Trinci APJ, Davies DR, Gull K, Lawrence MI, Bonde Nielsen B, Rickers A, et al. Anaerobic fungi in herbivorous animals. Mycol Res. 1994;98(2):129–52.
Article
Google Scholar
Vermorel M, Martin-Rosset W. Concepts, scientific bases, structure and validation of the French horse net energy system (UFC). Livest Prod Sci. 1997;47(3):261–75.
Article
Google Scholar
Julliand V, de Vaux A, Millet L, Fonty G. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol. 1999;65(8):3738–41.
Article
CAS
Google Scholar
Willing B, Vörös A, Roos S, Jones C, Jansson A, Lindberg JE. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet J. 2009;41(9):908–14.
Article
CAS
Google Scholar
Al Jassim RAM, Scott PT, Krause D, Denman S, McSweeney CS. Cellulolytic and lactic acid bacteria in the gastrointestinal tract of the horse. Recent Adv Anim Nutr Aust. 2005;15:155–63.
Google Scholar
Wahyudi A, Cahyanto MN, Soejono M, Bachruddin Z. Potency of lignocellulose degrading bacteria isolated from buffalo and horse gastrointestinal tract and elephant dung for feed fiber degradation. J Indones Trop Anim Agric. 2010;35(1):34–41.
Article
Google Scholar
Shakarami MH, Mohammadabadi T, Motamedi H, Sari M, Teimouri YA. Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw. J Appl Microbiol. 2019;127(2):344–53.
Article
CAS
Google Scholar
Harlow BE, Lawrence LM, Flythe MD. Diarrhea-associated pathogens, Lactobacilli and cellulolytic bacteria in equine feces: responses to antibiotic challenge. Vet Microbiol. 2013;166(1):225–32.
Article
CAS
Google Scholar
Julliand V, Grimm P. Horse species symposium: the microbiome of the horse hindgut: history and current knowledge1. J Anim Sci. 2016;94(6):2262–74.
Article
CAS
Google Scholar
Blackmore TM, Dugdale A, Argo CM, Curtis G, Pinloche E, Harris PA, et al. Strong stability and host specific bacterial community in faeces of ponies. PLoS ONE. 2013;8(9): e75079.
Article
CAS
Google Scholar
Dicks LMT, Botha M, Dicks E, Botes M. The equine gastro-intestinal tract: an overview of the microbiota, disease and treatment. Livest Sci. 2014;1(160):69–81.
Article
Google Scholar
Santos AS, Rodrigues MAM, Bessa RJB, Ferreira LM, Martin-Rosset W. Understanding the equine cecum-colon ecosystem: current knowledge and future perspectives. Animal. 2011;5(1):48–56.
Article
CAS
Google Scholar
Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7(1):5.
Article
Google Scholar
Julliand V, Grimm P. The impact of diet on the hindgut microbiome. J Equine Vet. 2017;1(52):23–8.
Article
Google Scholar
Crowell-Davis SL, Houpt KA. Coprophagy by foals: effect of age and possible functions. Equine Vet J. 1985;17(1):17–9.
Article
CAS
Google Scholar
Garber A, Hastie P, Murray JA. Factors influencing equine gut microbiota: current knowledge. J Equine Vet. 2020;1(88): 102943.
Article
Google Scholar
Quercia S, Freccero F, Castagnetti C, Soverini M, Turroni S, Biagi E, et al. Early colonisation and temporal dynamics of the gut microbial ecosystem in Standardbred foals. Equine Vet J. 2019;51(2):231–7.
Article
CAS
Google Scholar
Lindenberg F, Krych L, Kot W, Fielden J, Frøkiær H, van Galen G, et al. Development of the equine gut microbiota. Sci Rep. 2019;9(1):14427.
Article
CAS
Google Scholar
Xu Y, Lei B, Zhang Q, Lei Y, Li C, Li X, et al. ADDAGMA: a database for domestic animal gut microbiome atlas. Comput Struct Biotechnol J. 2022;20:891–8.
Article
CAS
Google Scholar
Argenzio RA, Southworth M, Stevens CE. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am J Physiol. 1974;226(5):1043–50.
Article
CAS
Google Scholar
Hackstein JHP, Baker SE, van Hellemond JJ, Tielens AGM. Hydrogenosomes of anaerobic fungi: an alternative way to adapt to anaerobic environments. In: Tachezy J, editor. Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Springer International Publishing; 2019. p. 159–75.
Chapter
Google Scholar
Edwards JE. Equine anaerobic fungi: key taxa of central importance to dietary fibre degradation. In: Small Things: European Equine Health & Nutrion Congress. 2019. pp. 23–31.
Bonhomme-Florentin A. Essais de culture in vitro des Cycloposthiidae, ciliés commensaux de l’intestin du cheval. Rôle de ces ciliés dans la dégradation de la cellulose. Protistologica (Paris). 1969;5:519–22.
Google Scholar
Bonhomme-Florentin A. Attachement des Ciliés du caecum de Cheval aux fragments végétaux.—Dégradation des chloroplastes.—Attachement des bactéries aux Ciliés du caecum. Reprod Nutr Develop. 1985;25(1):127–139.
Bonhomme-Florentin A. Degradation of hemicellulose and pectin by horse caecum contents. Br J Nutr. 1988;60(1):185–92.
Article
CAS
Google Scholar
Gilbert RA, Dagar SS, Kittelmann S, Edwards JE. Advances in the understanding of the commensal Eukaryota and viruses of the herbivore gut. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.619287.
Article
Google Scholar
Makhuvele R, Ncube I, Jansen van Rensburg EL, La Grange DC. Isolation of fungi from dung of wild herbivores for application in bioethanol production. Braz J Microbiol. 2017;48:648–55.
Article
CAS
Google Scholar
Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—a review. Biomass Bioenerg. 2020;1(134): 105481.
Article
Google Scholar
Kosheleva YP, Trofimov SY. Characteristics of the biochemical composition of plant litter at different stages of decomposition (according to thermal analysis data). Biol Bull. 2008;35(1):64–9.
Article
CAS
Google Scholar
Pérez J, Munoz-Dorado J, De la Rubia T, Martinez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002;5(2):53–63.
Article
Google Scholar
Moore BE, Dehority BA. Effects of diet and hindgut defaunation on diet digestibility and microbial concentrations in the cecum and colon of the horse. J Anim Sci. 1993;71(12):3350–8.
Article
CAS
Google Scholar
Muhonen S, Sadet-Bourgeteau S, Julliand V. Effects of differences in fibre composition and maturity of forage-based diets on the microbial ecosystem and its activity in equine caecum and colon digesta and faeces. Animals. 2021;11(8):2337.
Article
Google Scholar
Grenet E, Breton A, Barry P, Fonty G. Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Anim Feed Sci Technol. 1989;26(1–2):55–70.
Article
Google Scholar
Bulmer LS, Murray JA, Burns NM, Garber A, Wemelsfelder F, McEwan NR, et al. High-starch diets alter equine faecal microbiota and increase behavioural reactivity. Sci Rep. 2019;9(9):18621.
Article
CAS
Google Scholar
Detmann E, Paulino MF, Mantovani HC, de Filho SCV, Sampaio CB, de Souza MA, et al. Parameterization of ruminal fibre degradation in low-quality tropical forage using Michaelis-Menten kinetics. Livest Sci. 2009;126(1):136–46.
Article
Google Scholar
Warzecha CM, Coverdale JA, Janecka JE, Leatherwood JL, Pinchak WE, Wickersham TA, et al. Influence of short-term dietary starch inclusion on the equine cecal microbiome. J Anim Sci. 2017;95(11):5077–90.
Article
CAS
Google Scholar
Harlow BE, Donley TM, Lawrence LM, Flythe MD. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine faecal microbiota in vitro. J Appl Microbiol. 2015;119(5):1234–44.
Article
CAS
Google Scholar
Julliand V, de Fombelle A, Drogoul C, Jacotot E. Feeding and microbial disorders in horses: Part 3—effects of three hay:grain ratios on microbial profile and activities. J Equine Vet. 2001;21(11):543–6.
Article
Google Scholar
Garner HE, Moore JN, Johnson JH, Clark L, Amend JF, Tritschler LG, et al. Changes in the caecal flora associated with the onset of laminitis. Equine Vet J. 1978;10(4):249–52.
Article
CAS
Google Scholar
Weese J, Rousseau J. Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. J Am Vet Med Assoc. 2005;1(226):2031–4.
Article
Google Scholar
Dougal K, de la Fuente G, Harris PA, Girdwood SE, Pinloche E, Geor RJ, et al. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PLoS ONE. 2014;9(2): e87424.
Article
Google Scholar
Gomez A, Sharma AK, Grev A, Sheaffer C, Martinson K. The horse gut microbiome responds in a highly individualized manner to forage lignification. J Equine Vet. 2021;1(96): 103306.
Article
Google Scholar
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol. 2022. https://doi.org/10.1038/s41579-022-00712-1.
Article
Google Scholar
Barrett K, Jensen K, Meyer AS, Frisvad JC, Lange L. Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: example Aspergillus and Penicillium. Sci Rep. 2020;20(10):5158.
Article
Google Scholar
Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50(D1):D571–7.
Article
CAS
Google Scholar
Sharma A, Tewari R, Rana SS, Soni R, Soni SK. Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol. 2016;179(8):1346–80.
Article
CAS
Google Scholar
Ndlovu TM, Van Wyk JPH. Isolation of cellulase enzyme from brown garden snail (Cornu aspersum) for the saccharification of waste paper materials. MethodsX. 2019;1(6):1030–5.
Article
Google Scholar
Xue XM, Anderson AJ, Richardson NA, Anderson AJ, Xue GP, Mather PB. Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture. 1999;180(3):373–86.
Article
CAS
Google Scholar
Tokuda G, Watanabe H. Hidden cellulases in termites: revision of an old hypothesis. Biol Lett. 2007;3(3):336–9.
Article
CAS
Google Scholar
Jakeer S, Varma M, Sharma J, Mattoo F, Gupta D, Singh J, et al. Metagenomic analysis of the fecal microbiome of an adult elephant reveals the diversity of CAZymes related to lignocellulosic biomass degradation. Symbiosis. 2020;81(3):209–22.
Article
CAS
Google Scholar
Yi Y. Tiny bugs play big role: Microorganisms’ contribution to biofuel production. In: Lü X, editor. Advances in 2nd generation of bioethanol production. Woodhead Publishing; 2021. p. 113–36.
Chapter
Google Scholar
Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, et al. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol. 2015;1(29):108–19.
Article
Google Scholar
Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41(6):941–62.
Article
CAS
Google Scholar
Ufarté L, Potocki-Veronese G, Cecchini D, Tauzin AS, Rizzo A, Morgavi DP, et al. Highly promiscuous oxidases discovered in the bovine rumen microbiome. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.00861.
Article
Google Scholar
Lillington SP, Leggieri PA, Heom KA, O’Malley MA. Nature’s recyclers: anaerobic microbial communities drive crude biomass deconstruction. Curr Opin Biotechnol. 2020;1(62):38–47.
Article
Google Scholar
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351(6278):1192–5.
Article
CAS
Google Scholar
Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics. 2021;113(3):1416–27.
Article
CAS
Google Scholar
Mach N, Midoux C, Leclercq S, et al. Mining the equine gut metagenome: poorly-characterized taxa associated with cardiovascular fitness in endurance athletes. Commun Biol. 2022;5:1032. https://doi.org/10.1038/s42003-022-03977-7.
Article
CAS
Google Scholar
Lillington SP, Chrisler W, Haitjema CH, Gilmore SP, Smallwood CR, Shutthanandan V, et al. Cellulosome localization patterns vary across life stages of anaerobic fungi. mBio. 2021;12(3):e00832-e921.
Article
CAS
Google Scholar
Doi RH. Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci. 2008;1125(1):267–79.
Article
CAS
Google Scholar
Fontes CM, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem. 2010;79:655–81.
Article
CAS
Google Scholar
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, et al. Anaerobic fungi: past, present, and future. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.584893.
Article
Google Scholar
Boxma B, Voncken F, Jannink S, Van Alen T, Akhmanova A, Van Weelden SWH, et al. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol. 2004;51(5):1389–99.
Article
CAS
Google Scholar
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, et al. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014;90(1):1–17.
Article
CAS
Google Scholar
Gold JJ, Brent Heath I, Bauchop T. Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. Nov., assigned to the Neocallimasticaceae. Biosystems. 1988;21(3):403–15.
Article
CAS
Google Scholar
Hooker CA, Lee KZ, Solomon KV. Leveraging anaerobic fungi for biotechnology. Curr Opin Biotechnol. 2019;1(59):103–10.
Article
Google Scholar
Drake H, Ivarsson M. The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biol Rev. 2018;32(1):20–5.
Article
Google Scholar
Hanafy RA, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Dagar SS, Griffith GW, et al. Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia. 2020;112(6):1212–39.
Article
CAS
Google Scholar
Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia. 2017;109(2):231–43.
Article
Google Scholar
Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS. Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys. 2018;40:89–110.
Article
Google Scholar
Stabel M, Hanafy RA, Schweitzer T, Greif M, Aliyu H, Flad V, et al. Aestipascuomyces dupliciliberans gen. nov., sp. nov., the first cultured representative of the uncultured sk4 clade from aoudad sheep and alpaca. Microorganisms. 2020;8(11):1734.
Article
CAS
Google Scholar
Chang J, Park H. Nucleotide and protein researches on anaerobic fungi during four decades. J Anim Sci Technol. 2020;62(2):121–40.
Article
CAS
Google Scholar
Edwards JE, Shetty SA, Van Den Berg P, Burden F, Van Doorn DA, Pellikaan WF, et al. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub) species. Anim Microb. 2020;2(1):1–16.
Google Scholar
Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J. 2010;4(10):1225–35.
Article
Google Scholar
Seppälä S, Solomon KV, Gilmore SP, Henske JK, O’Malley MA. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb Cell Fact. 2016;15(1):212.
Article
Google Scholar
Li J, Heath IB, Bauchop T. Piromyces mae and Piromyces dumbonica, two new species of uniflagellate anaerobic chytridiomycete fungi from the hindgut of the horse and elephant. Can J Bot. 1990;68(5):1021–33.
Article
Google Scholar
Orpin CG. Isolation of cellulolytic phycomycete fungi from the caecum of the horse. Microbiology. 1981;123(2):287–96.
Article
CAS
Google Scholar
Breton A, Dusser M, Gaillard-Martinie B, Guillot J, Millet L, Prensier G. Piromyces rhizinflata nov. sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastructural study. FEMS Microbiol Lett. 1991;82(1):1–8.
Article
CAS
Google Scholar
Gaillard-Martinie B, Breton A, Dusser M, Julliand V. Piromyces citronii sp. nov., a strictly anaerobic fungus from the equine caecum: a morphological, metabolic, and ultrastructural study. FEMS Microbiol Lett. 1995;130(2–3):321–6.
Article
CAS
Google Scholar
Mura E, Edwards J, Kittelmann S, Kaerger K, Voigt K, Mrázek J, et al. Anaerobic fungal communities differ along the horse digestive tract. Fungal Biol. 2019;123(3):240–6.
Article
Google Scholar
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol. 2017;2(8):1–8.
Article
Google Scholar
Seppälä S, Wilken STE, Knop D, Solomon KV, O’Malley MA. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab Eng. 2017;44:45–59.
Article
Google Scholar
Joblin KN, Naylor GE. Fermentation of woods by rumen anaerobic fungi. FEMS Microbiol Lett. 1989;65(1–2):119–22.
Article
CAS
Google Scholar
Orpin CG. The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. J Gen Microbiol. 1977;99(1):107–17.
Article
CAS
Google Scholar
Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol. 2013.
Theodorou MK, Mennim G, Davies DR, Zhu WY, Trinci APJ, Brookman JL. Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc Nutr Soc. 1996;55(3):913–26.
Article
CAS
Google Scholar
Gordon GLR, Phillips MW. Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Lett Appl Microbiol. 1993;17(5):220–3.
Article
Google Scholar
Tielens AG, Hellemond JJV. Anaerobic mitochondria: properties and origins. In: Martin WF, Müller M, editors. Origin of Mitochondria and Hydrogenosomes. Springer; 2007. p. 85–103.
Hackstein JH, Tjaden J, Huynen M. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet. 2006;50(4):225–45.
Article
CAS
Google Scholar
Cuddeford D, Pearson RA, Archibald RF, Muirhead RH. Digestibility and gastro-intestinal transit time of diets containing different proportions of alfalfa and oat straw given to Thoroughbreds, Shetland ponies, Highland ponies and donkeys. Anim Sci. 1995;61(2):407–17.
Article
Google Scholar
Julliand V, Riondet C, de Vaux A, Alcaraz G, Fonty G. Comparison of metabolic activities between Piromyces citronii, an equine fungal species, and Piromyces communis, a ruminal species. Anim Feed Sci Technol. 1998;70(1–2):161–8.
Article
CAS
Google Scholar
Harhangi HR, Freelove ACJ, Ubhayasekera W, Van Dinther M, Steenbakkers PJM, Akhmanova A, et al. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochimica et Biophysica Acta (BBA) Gene Struct Expr. 2003;1628(1):30–9.
Article
CAS
Google Scholar
Koivula A, Ruohonen L, Wohlfahrt G, Reinikainen T, Teeri TT, Piens K, et al. The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids d221 and d175. J Am Chem Soc. 2002;124(34):10015–24.
Article
CAS
Google Scholar
Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, et al. PCR and Omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01657.
Article
Google Scholar
Liu N, Yu W, Guo X, Chen J, Xia D, Yu J, et al. Oxidative cleavage of cellulose in the horse gut. Microb Cell Fact. 2022;21(1):38.
Article
Google Scholar
Hutchinson MI, Powell AJ, Herrera J, Natvig DO. New perspectives on the distribution and roles of thermophilic fungi. In: Tiquia-Arashiro SM, Grube M, editors. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Cham: Springer International Publishing; 2019; p. 59–80.
Chapter
Google Scholar
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105(31):10949–54.
Article
CAS
Google Scholar
Tansey MR, Brock TD. The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci. 1972;69(9):2426–8.
Article
CAS
Google Scholar
Li DC, Lu M, Li YL, Lu J. Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2. Enzyme Microb Technol. 2003;33(7):932–7.
Article
CAS
Google Scholar
Li AN, Yu K, Liu HQ, Zhang J, Li H, Li DC. Two novel thermostable chitinase genes from thermophilic fungi: cloning, expression and characterization. Biores Technol. 2010;101(14):5546–51.
Article
CAS
Google Scholar
Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol. 2017;44:67–76.
Article
CAS
Google Scholar
Dujon BA, Louis EJ. Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics. 2017;206(2):717–50.
Article
Google Scholar
Yurkov A. Temporal and geographic patterns in yeast distribution. In: Buzzini P, Lachance MA, Yurkov A, editors. Yeasts in Natural Ecosystems: Ecology. Springer; 2017. p. 101–30.
Gabaldón T, Naranjo-Ortíz MA, Marcet-Houben M. Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Res. 2016;16(6):fow064.
Article
Google Scholar
Van Uden N, Sousa LDC, Farinha M. On the intestinal yeast flora of horses, sheep, goats and swine. Microbiology. 1958;19(3):435–45.
Google Scholar
Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev. 2000;64(2):281–315.
Article
CAS
Google Scholar
Lorliam W, Akaracharanya A, Jindamorakot S, Suwannarangsee S, Tanasupawat S. Characterization of xylose-utilizing yeasts isolated from herbivore faeces in Thailand. ScienceAsia. 2013;39(1):26.
Article
CAS
Google Scholar
Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol. 1996;80(5):471–8.
Article
Google Scholar
Suh SO, Marshall CJ, Mchugh JV, Blackwell M. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol. 2003;12(11):3137–45.
Article
Google Scholar
Molnár O, Wuczkowski M, Prillinger H. Yeast biodiversity in the guts of several pests on maize; comparison of three methods: classical isolation, cloning and DGGE. Mycol Prog. 2008;7(2):111–23.
Article
Google Scholar
Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, et al. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ. 2022;23(10): e13084.
Article
Google Scholar
Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 2013;9(9):560–9.
Google Scholar
Koike S, Kobayashi Y. Fibrolytic rumen bacteria: their ecology and functions. Asian Australas J Anim Sci. 2009;22(1):131–8.
Article
CAS
Google Scholar
Varel VH, Jung HJG. Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation. Appl Environ Microbiol. 1986;52(2):275–80.
Article
CAS
Google Scholar
Michalet-Doreau B, Fernandez I, Peyron C, Millet L, Fonty G. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod Nutr Dev. 2001;41(2):187–94.
Article
CAS
Google Scholar
Koike S, Pan J, Kobayashi Y, Tanaka K. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J Dairy Sci. 2003;86(4):1429–35.
Article
CAS
Google Scholar
Kobayashi Y, Shinkai T, Koike S. Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion—review. Folia Microbiol. 2008;53(3):195–200.
Article
CAS
Google Scholar
Xie X, Yang C, Guan LL, Wang J, Xue M, Liu JX. Persistence of cellulolytic bacteria Fibrobacter and Treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01363.
Article
Google Scholar
Shinkai T, Ueki T, Kobayashi Y. Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes. Anim Sci J. 2010;81(1):72–9.
Article
CAS
Google Scholar
Shinkai T, Kobayashi Y. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time pcr. Appl Environ Microbiol. 2007;73(5):1646–52.
Article
CAS
Google Scholar
Miron J, Ben-Ghedalia D, Morrison M. Adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci. 2001;84(6):1294–309.
Article
CAS
Google Scholar
Russell JB, Muck RE, Weimer PJ. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol. 2009;67(2):183–97.
Article
CAS
Google Scholar
Castillo-González A, Burrola-Barraza M, Domínguez-Viveros J, Chávez-Martínez A. Rumen microorganisms and fermentation. Arch Med Vet. 2014;46(3):349–61.
Article
Google Scholar
Liu L, Huang WC, Liu Y, Li M. Diversity of cellulolytic microorganisms and microbial cellulases. Int Biodeterior Biodegrad. 2021;1(163): 105277.
Article
Google Scholar
McDonald JE, Rooks DJ, McCarthy AJ. Methods for the isolation of cellulose-degrading microorganisms. Meth Enzymol. 2012;510:349–74.
Article
CAS
Google Scholar
Sadet-Bourgeteau S, Julliand V. La diversité de l’écosystème microbien du tractus digestif équin. INRAE Product Anim. 2012;25(5):407–18.
Article
Google Scholar
Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet. 2005;6(11):805–14.
Article
CAS
Google Scholar
Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Diversity. 2020;103(1):273–93.
Article
Google Scholar
Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol. 2014;32(8):822–8.
Article
CAS
Google Scholar
Ijaq J, Chandrasekharan M, Poddar R, Bethi N, Sundararajan VS. Annotation and curation of uncharacterized proteins- challenges. Front Gen. 2015. https://doi.org/10.3389/fgene.2015.00119.
Article
Google Scholar
Hagen LH, Brooke CG, Shaw CA, Norbeck AD, Piao H, Arntzen MØ, et al. Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 2021;15(2):421–34.
Article
CAS
Google Scholar
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, et al. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microb. 2019;1(1):1–15.
Google Scholar
Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms. 2020;8(4):573.
Article
CAS
Google Scholar
Anderson CJ, Koester LR, Schmitz-Esser S. Rumen epithelial communities share a core bacterial microbiota: a meta-analysis of 16S rRNA gene Illumina MiSeq sequencing datasets. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.625400.
Article
Google Scholar
Cotta M, Forster R. The family Lachnospiraceae, including the genera Butyrivibrio, Lachnospira and Roseburia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, editors. The Prokaryotes; Springer. 2006; p. 1002–21.
Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, et al. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet. 2014;10(11): e1004773.
Article
Google Scholar
Roediger WEW. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83(2):424–9.
Article
CAS
Google Scholar
Ze X, Le Mougen F, Duncan SH, Louis P, Flint HJ. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes. 2013;4(3):236–40.
Article
Google Scholar
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306.
Article
Google Scholar
Bule P, Alves VD, Israeli-Ruimy V, Carvalho AL, Ferreira LMA, Smith SP, et al. Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes. Sci Rep. 2017;7(1):759.
Article
Google Scholar
Hastie P, Mitchell K, Murray JA. Semi-quantitative analysis of Ruminococcus flavefaciens, Fibrobacter succinogenes and Streptococcus bovis in the equine large intestine using real-time polymerase chain reaction. Br J Nutr. 2008;1(100):561–8.
Article
Google Scholar
Bule P, Alves VD, Leitão A, Ferreira LMA, Bayer EA, Smith SP, et al. Single binding mode integration of hemicellulose-degrading enzymes via adaptor scaffoldins in Ruminococcus flavefaciens cellulosome. J Biol Chem. 2016;291(52):26658–69.
Article
CAS
Google Scholar
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun. 2020;11(1):4321.
Article
CAS
Google Scholar
Fujimori S. Humans have intestinal bacteria that degrade the plant cell walls in herbivores. World J Gastroenterol. 2021;27(45):7784–91.
Article
Google Scholar
Dehority BA. Effects of microbial synergism on fibre digestion in the rumen. Proc Nutr Soc. 1991;50(2):149–59.
Article
CAS
Google Scholar
Schink B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek. 2002;81(1):257–61.
Article
CAS
Google Scholar
Miura H, Horiguchi M, Ogimoto K, Matsumoto T. Nutritional interdependence among rumen bacteria during cellulose digestion in vitro. Appl Environ Microbiol. 1983;45(2):726–9.
Article
CAS
Google Scholar
Wolin MJ, Miller TL, Stewart CS. Microbe-microbe interactions. In: Hobson PN, Stewart CS, editors. The Rumen Microbial Ecosystem. Springer; 1997. p. 467–91.
Chapter
Google Scholar
Paul SS, Deb SM, Punia BS, Singh D, Kumar R. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. J Sci Food Agric. 2010;90(7):1218–26.
Article
CAS
Google Scholar
Paul SS, Kamra DN, Sastry VRB, Sahu NP, Agarwal N. Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients. Anim Feed Sci Technol. 2004;115(1):143–57.
Article
Google Scholar
Arambel MJ, Wiedmeier RD, Walters JL. Influence of donor animal adaptation to added yeast culture and/or Aspergillus oryzae fermentation extract on in vitro rumen fermentation. Nutr Rep Int. 1987;35(3):433–7.
CAS
Google Scholar
Lee SS, Ha JK, Cheng KJ. Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion. Anim Feed Sci Technol. 2000;88(3):201–17.
Article
Google Scholar
Moya D, Ferret A, Blanch M, Fuentes MC, Fandiño JI, Calsamiglia S. Effects of live yeast (Saccharomyces cerevisiae) and type of cereal on rumen microbial fermentation in a dual flow continuous culture fermentation system. J Anim Physiol Anim Nutr. 2018;102(6):1488–96.
Article
CAS
Google Scholar
Elghandour MMY, Tan ZL, Abu Hafsa SH, Adegbeye MJ, Greiner R, Ugbogu EA, et al. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: a review. J Appl Microbiol. 2020;128(3):658–74.
Article
CAS
Google Scholar
Taran FMP, Gobesso A, Gonzaga IVF, Françoso R, Centini TN, Moreira CG, et al. Effects of different amounts of Saccharomyces cerevisiae supplementation on apparent digestibility and faecal parameters in horses fed high-roughage and high-concentrate diets. Livest Sci. 2015;1:186.
Google Scholar
Jouany JP, Medina B, Bertin G, Julliand V. Effect of live yeast culture supplementation on hindgut microbial communities and their polysaccharidase and glycoside hydrolase activities in horses fed a high-fiber or high-starch diet. J Anim Sci. 2009;87(9):2844–52.
Article
CAS
Google Scholar
Gobesso AAO, Pombo GV, Costa RL, Pereira YS, Feltre K. Effect of yeast supplementation on digestibility, fecal microbiota and serum endotoxin levels in non-exercising and exercising horses. Livest Sci. 2018;215:21–4.
Article
Google Scholar
Medina B, Girard ID, Jacotot E, Julliand V. Effect of a preparation of Saccharomyces cerevisiae on microbial profiles and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet. J Anim Sci. 2002;80(10):2600–9.
CAS
Google Scholar
Murray JAMD, Brown S, O’Shaughnessy P, Monteiro A, Warren H, Hastie PM. Effect of live yeast culture supplementation on fibrolytic and saccharolytic bacterial populations in the feces of horses fed a high-fiber or high-starch diet. J Equine Vet. 2017;51:41–5.
Article
Google Scholar
St-Pierre B, Wright ADG. Diversity of gut methanogens in herbivorous animals. Animal. 2013;1(7):49–56.
Article
Google Scholar
Morvan B, Rieu-Lesme F, Fonty G, Gouet P. In vitro Interactions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe. 1996;2(3):175–80.
Article
CAS
Google Scholar
Murru F, Fliegerova K, Mura E, Mrázek J, Kopečný J, Moniello G. A comparison of methanogens of different regions of the equine hindgut. Anaerobe. 2018;1(54):104–10.
Article
Google Scholar
Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17(4):219–32.
Article
CAS
Google Scholar
Jensen BB. Methanogenesis in monogastric animals. Environ Monit Assess. 1996;42(1):99–112.
Article
CAS
Google Scholar
Li Y, Meng Z, Xu Y, Shi Q, Ma Y, Aung M, et al. Interactions between anaerobic fungi and methanogens in the rumen and their biotechnological potential in biogas production from lignocellulosic materials. Microorganisms. 2021;9(1):190.
Article
CAS
Google Scholar
Brown JL, Swift CL, Mondo SJ, Seppala S, Salamov A, Singan V, et al. Co-cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnol Biofuels. 2021;10(14):234.
Article
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacol. 2013;38(1):23–38.
Article
CAS
Google Scholar
Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. Academic Press; 2014. p. 103–65.
Google Scholar
Ståhlberg J, Johansson G, Pettersson G. A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Bio/Technology. 1991;9(3):286–90.
Google Scholar
Tomme P, Van Tilbeurgh H, Pettersson G, van Damme J, Vandekerckhove J, Knowles J, et al. Studies of the cellulolytic system of Trichoderma reesei QM 9414: analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem. 1988;170(3):575–81.
Article
CAS
Google Scholar
Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: separation of functional domains. FEBS Lett. 1986;204(2):223–7.
Article
Google Scholar
Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, et al. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins Struct Funct Bioinf. 1992;14(4):475–82.
Article
CAS
Google Scholar
Limón MC, Margolles-Clark E, Benítez T, Penttilä M. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett. 2001;198(1):57–63.
Article
Google Scholar
Dougal K, de la Fuente G, Harris PA, Girdwood SE, Pinloche E, Newbold CJ. Identification of a core bacterial community within the large intestine of the horse. PLoS ONE. 2013;8(10): e77660.
Article
CAS
Google Scholar
Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H. Assessment of the accuracy of high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition analysis. Front Microbiol. 2019;10:2370.
Article
Google Scholar
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol. 2021;6(4):499–511.
Article
CAS
Google Scholar
Navarro D, Chaduli D, Taussac S, Lesage-Meessen L, Grisel S, Haon M, et al. Large-scale phenotyping of 1,000 fungal strains for the degradation of non-natural, industrial compounds. Commun Biol. 2021;4(1):1–10.
Article
Google Scholar
Comtet-Marre S, Chaucheyras-Durand F, Bouzid O, Mosoni P, Bayat A, Peyret P, et al. FibroChip, a functional dna microarray to monitor cellulolytic and hemicellulolytic activities of rumen microbiota. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.00215.
Article
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinf. 2015;13(5):278–89.
Article
Google Scholar
Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics. Dev Growth Differ. 2019;61(5):316–26.
Article
Google Scholar
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348–65.
Article
CAS
Google Scholar
Loit K, Adamson K, Bahram M, Puusepp R, Anslan S, Kiiker R, Drenkhan R, Tedersoo L. Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens. Appl Environ Microbiol. 2019;85(21):e01368-19.
Article
CAS
Google Scholar