Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. https://doi.org/10.1038/nature08821.
Article
CAS
PubMed
PubMed Central
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.
Article
CAS
PubMed
Google Scholar
Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:725. https://doi.org/10.3389/fmicb.2017.00725.
Article
PubMed
PubMed Central
Google Scholar
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70. https://doi.org/10.1016/J.CELL.2012.01.035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science (80). 2012;336:1268–73. https://doi.org/10.1126/SCIENCE.1223490.
Article
CAS
Google Scholar
Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nat. 2016;535:85–93. https://doi.org/10.1038/nature18849.
Article
CAS
Google Scholar
Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–6. https://doi.org/10.1038/nature18634.
Article
CAS
PubMed
Google Scholar
Derrien M, van Hylckama Vlieg JET. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354–66. https://doi.org/10.1016/j.tim.2015.03.002.
Article
CAS
PubMed
Google Scholar
Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE. 2015;10: e0134116. https://doi.org/10.1371/JOURNAL.PONE.0134116.
Article
PubMed
PubMed Central
Google Scholar
Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol. 2013;21:334–41. https://doi.org/10.1016/j.tim.2013.04.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19:865–73. https://doi.org/10.1016/j.chom.2016.05.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiaro TR, Soto R, Stephens WZ, Kubinak JL, Petersen C, Gogokhia L, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aaf9044.
Article
PubMed
PubMed Central
Google Scholar
Huseyin CE, O’Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev. 2017;41:479–511. https://doi.org/10.1093/femsre/fuw047.
Article
CAS
PubMed
Google Scholar
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: a complex system in a dynamic relationship with the host. Wiley Interdiscip Rev Syst Biol Med. 2018. https://doi.org/10.1002/wsbm.1438.
Article
PubMed
PubMed Central
Google Scholar
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109. https://doi.org/10.1038/s41579-018-0116-y.
Article
CAS
PubMed
Google Scholar
Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2019;16:331–45. https://doi.org/10.1038/s41575-019-0121-2.
Article
PubMed
Google Scholar
van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin JB, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-16431-1.
Article
PubMed
PubMed Central
Google Scholar
Li J, Li L, Jiang H, Yuan L, Zhang L, Ma J, et al. Fecal bacteriome and mycobiome in bats with diverse diets in South China. Curr Microbiol. 2018;75:1352–61. https://doi.org/10.1007/s00284-018-1530-0.
Article
CAS
PubMed
Google Scholar
Ravenscraft A, Berry M, Hammer T, Peay K, Boggs C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol Monogr. 2019;89: e01346. https://doi.org/10.1002/ecm.1346.
Article
Google Scholar
Barelli C, Albanese D, Stumpf RM, Asangba A, Donati C, Rovero F, et al. The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems. 2020. https://doi.org/10.1128/msystems.00061-20.
Article
PubMed
PubMed Central
Google Scholar
Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science (80-). 2012;336:1314–7. https://doi.org/10.1126/SCIENCE.1221789.
Article
CAS
Google Scholar
Auchtung TA, Fofanova TY, Stewart CJ, Nash AK, Wong MC, Gesell JR, et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere. 2018. https://doi.org/10.1128/msphere.00092-18.
Article
PubMed
PubMed Central
Google Scholar
Fiers WD, Gao IH, Iliev ID. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr Opin Microbiol. 2019;50:79–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials-a mycologist’s perspective. Mycologia. 2015;107:1057–73. https://doi.org/10.3852/15-147.
Article
CAS
PubMed
Google Scholar
Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–22. https://doi.org/10.1038/s41579-018-0029-9.
Article
CAS
PubMed
Google Scholar
Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol. 2017;26:5872–95. https://doi.org/10.1111/mec.14350.
Article
PubMed
Google Scholar
Lavrinienko A, Jernfors T, Koskimäki JJ, Pirttilä AM, Watts PC. Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends Microbiol. 2021;29:19–27. https://doi.org/10.1016/j.tim.2020.05.019.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108(Supplement_1):4516–22. https://doi.org/10.1073/pnas.1000080107.
Article
PubMed
Google Scholar
Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–64. https://doi.org/10.1093/nar/gky1022.
Article
CAS
PubMed
Google Scholar
Hugerth LW, Andersson AF. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01561.
Article
PubMed
PubMed Central
Google Scholar
Huseyin CE, Rubio RC, O’Sullivan O, Cotter PD, Scanlan PD. The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01432.
Article
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bendová B, Piálek J, Ďureje Ľ, Schmiedová L, Čížková D, Martin JF, et al. How being synanthropic affects the gut bacteriome and mycobiome: comparison of two mouse species with contrasting ecologies. BMC Microbiol. 2020;20:1–13. https://doi.org/10.1186/s12866-020-01859-8.
Article
CAS
Google Scholar
Antwis RE, Beresford NA, Jackson JA, Fawkes R, Barnett CL, Potter E, et al. Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone. J Anim Ecol. 2021. https://doi.org/10.1111/1365-2656.13507.
