Chiarello M, Villéger S, Bouvier C, Auguet JC, Bouvier T. Captive bottlenose dolphins and killer whales harbor a species-specific skin microbiota that varies among individuals. Sci Rep. 2017;7:15269. https://doi.org/10.1038/s41598-017-15220-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol. 2013;85:483–94. https://doi.org/10.1111/1574-6941.12136.
Article
CAS
PubMed
Google Scholar
Leftwich PT, Edgington MP, Chapman T. Transmission efficiency drives host-microbe associations. Proc R Soc B Biol Sci. 2020;287:20200820. https://doi.org/10.1098/rspb.2020.0820.
Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11:e1001631. https://doi.org/10.1371/journal.pbio.1001631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metcalf CJE, Henry LP, Rebolleda-Gómez M, Koskella B. Why evolve reliance on the microbiome for timing of ontogeny? MBio. 2019;10:e01496–19. https://doi.org/10.1128/mBio.01496-19.
Article
PubMed
PubMed Central
Google Scholar
Compagno LJV. Alternative life-history styles of cartilaginous fishes in time and space. Environ Biol Fishes. 1990;28:33–75. https://doi.org/10.1007/BF00751027.
Article
Google Scholar
Givens CE, Ransom B, Bano N, Hollibaugh JT. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser. 2015;518:209–23. https://doi.org/10.3354/meps11034.
Article
Google Scholar
Pogoreutz C, Gore MA, Perna G, Millar C, Nestler R, Ormond RF, et al. Similar bacterial communities on healthy and injured skin of black tip reef sharks. Anim Microbiome. 2019;1:9. https://doi.org/10.1186/s42523-019-0011-5.
Article
PubMed
PubMed Central
Google Scholar
Doane MP, Haggerty JM, Kacev D, Papudeshi B, Dinsdale EA. The skin microbiome of the common thresher shark (Alopias vulpinus) has low taxonomic and gene function β-diversity. Environ Microbiol Rep. 2017;9:357–73. https://doi.org/10.1111/1758-2229.12537.
Article
CAS
PubMed
Google Scholar
Johny TK, Saidumohamed BE, Sasidharan RS, Bhat SG. Metabarcoding data of bacterial diversity of the deep sea shark, Centroscyllium fabricii. Data Br. 2018;21:1029–32. https://doi.org/10.1016/j.dib.2018.10.062.
Article
Google Scholar
Doane MP, Morris MM, Papudeshi B, Allen L, Pande D, Haggerty JM, et al. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome. 2020;8:93. https://doi.org/10.1186/s40168-020-00840-x.
Article
PubMed
PubMed Central
Google Scholar
Kearns PJ, Bowen JL, Tlusty MF. The skin microbiome of cow-nose rays (Rhinoptera bonasus) in an aquarium touch-tank exhibit. Zoo Biol. 2017;36:226–30. https://doi.org/10.1002/zoo.21362.
Article
PubMed
Google Scholar
Storo R, Easson C, Shivji M, Lopez JV. Microbiome Analyses Demonstrate Specific Communities Within Five Shark Species. Front Microbiol. 2021;12:605285. https://doi.org/10.3389/fmicb.2021.605285.
Apprill A, Robbins J, Eren AM, Pack AA, Reveillaud J, Mattila D, et al. Humpback whale populations share a core skin bacterial community: Towards a health index for marine mammals? PLoS One. 2014;9:e90785. https://doi.org/10.1371/journal.pone.0090785.
Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. The second skin: Ecological role of epibiotic biofilms on marine organisms. Front Microbiol. 2012;3:292. https://doi.org/10.3389/fmicb.2012.00292.
Chiarello M, Villéger S, Bouvier C, Bettarel Y, Bouvier T. High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. FEMS Microbiol Ecol. 2015;91:fiv061. https://doi.org/10.1093/femsec/fiv061.
Article
CAS
PubMed
Google Scholar
Lim SJ, Bordenstein SR. An introduction to phylosymbiosis. Proc R Soc B Biol Sci. 2020;287:20192900. https://doi.org/10.1098/rspb.2019.2900.
Jacoby DMP, Croft DP, Sims DW. Social behaviour in sharks and rays: analysis, patterns and implications for conservation. Fish Fish. 2012;13:399–417. https://doi.org/10.1111/j.1467-2979.2011.00436.x.
Article
Google Scholar
Pratt HL, Carrier JC. A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environ Biol Fishes. 2001;60:157–88. https://doi.org/10.1023/A:1007656126281.
Article
Google Scholar
Dulvy NK, Reynolds JD. Evolutionary transitions among egg-laying, live-bearing and maternal inputs in sharks and rays. Proc R Soc B Biol Sci. 1997;264:1309–15. https://doi.org/10.1098/rspb.1997.0181.
Article
Google Scholar
Chiquillo KL, Ebert DA, Slager CJ, Crow KD. The secret of the mermaid’s purse: phylogenetic affinities within the Rajidae and the evolution of a novel reproductive strategy in skates. Mol Phylogenet Evol. 2014;75:245–51. https://doi.org/10.1016/j.ympev.2014.01.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobson AD. A note on the formation of the egg case of the skate. J Mar Biol Assoc United Kingdom. 1930;16:577–81. https://doi.org/10.1017/S0025315400072945.
Article
Google Scholar
Palm BD, Koester DM, Driggers WB, Sulikowski JA. Seasonal variation in fecundity, egg case viability, gestation, and neonate size for little skates, Leucoraja erinacea, in the Gulf of Maine. Environ Biol Fishes. 2011;92:585–89.
Article
Google Scholar
Di Santo V. Ocean acidification exacerbates the impacts of global warming on embryonic little skate, Leucoraja erinacea (Mitchill). J Exp Mar Bio Ecol. 2015;463:72–8. https://doi.org/10.1016/j.jembe.2014.11.006.
Article
Google Scholar
Serra-Pereira B, Figueiredo I, Gordo LS. Maturation of the gonads and reproductive tracts of the thornback Ray Raja Clavata, with comments on the development of a standardized reproductive terminology for oviparous elasmobranchs. Mar Coast Fish. 2011;3:160–75. https://doi.org/10.1080/19425120.2011.555707.
Article
Google Scholar
Lombardi J, Files T. Egg capsule structure and permeability in the viviparous shark. Mustelus canis J Exp Zool. 1993;267:76–85. https://doi.org/10.1002/jez.1402670111.
Article
Google Scholar
Hornsey DJ. Permeability coefficients of the egg-case membrane of Scyliorhinus canicula L. Experientia. 1978;34:1596–7. https://doi.org/10.1007/BF02034696.
Article
CAS
PubMed
Google Scholar
Koob TJ, Summers A. On the hydrodynamic share of little skate (Raja erinacea) egg capsules. Bull Mt Desert Isl Biol Lab. 1996;35:108–11.
Google Scholar
Marconi A, Hancock-Ronemus A, Gillis JA. Adult chondrogenesis and spontaneous cartilage repair in the skate. Leucoraja erinacea Elife. 2020;9:e53414. https://doi.org/10.7554/eLife.53414.
Article
PubMed
Google Scholar
Nakamura T, Klomp J, Pieretti J, Schneider I, Gehrke AR, Shubin NH. Molecular mechanisms underlying the exceptional adaptations of batoid fins. Proc Natl Acad Sci. 2015;112:15940–5. https://doi.org/10.1073/pnas.1521818112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner N, Mikalauskaite D, Barone K, Flaherty K, Senevirathne G, Adachi N, et al. The evolutionary origins and diversity of the neuromuscular system of paired appendages in batoids. Proc R Soc B Biol Sci. 2019;286:20191571. https://doi.org/10.1098/rspb.2019.1571.
Criswell KE, Coates MI, Gillis JA. Embryonic development of the axial column in the little skate. Leucoraja erinacea J Morphol. 2017;278:300–20. https://doi.org/10.1002/jmor.20637.
Article
PubMed
Google Scholar
Wyffels J, King BL, Vincent J, Chen C, Wu CH, Polson SW. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes. F1000Research. 2014;3:191. https://doi.org/10.12688/f1000research.4996.1.
Packer DB, Zetlin CA, Vitaliano JJ. Essential fish habitat source document. Little Skate, Leucoraja erinacea, life history and habitat characteristics. 2003.
Ballard WW, Mellinger J, Lechenault H. A series of normal stages for development of scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool. 1993;267:318–36.
Article
Google Scholar
Maxwell EE, Fröbisch NB, Heppleston AC. Variability and conservation in late chondrichthyan development: ontogeny of the winter skate (Leucoraja ocellata). Anat Rec. 2008;291:1079–87. https://doi.org/10.1002/ar.20719.
Article
Google Scholar
Nelson MC, Morrison HG, Benjamino J, Grim SL, Graf J. Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys. PLoS ONE. 2014;9: e94249. https://doi.org/10.1371/journal.pone.0094249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huse SM, Mark Welch DB, Voorhis A, Shipunova A, Morrison HG, Eren AM, et al. VAMPS: a website for visualization and analysis of microbial population structures. MBC Bioinforma. 2014;15:41. https://doi.org/10.1186/1471-2105-15-41.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209.
Article
CAS
PubMed
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. https://doi.org/10.1186/s40168-018-0470-z.
Article
PubMed
PubMed Central
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.
Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. F1000Research. 2016;5:1492. https://doi.org/10.12688/f1000research.8986.2.
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27. https://doi.org/10.1186/s40168-017-0237-y.
Article
PubMed
PubMed Central
Google Scholar
Faith DP, Minchin PR, Belbin L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio. 1987;69:57–68. https://doi.org/10.1007/BF00038687.
Article
Google Scholar
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583. https://doi.org/10.2307/2280779.
Article
Google Scholar
Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online. Chichester, UK: John Wiley & Sons, Ltd; 2017. https://doi.org/10.1002/9781118445112.stat07841.
Risely A. Applying the core microbiome to understand host–microbe systems. J Anim Ecol. 2020;89:1549–58. https://doi.org/10.1111/1365-2656.13229.
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, et al. FEAST: fast expectation-maximization for microbial source tracking. Nat Methods. 2019;16:627–32. https://doi.org/10.1038/s41592-019-0431-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: A language and environment for statistical computing. 2013. http://www.r-project.org/.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016.
Nielsen MC, Jiang SC. Alterations of the human skin microbiome after ocean water exposure. Mar Pollut Bull. 2019;145:595–603. https://doi.org/10.1016/j.marpolbul.2019.06.047.
Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, et al. Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol. 2001;3:151–67. https://doi.org/10.1046/j.1462-2920.2001.00172.x.
Article
CAS
PubMed
Google Scholar
Kerwin AH, Nyholm SV. Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs. Environ Microbiol. 2017;19:1463–75. https://doi.org/10.1111/1462-2920.13665.
Article
PubMed
Google Scholar
Pratte ZA, