Koskella B, Bergelson J. The study of host–microbiome (co) evolution across levels of selection. Philos Trans R Soc B. 2020;375:20190604.
Article
Google Scholar
Lynch JB, Hsiao EY. Microbiomes as sources of emergent host phenotypes. Science (80-). 2019;365:1405–9.
Article
CAS
Google Scholar
Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4:1095–119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:1–19.
Article
Google Scholar
Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mamm Genome. 2014;25:49–74.
Article
CAS
PubMed
Google Scholar
Rook GAW, Martinelli R, Brunet LR. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr Opin Allergy Clin Immunol. 2003;3:337–42.
Article
CAS
PubMed
Google Scholar
Rook GAW. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol. 2010;160:70–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun. 2012;80:62–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.
Article
PubMed
CAS
Google Scholar
Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2016;6:1–11.
Article
Google Scholar
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8:39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40:277.
Google Scholar
Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, Littmann ER, Ling L, Miller L, Gyaltshen Y. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10:eaap9489.
Article
PubMed
PubMed Central
CAS
Google Scholar
D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61.
Article
PubMed
CAS
Google Scholar
Davies JE. Origins, acquisition and dissemination of antibiotic resistance determinants. In: Chadwick DJ, Goode JA, editors. Antibiotic resistance: origins, evolution, selection and spread. Hoboken: Wiley Online Library; 1997. p. 15–27.
Google Scholar
Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, Zur M, Regev-Lehavi D, Brik RB-Z, Federici S. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174:1406–23.
Article
CAS
PubMed
Google Scholar
Denamur E, Matic I. Evolution of mutation rates in bacteria. Mol Microbiol. 2006;60:820–7.
Article
CAS
PubMed
Google Scholar
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299.
Article
CAS
PubMed
Google Scholar
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3:711–21.
Article
CAS
PubMed
Google Scholar
Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.
Article
CAS
PubMed
Google Scholar
Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 2009;11:2970–88.
Article
CAS
PubMed
Google Scholar
Ferrer M, Méndez-García C, Rojo D, Barbas C, Moya A. Antibiotic use and microbiome function. Biochem Pharmacol. 2017;134:114–26.
Article
CAS
PubMed
Google Scholar
Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018;9:1–13.
Article
CAS
Google Scholar
Kolář M, Urbánek K, Látal T. Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Agents. 2001;17:357–63.
Article
PubMed
Google Scholar
Witte W. Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents. 2000;16:19–24.
Article
Google Scholar
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev. 2011;35:790–819.
Article
CAS
PubMed
Google Scholar
Weber DJ, Raasch R, Rutala WA. Nosocomial infections in the ICU: the growing importance of antibiotic-resistant pathogens. Chest. 1999;115:34S-41S.
Article
CAS
PubMed
Google Scholar
Britton RA, Young VB. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012;20:313–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stecher B, Maier L, Hardt W-D. ’Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol. 2013;11:277.
Article
CAS
PubMed
Google Scholar
Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petty NK, Zakour NLB, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan M-D, Moriel DG, Peters KM, Davies M. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci. 2014;111:5694–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol. 2013;29:79–84.
Article
PubMed
Google Scholar
Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44:551–61.
Article
PubMed
Google Scholar
Bo T-B, Zhang X-Y, Kohl KD, Wen J, Tian S-J, Wang D-H. Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal. ISME J. 2020;14:2625–45.
Article
PubMed
PubMed Central
Google Scholar
Osawa R, Blanshard WH, Ocallaghan PG. Microbiological studies of the intestinal microflora of the koala, Phascolarctos-cinereus. 2. Pap, a special maternal feces consumed by juvenile koalas. Aust J Zool. 1993;41:611–20.
Article
Google Scholar
Chaitman J, Jergens AE, Gaschen F, Garcia-Mazcorro JF, Marks SL, Marroquin-Cardona AG, Richter K, Rossi G, Suchodolski JS, Weese JS. Commentary on key aspects of fecal microbiota transplantation in small animal practice. Vet Med Res Rep. 2016;7:71.
Google Scholar
Niederwerder MC. Fecal microbiota transplantation as a tool to treat and reduce susceptibility to disease in animals. Vet Immunol Immunopathol. 2018;206:65–72.
Article
PubMed
PubMed Central
Google Scholar
Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol. 2011;9:1044–9.
Article
PubMed
PubMed Central
Google Scholar
Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, Stollman N, Rohlke F, Surawicz C. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107:1079–87.
Article
PubMed
Google Scholar
Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir A, McKenzie VJ, Humphrey G. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13:1.
Article
CAS
Google Scholar
Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, Knight R, Leigh S, Stumpf R, Wolf T. The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol. 2018;80:e22867.
Article
PubMed
Google Scholar
Greene LK, Clayton JB, Rothman RS, Semel BP, Semel MA, Gillespie TR, Wright PC, Drea CM. Local habitat, not phylogenetic relatedness, predicts gut microbiota better within folivorous than frugivorous lemur lineages. Biol Lett. 2019;15:20190028.
Article
PubMed
PubMed Central
Google Scholar
Greene LK, Bornbusch SL, McKenney EA, Harris RL, Gorvetzian SR, Yoder AD, Drea CM. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am J Primatol. 2019;81(10–11):e22974.
PubMed
Google Scholar
Gould L. Lemur catta ecology : what we know and what we need to know. In: Gould L, editor. Lemurs: ecology and adaptation. New York: Springer; 1999. p. 255–74.
Google Scholar
Jolly A, Sussman RW, Koyama N, Rasamimanana H. Ringtailed lemur biology: Lemur catta in Madagascar (Google eBook). 2006. http://books.google.com/books?id=WQ5yWlEJVVYC&pgis=1.
McKenney EA, Greene LK, Drea CM, Yoder AD. Down for the count: Cryptosporidium infection depletes the gut microbiome in Coquerel’s sifakas. Microb Ecol Health Dis. 2017;28:1335165.
PubMed
PubMed Central
Google Scholar
Konopka A. What is microbial community ecology? ISME J. 2009;3:1223–30.
Article
PubMed
Google Scholar
Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24:402–13.
Article
CAS
PubMed
Google Scholar
Wohl DL, Arora S, Gladstone JR. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment. Ecology. 2004;85:1534–40.
Article
Google Scholar
Johnson KH, Vogt KA, Clark HJ, Schmitz OJ, Vogt DJ. Biodiversity and the productivity and stability of ecosystems. Trends Ecol Evol. 1996;11:372–7.
Article
CAS
PubMed
Google Scholar
McNaughton SJ. Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am Nat. 1977;111:515–25.
Article
Google Scholar
McCann KS. The diversity-stability debate. Nature. 2000;405:228.
Article
CAS
PubMed
Google Scholar
Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
Article
CAS
PubMed
Google Scholar
Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.
Article
PubMed
PubMed Central
Google Scholar
Fisher CK, Mehta P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE. 2014;9:e102451.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gibbons SM. Keystone taxa indispensable for microbiome recovery. Nat Microbiol. 2020;5:1067–8.
Article
CAS
PubMed
Google Scholar
Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3:1255–65.
Article
CAS
PubMed
Google Scholar
Vlčková K, Gomez A, Petrželková KJ, Whittier CA, Todd AF, Yeoman CJ, Nelson KE, Wilson BA, Stumpf RM, Modrý D. Effect of antibiotic treatment on the gastrointestinal microbiome of free-ranging western lowland gorillas (Gorilla g. gorilla). Microb Ecol. 2016;72:943–54.
Article
PubMed
CAS
Google Scholar
Kaur SP, Rao R, Nanda S. Amoxicillin: a broad spectrum antibiotic. Int J Pharm Pharm Sci. 2011;3:30–7.
CAS
Google Scholar
Krezalek MA, Alverdy JC. The role of the microbiota in surgical recovery. Curr Opin Clin Nutr Metab Care. 2016;19:347–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholson SE, Merrill D, Zhu C, Burmeister DM, Zou Y, Lai Z, Darlington DN, Lewis AM, Newton L, Scroggins S. Polytrauma independent of therapeutic intervention alters the gastrointestinal microbiome. Am J Surg. 2018;216:699–705.
Article
PubMed
Google Scholar
McDonald LC. Effects of short-and long-course antibiotics on the lower intestinal microbiome as they relate to traveller’s diarrhea. J Travel Med. 2017;24:S35–8.
Article
PubMed
Google Scholar
Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, De Vos WM. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Schaik W. The human gut resistome. Philos Trans R Soc B Biol Sci. 2015;370:20140087.
Article
CAS
Google Scholar
Bollinger RR, Barbas AS, Bush EL, Lin SS, Parker W. Biofilms in the normal human large bowel: fact rather than fiction. Gut. 2007;56:1481–2.
PubMed
PubMed Central
Google Scholar
Laurin M, Everett ML, Parker W. The cecal appendix: one more immune component with a function disturbed by post-industrial culture. Anat Rec Adv Integr Anat Evol Biol. 2011;294:567–79.
Article
Google Scholar
Ekmekciu I, Von Klitzing E, Fiebiger U, Escher U, Neumann C, Bacher P, Scheffold A, Kühl AA, Bereswill S, Heimesaat MM. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice. Front Immunol. 2017;8:397.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, Olson SH, Seimon A, Seimon TA, Ondzie AU. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9:1–18.
Article
CAS
Google Scholar
Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF, Petrullo L, Reitsema L, Sams S, Lu A. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 2021;9:1–20.
Article
Google Scholar
Orkin JD, Campos FA, Myers MS, Hernandez SEC, Guadamuz A, Melin AD. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 2019;13:183–96.
Article
CAS
PubMed
Google Scholar
Greene LK, Blanco M, Rambeloson E, Graubics K, Fanelli B, Colwell R, Drea C. Gut microbiota of frugo-folivorous sifakas across environments. Anim Microbiome. 2021;3(1):1–13.
Article
Google Scholar
Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun. 2009;77:2367–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willing BP, Jansson JK. The gut microbiota: ecology and function. Lawrence Berkeley National Lab. (LBNL): Berkeley, CA; 2010.
Google Scholar
Zeng W, Shen J, Bo T, Peng L, Xu H, Nasser MI, Zhuang Q, Zhao M. Cutting edge: Probiotics and fecal microbiota transplantation in immunomodulation. J Immunol Res. 2019;2019:1–17.
Article
CAS
Google Scholar
Jin Song S, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, Suchodolski JS, Knight R. Engineering the microbiome for animal health and conservation. Exp Biol Med. 2019;244:494–504.
Article
CAS
Google Scholar
Schmidt EKA, Torres-Espin A, Raposo PJF, Madsen KL, Kigerl KA, Popovich PG, Fenrich KK, Fouad K. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS ONE. 2020;15:e0226128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Y, Gong J, Zhu W, Guo D, Gu L, Li N, Li J. Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis. BMC Infect Dis. 2015;15:265.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karlsson FH, Ussery DW, Nielsen J, Nookaew I. A closer look at Bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol. 2011;61:473–85.
Article
PubMed
Google Scholar
Macrina FL, Mays TD, Smith CJ, Welch RA. Non-plasmid associated transfer of antibiotic resistance in Bacteroides. J Antimicrob Chemother. 1981;8:77–86.
Article
CAS
PubMed
Google Scholar
Whittle G, Shoemaker NB, Salyers AA. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell Mol Life Sci C. 2002;59:2044–54.
Article
CAS
Google Scholar
Privitera G, Dublanchet A, Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979;139:97–101.
Article
CAS
PubMed
Google Scholar
Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol. 2001;67:561–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20:593–621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veloo ACM, Baas WH, Haan FJ, Coco J, Rossen JW. Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin Microbiol Infect. 2019;25:1156-e9.
Article
CAS
Google Scholar
Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ, Wurster JI, Nilson R, Guang A, Sano WH, Rowan-Nash AD. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab. 2019;30:800–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stiefel U, Tima MA, Nerandzic MM. Metallo-β-lactamase-producing Bacteroides species can shield other members of the gut microbiota from antibiotics. Antimicrob Agents Chemother. 2015;59:650–3.
Article
PubMed
CAS
Google Scholar
Zhang A-N, Li L-G, Yin X, Dai CL, Groussin M, Poyet M, Topp E, Gillings MR, Hanage WP, Tiedje JM. Choosing your battles: which resistance genes warrant global action? BioRxiv. 2019;784322.
Finnicum CT, Beck JJ, Dolan CV, Davis C, Willemsen G, Ehli EA, Boomsma DI, Davies GE, de Geus EJC. Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiol. 2019;19:1–10.
Article
Google Scholar
Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.
