Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schroder B, Smoczek A, Jorns A, Wedekind D, Zschemisch NH, et al. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis. 2014;20:431–43.
Article
PubMed
Google Scholar
McInnes EF, Rasmussen L, Fung P, Auld AM, Alvarez L, Lawrence DA, Quinn ME, del Fierro GM, Vassallo BA, Stevenson R. Prevalence of viral, bacterial and parasitological diseases in rats and mice used in research environments in Australasia over a 5-y period. Lab Anim. 2011;40:341–50.
Article
Google Scholar
Escalante NK, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker CJ, Girardin SE, Philpott DJ, Mallevaey T. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med. 2016;213:2841–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Bruin WC, van de Ven EM, Hooijmans CR. Efficacy of soiled bedding transfer for transmission of mouse and rat infections to sentinels: a systematic review. PLoS ONE. 2016;11:e0158410.
Article
PubMed
PubMed Central
CAS
Google Scholar
WMS Russel RB. The principles of humane experimental technique. 1959.
Miller M, Brielmeier M. Environmental samples make soiled bedding sentinels dispensable for hygienic monitoring of IVC-reared mouse colonies. Lab Anim. 2018;52:233–9.
Article
CAS
PubMed
Google Scholar
Zorn J, Ritter B, Miller M, Kraus M, Northrup E, Brielmeier M. Murine norovirus detection in the exhaust air of IVCs is more sensitive than serological analysis of soiled bedding sentinels. Lab Anim. 2017;51:301–10.
Article
CAS
PubMed
Google Scholar
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;9:1830.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, Chen LL, Ruan SC, Lin JH, Lin PJ, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation. 2019;139:647–59.
Article
CAS
PubMed
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.
Article
CAS
PubMed
Google Scholar
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.
Article
CAS
PubMed
Google Scholar
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.
Article
CAS
PubMed
Google Scholar
Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35:8–15.
Article
CAS
PubMed
Google Scholar
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamada N, Nunez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology. 2014;146:1477–88.
Article
CAS
PubMed
Google Scholar
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caspani G, Swann J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol. 2019;48:99–106.
Article
CAS
PubMed
Google Scholar
Antonini M, Lo Conte M, Sorini C, Falcone M. How the interplay between the commensal microbiota, gut barrier integrity, and mucosal immunity regulates brain autoimmunity. Front Immunol. 2019;10:1937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu P, Peng G, Zhang N, Wang B, Luo B. Crosstalk between the gut microbiota and the brain: an update on neuroimaging findings. Front Neurol. 2019;10:883.
Article
PubMed
PubMed Central
Google Scholar
Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68:1108–14.
Article
CAS
PubMed
Google Scholar
Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14:319–38.
Article
CAS
PubMed
Google Scholar
Chiu CY. Viral pathogen discovery. Curr Opin Microbiol. 2013;16:468–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol. 2015;53:1072–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salipante SJ, Hoogestraat DR, Abbott AN, SenGupta DJ, Cummings LA, Butler-Wu SM, Stephens K, Cookson BT, Hoffman NG. Coinfection of Fusobacterium nucleatum and Actinomyces israelii in mastoiditis diagnosed by next-generation DNA sequencing. J Clin Microbiol. 2014;52:1789–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen TL, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015;8:1–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
Article
PubMed
Google Scholar
Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Muller VM, Schuppel VL, Lagkouvardos I, Scholz B, Engel KH, Daniel H, et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metabolism. 2016;5:1162–74.
Article
CAS
Google Scholar
Martinez KA, Devlin JC, Lacher CR, Yin Y, Cai Y, Wang J, Dominguez-Bello MG. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci Adv. 2017;3:eaao1874.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Huang M, You X, Zhao J, Chen L, Wang L, Luo Y, Chen Y. Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci Rep. 2018;8:13037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, Ananthakrishnan AN, Andrews E, Barron G, Lake K, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol. 2018;3:337–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blum HE. The human microbiome. Adv Med Sci. 2017;62:414–20.
Article
PubMed
Google Scholar
Garrett WS. Cancer and the microbiota. Science. 2015;348:80–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol. 2016;70:395–411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrett WS. The gut microbiota and colon cancer. Science. 2019;364:1133–5.
Article
CAS
PubMed
Google Scholar
Saus E, Iraola-Guzman S, Willis JR, Brunet-Vega A, Gabaldon T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;69:93–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan L, Zhang S, Li H, Yang F, Mushtaq N, Ullah S, Shi Y, An C, Xu J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 2018;108:184–93.
Article
CAS
PubMed
Google Scholar
Villeger R, Lopes A, Carrier G, Veziant J, Billard E, Barnich N, Gagniere J, Vazeille E, Bonnet M. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Int J Mol Sci. 2019;20(18):4584.
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Servick K. Of mice and microbes. Science. 2016;353:741–3.
Article
CAS
PubMed
Google Scholar
Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature. 2016;534:191–9.
Article
CAS
PubMed
Google Scholar
Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532:512–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG, Sarshad AA, Leonardi I, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365(6452):eaaw4361.
