Sommer MO, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009;325(5944):1128–31. https://doi.org/10.1126/science.1176950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8. https://doi.org/10.1016/S1473-3099(15)00424-7.
Article
CAS
PubMed
Google Scholar
Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken RE, et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3(8):898–908. https://doi.org/10.1038/s41564-018-0192-9.
Article
CAS
PubMed
Google Scholar
Wang Y, Hu Y, Liu F, Cao J, Lv N, Zhu B, et al. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ Int. 2020;138:105649. https://doi.org/10.1016/j.envint.2020.105649.
Article
CAS
PubMed
Google Scholar
Liu J, Taft DH, Maldonado-Gomez MX, Johnson D, Treiber ML, Lemay DG, et al. The fecal resistome of dairy cattle is associated with diet during nursing. Nat Commun. 2019;10(1):4406. https://doi.org/10.1038/s41467-019-12111-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li X, Fu Y, Chen Y, Wang Y, Ye D, et al. Association of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures. J Hazard Mater. 2020;399:123059. https://doi.org/10.1016/j.jhazmat.2020.123059.
Article
CAS
PubMed
Google Scholar
He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol. 2019;4(9):1450–6. https://doi.org/10.1038/s41564-019-0445-2.
Article
CAS
PubMed
Google Scholar
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509(7502):612–6. https://doi.org/10.1038/nature13377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu JH, Zhang ML, Zhang RY, Zhu WY, Mao SY. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microbial Biotechnol. 2016;9(2):257–68. https://doi.org/10.1111/1751-7915.12345.
Article
CAS
Google Scholar
Guo L, Yao D, Li D, Lin Y, Bureenok S, Ni K, et al. Effects of lactic acid Bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in vitro digestibility of alfalfa silage. Front Microbiol. 2020;10:2998. https://doi.org/10.3389/fmicb.2019.02998.
Article
PubMed
PubMed Central
Google Scholar
Auffret MD, Dewhurst RJ, Duthie CA, Rooke JA, John Wallace R, Freeman TC, et al. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome. 2017;5(1):159. https://doi.org/10.1186/s40168-017-0378-z.
Article
PubMed
PubMed Central
Google Scholar
Campbell TP, Sun X, Patel VH, Sanz C, Morgan D, Dantas G. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 2020;14(6):1584–99. https://doi.org/10.1038/s41396-020-0634-2.
Article
PubMed
PubMed Central
Google Scholar
Sabino YNV, Santana MF, Oyama LB, Santos FG, Moreira AJS, Huws SA, et al. Characterization of antibiotic resistance genes in the species of the rumen microbiota. Nat Commun. 2019;10(1):5252. https://doi.org/10.1038/s41467-019-13118-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo-an emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenol. 2020;151:95102.
Article
Google Scholar
Aspilcueta-Borquis R, Neto FA, Baldi F, Bignardi A, Albuquerque LG, Tonhati H. Genetic parameters for buffalo milk yield and milk quality traits using Bayesian inference. J Dairy Sci. 2010;93(5):2195–201. https://doi.org/10.3168/jds.2009-2621.
Article
CAS
PubMed
Google Scholar
Hamid M, Siddiky M, Rahman M, Hossain K. Scopes and opportunities of buffalo farming in Bangladesh: a review. SAARC J Agri. 2016;14(2):63–77.
Article
Google Scholar
El Debaky HA, Kutchy NA, Ul-Husna A, Indriastuti R, Akhter S, Purwantara B, et al. Potential of water buffalo in world agriculture: challenges and opportunities. Appl Anim Sci. 2019;35(2):255–68. https://doi.org/10.15232/aas.2018-01810.
Article
Google Scholar
Iqbal MW, Zhang Q, Yang Y, Li L, Zou C, Huang C, et al. Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. J Appl Anim Res. 2018;46(1):740–8. https://doi.org/10.1080/09712119.2017.1394859.
Article
Google Scholar
De Rosa G, Grasso F, Braghieri A, Bilancione A, Di Francia A, Napolitano F. Behavior and milk production of buffalo cows as affected by housing system. J Dairy Sci. 2009;92(3):907–12. https://doi.org/10.3168/jds.2008-1157.
Article
CAS
PubMed
Google Scholar
Shen JS, Chai Z, Song LJ, Liu JX, Wu YM. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci. 2012;95(10):5978–84. https://doi.org/10.3168/jds.2012-5499.
Article
CAS
PubMed
Google Scholar
Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques. 2004;36(5):808–12. https://doi.org/10.2144/04365ST04.
Article
CAS
PubMed
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. https://doi.org/10.1093/bioinformatics/bty560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C-M, Li D, Sadakane K, Luo R, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6. https://doi.org/10.1093/bioinformatics/btv033.
Article
CAS
PubMed
Google Scholar
Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34(19):5623–30. https://doi.org/10.1093/nar/gkl723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Niu B, Fu L, Wu S, Li W, Zhu Z. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
PubMed
PubMed Central
Google Scholar
Yu C, Wang J, Kristiansen K, Li R, Yiu S-M, Lam T-W, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.
Article
PubMed
Google Scholar
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2019;48(D1):D517–25.
