Article
CAS
Google Scholar
Hutchinson MC, Cagua EF, Balbuena JA, Stouffer DB, Poisot T. paco: implementing procrustean approach to cophylogeny in R. Methods Ecol Evol. 2017;8:932–40.
Article
Google Scholar
Oksanen J, Kindt R, Legendre P, O’Hara B. The vegan package. Community Ecol. 2007;10:719.
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Article
Google Scholar