Article
PubMed
PubMed Central
Google Scholar
Archie EA, Tung J. Social behavior and the microbiome. Curr Opin Behav Sci. 2015;6:28–34.
Article
Google Scholar
Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153:S347–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ventola CL. The antibiotic resistance crisis: part 2: management strategies and new agents. Pharm Ther. 2015;40:344.
Google Scholar
Van Puyvelde S, Deborggraeve S, Jacobs J. Why the antibiotic resistance crisis requires a one health approach. Lancet Infect Dis. 2018;18:132–4.
Article
PubMed
Google Scholar
Bengtsson B, Greko C. Antibiotic resistance—consequences for animal health, welfare, and food production. Ups J Med Sci. 2014;119:96–102.
Article
PubMed
PubMed Central
Google Scholar
Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006;8:1137–44.
Article
CAS
PubMed
Google Scholar
Perry MR, McClean D, Simonet C, Woolhouse M, McNally L. Focussing on resistance to front-line drugs is the most effective way to combat the antimicrobial resistance crisis. bioRxiv. 2018;498329.
Austvoll CT, Gallo V, Montag D. Health impact of the Anthropocene: the complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob Heal Epidemiol Genom. 2020;5:E2.
Article
Google Scholar
Gillings MR, Paulsen IT. Microbiology of the Anthropocene. Anthropocene. 2014;5:1–8.
Article
Google Scholar
Starling AP, Charpentier MJE, Fitzpatrick C, Scordato ES, Drea CM. Seasonality, sociality, and reproduction: long-term stressors of ring-tailed lemurs (Lemur catta). Horm Behav. 2010;57:76–85.
Article
CAS
PubMed
Google Scholar
Drea CM. Sex and seasonal differences in aggression and steroid secretion in Lemur catta: are socially dominant females hormonally ‘masculinized’? Horm Behav. 2007;51:555–67.
Article
CAS
PubMed
Google Scholar
Charles-Smith LE, Cowen P, Schopler R. Environmental and physiological factors contributing to outbreaks of Cryptosporidium in Coquerel’s Sifaka (Propithecus coquereli) at the Duke Lemur Center: 1999–2007. J Zoo Wildl Med. 2010;41:438–44.
Article
PubMed
Google Scholar
da Silva AJ, Cacciò S, Williams C, Won KY, Nace EK, Whittier C, Pieniazek NJ, Eberhard ML. Molecular and morphologic characterization of a Cryptosporidium genotype identified in lemurs. Vet Parasitol. 2003;111:297–307.
Article
PubMed
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. In: Beiko R, Hsiao W, Parkinson J, editors. Microbiome analysis. New York: Springer; 2018. p. 113–29.
Chapter
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635.
Article
CAS
PubMed
Google Scholar
Hasan NA, Young BA, Minard-Smith AT, Saeed K, Li H, Heizer EM, McMillan NJ, Isom R, Abdullah AS, Bornman DM. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE. 2014;9:e97699.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan Q, Wi YM, Thoendel MJ, Raval YS, Greenwood-Quaintance KE, Abdel MP, Jeraldo PR, Chia N, Patel R. Evaluation of the CosmosID bioinformatics platform for prosthetic joint-associated sonicate fluid shotgun metagenomic data analysis. J Clin Microbiol. 2019;57:e01182-18.
Article
PubMed
PubMed Central
Google Scholar
Chekabab SM, Lawrence JR, Alvarado A, Predicala B, Korber DR. A health metadata-based management approach for comparative analysis of high-throughput genetic sequences for quantifying antimicrobial resistance reduction in Canadian hog barns. Comput Struct Biotechnol J. 2020;18:2629–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feehan A, Garcia-Diaz J. Bacterial, gut microbiome-modifying therapies to defend against multidrug resistant organisms. Microorganisms. 2020;8:166.
Article
CAS
PubMed Central
Google Scholar
Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized additive models in ecology: an introduction with MGCV. PeerJ. 2019;7:e6876.
Article
PubMed
PubMed Central
Google Scholar
Gloor GB, Macklaim JM, Fernandes AD. Displaying variation in large datasets: plotting a visual summary of effect sizes. J Comput Graph Stat. 2016;25:971–9.
Article
Google Scholar
Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.
Article
PubMed
PubMed Central
Google Scholar
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.
Article
PubMed
PubMed Central
Google Scholar