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–5. https://doi.org/10.1093/nar/gkt1178.
Article
CAS
PubMed
Google Scholar
Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–35. https://doi.org/10.1021/acs.jproteome.5b00354.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H-Z, Zhou M, Wang O, Chen Y, Liu J-X, Guan LL. Multi-omics reveals functional genomic and metabolic mechanisms of milk production and quality in dairy cows. Bioinformatics. 2020;36(8):2530–7. https://doi.org/10.1093/bioinformatics/btz951.
Article
CAS
PubMed
Google Scholar
Legeay M, Doncheva NT, Morris JH, Jensen LJ. Cytoscape app [version 1; peer review: 1 approved]; 2020.
Google Scholar
Zapala MA, Schork NJ. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. P Natl Acad Sci USA. 2006;103(51):19430–5. https://doi.org/10.1073/pnas.0609333103.
Article
CAS
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara R, Simpson GL, et al. Vegan: community ecology package. R package version 1; 2010. p. 17–4. URL http://CRAN.R-project.org/package=vegan.
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genom Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
Google Scholar
Furman O, Shenhav L, Sasson G, Kokou F, Honig H, Jacoby S, et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat Commun. 2020;11(1):1904. https://doi.org/10.1038/s41467-020-15652-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin B, Henderson G, Zou C, Cox F, Liang X, Janssen PH, et al. Characterization of the rumen microbial community composition of buffalo breeds consuming diets typical of dairy production systems in southern China. Anim Feed Sci Tech. 2015;207:75–84. https://doi.org/10.1016/j.anifeedsci.2015.06.013.
Article
CAS
Google Scholar
Imai S, Abdullah N, Ho Y, Jalaludin S, Hussain H, Onodera R, et al. Comparative study on the rumen ciliate populations in small experimental herds of water buffalo and Kedah Kelantan cattle in Malaysia. Anim Feed Sci Tech. 1995;52(3–4):345–51. https://doi.org/10.1016/0377-8401(94)00726-P.
Article
Google Scholar
Lwin K-O, Matsui H, Ban-Tokuda T, Kondo M, Lapitan RM, Herrera JRV, et al. Comparative analysis of methanogen diversity in the rumen of crossbred buffalo and cattle in the Philippines by using the functional gene mcrA. Mol Biol Rep. 2012;39(12):10769–74. https://doi.org/10.1007/s11033-012-1969-1.
Article
CAS
PubMed
Google Scholar
Zou C, Gu Q, Zhou X, Xia Z, Muhammad WI, Tang Q, et al. Ruminal microbiota composition associated with ruminal fermentation parameters and milk yield in lactating buffalo in Guangxi, China: a preliminary study. J Anim Physiol Anim Nutr. 2019;103(5):1374–9. https://doi.org/10.1111/jpn.13154.
Article
CAS
Google Scholar
Costa-Roura S, Balcells Terés J, de la Fuente OG, Mora-Gil J, Llanes N, Villalba Mata D. Effects of protein restriction on performance, ruminal fermentation and microbial community in Holstein bulls fed high-concentrate diets. Anim Feed Sci Tech. 2020;264:114479. https://doi.org/10.1016/j.anifeedsci.2020.114479.
Article
CAS
Google Scholar
Koringa PG, Thakkar JR, Pandit RJ, Hinsu AT, Parekh MJ, Shah RK, et al. Metagenomic characterisation of ruminal bacterial diversity in buffaloes from birth to adulthood using 16S rRNA gene amplicon sequencing. Funct Integr Genomic. 2019;19(2):237–47. https://doi.org/10.1007/s10142-018-0640-x.
Article
CAS
Google Scholar
Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, Coutinho PM, et al. Bacteria NACfR: comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol. 2010;60(4):721–9. https://doi.org/10.1007/s00248-010-9692-8.
Article
PubMed
Google Scholar
Kim JN, Méndez-García C, Geier RR, Iakiviak M, Chang J, Cann I, et al. Metabolic networks for nitrogen utilization in Prevotella ruminicola 23. Sci Rep. 2017;7(1):7851. https://doi.org/10.1038/s41598-017-08463-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Liu Q, Guo G, Huo W, Liang Y, Pei C, et al. Effects of different dietary protein levels and rumen-protected folic acid on ruminal fermentation, degradability, bacterial populations and urinary excretion of purine derivatives in beef steers. J Agri Sci. 2017;155(9):1477–86. https://doi.org/10.1017/S0021859617000533.
Article
CAS
Google Scholar
Liu Q, Wang C, Li H, Guo G, Huo W, Pei C, et al. Effects of dietary protein levels and rumen-protected pantothenate on ruminal fermentation, microbial enzyme activity and bacteria population in blonde d'Aquitaine× Simmental beef steers. Anim Feed Sci Tech. 2017;232:31–9. https://doi.org/10.1016/j.anifeedsci.2017.07.014.
Article
CAS
Google Scholar
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5(1):14567. https://doi.org/10.1038/srep14567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terrapon N, Lombard V, Drula E, Lapébie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2018;46(D1):D677–83. https://doi.org/10.1093/nar/gkx1022.
Article
CAS
PubMed
Google Scholar
Wirth R, Kádár G, Kakuk B, Maróti G, Bagi Z, Szilágyi Á, et al. The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing. Front Microbiol. 2018;9:2285. https://doi.org/10.3389/fmicb.2018.02285.
Article
PubMed
PubMed Central
Google Scholar
Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. P Natl Acad Sci USA. 2009;106(6):1948–53. https://doi.org/10.1073/pnas.0806191105.
Article
Google Scholar
Gangoiti J, Van Leeuwen SS, Gerwig GJ, Duboux S, Vafiadi C, Pijning T, et al. 4, 3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci Rep. 2017;7(1):39761. https://doi.org/10.1038/srep39761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012;7(6):e28742. https://doi.org/10.1371/journal.pone.0028742.
Article
CAS
PubMed
PubMed Central
Google Scholar
He B, Jin S, Cao J, Mi L, Wang J. Metatranscriptomics of the Hu sheep rumen microbiome reveals novel cellulases. Biotechnol Biofuels. 2019;12(1):153. https://doi.org/10.1186/s13068-019-1498-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park Y-J, Kong W-S. Genome-wide comparison of carbohydrate-active enzymes (CAZymes) repertoire of Flammulina ononidis. Mycobiol. 2018;46(4):349–60. https://doi.org/10.1080/12298093.2018.1537585.
Article
Google Scholar
Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis. 2016;16(3):293. https://doi.org/10.1016/S1473-3099(16)00061-X.
Article
PubMed
Google Scholar
Wang Y, Tian G-B, Zhang R, Shen Y, Tyrrell JM, Huang X, et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis. 2017;17(4):390–9. https://doi.org/10.1016/S1473-3099(16)30527-8.
Article
CAS
PubMed
Google Scholar
Zhao Q, Wang Y, Wang S, Wang Z, Du X-d, Jiang H, et al. Prevalence and abundance of florfenicol and linezolid resistance genes in soils adjacent to swine feedlots. Sci Rep. 2016;6:32192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Shao B, Shen J, Wang S, Wu Y. Occurrence of chloramphenicol-resistance genes as environmental pollutants from swine feedlots. Environ Sci Technol. 2013;47(6):2892–7. https://doi.org/10.1021/es304616c.
Article
CAS
PubMed
Google Scholar
Gasparrini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao IM, et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol. 2019;4(12):2285–97. https://doi.org/10.1038/s41564-019-0550-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao J, Hu Y, Liu F, Wang Y, Bi Y, Lv N, et al. Metagenomic analysis reveals the microbiome and resistome in migratory birds. Microbiome. 2020;8(1):26. https://doi.org/10.1186/s40168-019-0781-8.
Article
PubMed
PubMed Central
Google Scholar
Sun J, Liao X-P, D’Souza AW, Boolchandani M, Li S-H, Cheng K, et al. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat Commun. 2020;11(1):1427. https://doi.org/10.1038/s41467-020-15222-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guilfoile P, Hutchinson C. Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol. 1992;174(11):3651–8. https://doi.org/10.1128/jb.174.11.3651-3658.1992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco G, Patallo EP, Braña AF, Trefzer A, Bechthold A, Rohr J, et al. Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. Chem Biol. 2001;8(3):253–63. https://doi.org/10.1016/S1074-5521(01)00010-2.
Article
CAS
PubMed
Google Scholar
Nakamura L. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Evol Microbiol. 1981;31(1):56–63.
CAS
Google Scholar
Amat S, Alexander TW, Holman DB, Schwinghamer T, Timsit E. Intranasal bacterial therapeutics reduce colonization by the respiratory pathogen Mannheimia haemolytica in dairy calves. Msystems. 2020;5(2):e00629–19.
Article
PubMed
PubMed Central
Google Scholar
Aristimuño Ficoseco C, Mansilla FI, Maldonado NC, Miranda H, Fátima Nader-Macias ME, Vignolo GM. Safety and growth optimization of lactic acid bacteria isolated from feedlot cattle for probiotic formula design. Front Microbiol. 2018;9:2220. https://doi.org/10.3389/fmicb.2018.02220.
Article
PubMed
PubMed Central
Google Scholar
Kos B, Šušković J, Vuković S, Šimpraga M, Frece J, Matošić S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol. 2003;94(6):981–7. https://doi.org/10.1046/j.1365-2672.2003.01915.x.
Article
CAS
PubMed
Google Scholar
Omar JM, Chan Y-M, Jones ML, Prakash S, Jones PJ. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J Funct Foods. 2013;5(1):116–23. https://doi.org/10.1016/j.jff.2012.09.001.
Article
Google Scholar
Adetoye A, Pinloche E, Adeniyi BA, Ayeni FA. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018;18(1):96. https://doi.org/10.1186/s12866-018-1248-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández S, Fraga M, Silveyra E, Trombert A, Rabaza A, Pla M, et al. Probiotic properties of native Lactobacillus spp. strains for dairy calves. Benef Microbes. 2018;9(4):613–24. https://doi.org/10.3920/BM2017.0131.
Article
PubMed
Google Scholar