Article
PubMed
Google Scholar
Sawaswong V, Chanchaem P, Khamwut A, Praianantathavorn K, Kemthong T, Malaivijitnond S, et al. Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis). Fungal Genet Biol. 2020;144: 103468. https://doi.org/10.1016/j.fgb.2020.103468.
Article
CAS
PubMed
Google Scholar
Siriyappagouder P, Kiron V, Lokesh J, Rajeish M, Kopp M, Fernandes J. The intestinal mycobiota in wild zebrafish comprises mainly dothideomycetes while saccharomycetes predominate in their laboratory-reared counterparts. Front Microbiol. 2018;9:387. https://doi.org/10.3389/fmicb.2018.00387.
Article
PubMed
PubMed Central
Google Scholar
Lee C, Tell LA, Hilfer T, Vannette RL. Microbial communities in hummingbird feeders are distinct from floral nectar and influenced by bird visitation. Proc R Soc B Biol Sci. 2019;286:20182295. https://doi.org/10.1098/rspb.2018.2295.
Article
CAS
Google Scholar
Niemelä T. On Fennoscandian polypores 9. Gelatoporia n. gen. and Tyromyces canadensis, plus notes on Skeletocutis and Antrodia. Karstenia. 1985;25:21–40.
Article
Google Scholar
Mann AE, Mazel F, Lemay MA, Morien E, Billy V, Kowalewski M, et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 2020;14:609–22. https://doi.org/10.1038/s41396-019-0551-4.
Article
CAS
PubMed
Google Scholar
Eberl F, de Bobadilla MF, Reichelt M, Hammerbacher A, Gershenzon J, Unsicker SB. Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecol Lett. 2020;23:1073–84. https://doi.org/10.1111/ELE.13506.
Article
PubMed
Google Scholar
Jiang H, Chen W, Su L, Huang M, Lin L, Su Q, et al. Impact of host intraspecies genetic variation, diet, and age on bacterial and fungal intestinal microbiota in tigers. Microbiologyopen. 2020. https://doi.org/10.1002/mbo3.1050.
Article
PubMed
PubMed Central
Google Scholar
Czurda S, Smelik S, Preuner-Stix S, Nogueira F, Lion T. Occurrence of fungal DNA contamination in PCR reagents: approaches to control and decontamination. J Clin Microbiol. 2016;54:148–52. https://doi.org/10.1128/JCM.02112-15.
Article
CAS
PubMed
Google Scholar
Preuner S, Lion T. Towards molecular diagnostics of invasive fungal infections. Expert Rev Mol Diagn. 2009;9:397–401. https://doi.org/10.1586/erm.09.27.
Article
PubMed
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–5. https://doi.org/10.1038/nmeth.1650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Višňovska D, Pyszko P, Šigut M, Kostovčik M, Kolařik M, Kotaskova N, et al. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol Ecol. 2020;96:42. https://doi.org/10.1093/femsec/fiaa116.
Article
CAS
Google Scholar
Egidi E, Delgado-Baquerizo M, Plett JM, Wang J, Eldridge DJ, Bardgett RD, et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-10373-z.
Article
PubMed
PubMed Central
Google Scholar
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data. 2020. https://doi.org/10.1038/s41597-020-0567-7.
Article
PubMed
PubMed Central
Google Scholar
Risely A. Applying the core microbiome to understand host-microbe systems. J Anim Ecol. 2020. https://doi.org/10.1111/1365-2656.13229.
Article
PubMed
Google Scholar
Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:1–22. https://doi.org/10.1186/S40168-020-00875-0.
Article
Google Scholar
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5:153. https://doi.org/10.1186/s40168-017-0373-4.
Article
PubMed
PubMed Central
Google Scholar
Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol. 2015;15:9–17. https://doi.org/10.1016/j.funeco.2015.01.006.
Article
Google Scholar
Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods. 2015;421:112–21. https://doi.org/10.1016/j.jim.2015.04.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science (80-). 2019;365:eaaw4361. https://doi.org/10.1126/science.aaw4361.
Article
CAS
Google Scholar
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8. https://doi.org/10.1016/j.funeco.2015.06.006.
Article
Google Scholar
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33. https://doi.org/10.1111/BRV.12570.
Article
PubMed
Google Scholar
Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2021;105:1–16. https://doi.org/10.1007/S13225-020-00466-2.
Article
Google Scholar
Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A, et al. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. MBio. 2015. https://doi.org/10.1128/MBIO.00231-15.
Article
PubMed
PubMed Central
Google Scholar
Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013. https://doi.org/10.7554/eLife.01102.
Article
PubMed
PubMed Central
Google Scholar
Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio. 2020;11:449–69. https://doi.org/10.1128/mBio.00449-20.
Article
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10. doi:https://doi.org/10.14806/ej.17.1.200.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4: e2584. https://doi.org/10.7717/PEERJ.2584.
Article
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8: e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-6. https://CRANR-project.org/package=vegan. 2019. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 22 Apr 2020.