Omary MB, Cohen DE, El-Omar EM, Jalan R, Low MJ, Nathanson MH, Peek RM Jr, Turner JR. Not all mice are the same: Standardization of animal research data presentation. Hepatology. 2016;63:1752–4.
Article
PubMed
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.
Article
PubMed
PubMed Central
Google Scholar
Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. Peer J Comput Sci. 2017;3:e104.
Article
Google Scholar
Chaudhry V, Patil PB. Genomic investigation reveals evolution and lifestyle adaptation of endophytic Staphylococcus epidermidis. Sci Rep. 2016;6:19263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, Kawli T, Christians FC, Venkatasubrahmanyam S, Wall GD, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019;4:663–74.
Article
CAS
PubMed
Google Scholar
A framework for human microbiome research. Nature. 2012;486:215–21.
Pereira-Marques J, Hout A, Ferreira RM, Weber M, Pinto-Ribeiro I, van Doorn LJ, Knetsch CW, Figueiredo C. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front Microbiol. 2019;10:1277.
Article
PubMed
PubMed Central
Google Scholar
Walsh AM, Crispie F, O’Sullivan O, Finnegan L, Claesson MJ, Cotter PD. Species classifier choice is a key consideration when analysing low-complexity food microbiome data. Microbiome. 2018;6:50.
Article
PubMed
PubMed Central
Google Scholar
Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20:341–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller S, Chiu C, Rodino KG, Miller MB. Point-counterpoint: should we be performing metagenomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J Clin Microbiol. 2020;58(3):e01739–19.
Taylor NS, Xu S, Nambiar P, Dewhirst FE, Fox JG. Enterohepatic Helicobacter species are prevalent in mice from commercial and academic institutions in Asia, Europe, and North America. J Clin Microbiol. 2007;45:2166–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benga L, Sager M, Christensen H. From the [Pasteurella] pneumotropica complex to Rodentibacter spp.: an update on [Pasteurella] pneumotropica. Vet Microbiol. 2018;217:121–34.
Article
PubMed
Google Scholar
Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun. 2016;469:967–77.
Article
CAS
PubMed
Google Scholar
Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, et al. Characterization of the gut microbiome using 16S or Shotgun Metagenomics. Front Microbiol. 2016;7:459.
Article
PubMed
PubMed Central
Google Scholar
Laudadio I, Fulci V, Palone F, Stronati L, Cucchiara S, Carissimi C. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS. 2018;22:248–54.
Article
CAS
PubMed
Google Scholar
Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol. 2012;7:99–122.
Article
CAS
PubMed
Google Scholar
Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154:220–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J, Zhang D, et al. A catalog of the mouse gut metagenome. Nat Biotechnol. 2015;33:1103–8.
Article
CAS
PubMed
Google Scholar
Hugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci CMLS. 2018;75:149–60.
Article
CAS
PubMed
Google Scholar
Clavel T, Lagkouvardos I, Blaut M, Stecher B. The mouse gut microbiome revisited: From complex diversity to model ecosystems. Int J Med Microbiol IJMM. 2016;306:316–27.
Article
CAS
PubMed
Google Scholar
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, Bresciani A, Martinez I, Just S, Ziegler C, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.
Article
CAS
PubMed
Google Scholar
Krych L, Hansen CH, Hansen AK, van den Berg FW, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE. 2013;8:e62578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, Casavant EP, Gonzalez CG, Fremin B, Bouley DM, Elias JE, et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell. 2018;173:1742-1754 e1717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019;7:28.
Article
PubMed
PubMed Central
Google Scholar
Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.
Article
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590-596.
Article
CAS
PubMed
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheaib B, Le Boulch M, Mercier PL, Derome N. Taxon-function decoupling as an adaptive signature of lake microbial metacommunities under a chronic polymetallic pollution gradient. Front Microbiol. 2018;9:869.
Article
PubMed
PubMed Central
Google Scholar
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.
Article
CAS
PubMed
Google Scholar
Tian L, Wang XW, Wu AK, Fan Y, Friedman J, Dahlin A, Waldor MK, Weinstock GM, Weiss ST, Liu YY. Deciphering functional redundancy in the human microbiome. Nat Commun. 2020;11:6217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JR, Seok SH, Kim DJ, Baek MW, Na YR, Han JH, Kim TH, Park JH, Turner PV, Chung DH, et al. Prevalence of murine norovirus infection in Korean laboratory animal facilities. J Vet Med Sci. 2011;73:687–91.
Article
PubMed
Google Scholar
Yeom SC, Yu SA, Choi EY, Lee BC, Lee WJ. Prevalence of Helicobacter hepaticus, murine norovirus, and Pneumocystis carinii and eradication efficacy of cross-fostering in genetically engineered mice. Exp Anim Jpn Assoc Lab Anim Sci. 2009;58:497–504.
CAS
Google Scholar
Henderson KS. Murine norovirus, a recently discovered and highly prevalent viral agent of mice. Lab Anim. 2008;37:314–20.
Article
Google Scholar
Hsu CC, Riley LK, Wills HM, Livingston RS. Persistent infection with and serologic cross-reactivity of three novel murine noroviruses. Comp Med. 2006;56:247–51.
CAS
PubMed
Google Scholar
Mahler Convenor M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, Raspa M. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim. 2014;48:178–92.
Article
CAS
PubMed
Google Scholar
Perec-Matysiak A, Okulewicz A, Hildebrand J, Zalesny G. Helminth parasites of laboratory mice and rats. Wiad Parazytol. 2006;52:99–102.
PubMed
Google Scholar
McNair DM, Timmons EH. Effects of Aspiculuris tetraptera dn Syphacia obvelata on exploratory behavior of an inbred mouse strain. Lab Anim Sci. 1977;27:38–42.
CAS
PubMed
Google Scholar
Lee MA, Shen Z, Holcombe HR, Ge Z, Franklin EG, Ricart Arbona RJ, Lipman NS, Fox JG, Sheh A. Detection of myocoptes musculinus in fur swab and fecal samples by using PCR analysis. J Am Assoc Lab Anim Sci JAALAS. 2019;58:796–801.
Article
PubMed
Google Scholar
Lee JM, Mayall JR, Chevalier A, McCarthy H, Van Helden D, Hansbro PM, Horvat JC, Jobling P. Chlamydia muridarum infection differentially alters smooth muscle function in mouse uterine horn and cervix. Am J Physiol Endocrinol Metab. 2020;318:E981–94.
Article
CAS
PubMed
Google Scholar
Schulz D, Grumann D, Trube P, Pritchett-Corning K, Johnson S, Reppschlager K, Gumz J, Sundaramoorthy N, Michalik S, Berg S, et al. Laboratory mice are frequently colonized with Staphylococcus aureus and mount a systemic immune response-note of caution for in vivo infection experiments. Front Cell Infect Microbiol. 2017;7:152.
Article
PubMed
PubMed Central
CAS
Google Scholar
Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, Frankel G. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12:612–23.
Article
CAS
PubMed
Google Scholar
Siddharth J, Membrez M, Chakrabarti A, Betrisey B, Chou CJ, Parkinson SJ. Complete Genome Sequence of Escherichia coli Strain M8, Isolated from ob/ob Mice. Genome Announc. 2017;5(22):e00449–17.
Ou Z, Deng L, Lu Z, Wu F, Liu W, Huang D, Peng Y. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutri. Diabetes. 2020;10(1). https://doi.org/10.1038/s41387-020-0115-8.
Roychowdhury S, Cadnum J, Glueck B, Obrenovich M, Donskey C, Cresci GAM. Faecalibacterium prausnitzii and a Prebiotic Protect Intestinal Health in a Mouse Model of Antibiotic and Clostridium difficile Exposure. J Parenter Enteral Nutr. 2018;42(7). https://doi.org/10.1002/jpen.1053.
Yang C, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci Rep. 2017;7(1). https://doi.org/10.1038/srep45942.
Singh S, Bhatia R, Khare P, Sharma S, Rajarammohan S, Bishnoi M, Bhadada SK, Sharma SS, Kaur J, Kondepudi KK. Anti-inflammatory Bifidobacterium strains prevent dextran sodium sulfate induced colitis and associated gut microbial dysbiosis in mice. Sci Rep. 2020;10(1). https://doi.org/10.1038/s41598-020-75702-5
Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis. 2012;35:81–92.
Article
PubMed
Google Scholar
Kruger DH, Ulrich RG, Hofmann J. Hantaviruses as zoonotic pathogens in Germany. Dtsch Arztebl Int. 2013;110:461–7.
PubMed
PubMed Central
Google Scholar
Dibaj R, Shojaei H, Narimani T. Identification and molecular characterization of mycobacteria isolated from animal sources in a developing country. Acta Trop. 2020;204:105297.
Article
CAS
PubMed
Google Scholar
Tsai CT, Lin JN, Lee CH, Sun W, Chang YC, Chen YH, Lai CH. The epidemiology, characteristics and outbreaks of human leptospirosis and the association with animals in Taiwan, 2007–2014: a nationwide database study. Zoonoses Public Health. 2020;67:156–66.
Article
CAS
PubMed
Google Scholar
Danforth ME, Messenger S, Buttke D, Weinburke M, Carroll G, Hacker G, Niemela M, Andrews ES, Jackson BT, Kramer V, et al. Long-term rodent surveillance after outbreak of hantavirus infection, Yosemite National Park, California, USA, 2012. Emerg Infect Dis. 2020;26:560–7.
Article
PubMed
PubMed Central
Google Scholar
Riley LK, Franklin CL, Hook RR Jr, Besch-Williford C. Identification of murine helicobacters by PCR and restriction enzyme analyses. J Clin Microbiol. 1996;34:942–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scavizzi F, Raspa M. Helicobacter typhlonius was detected in the sex organs of three mouse strains but did not transmit vertically. Lab Anim. 2006;40:70–9.
Article
CAS
PubMed
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Foster ZS, Sharpton TJ, Grunwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017;13:e1005404.
Article
PubMed
PubMed Central
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar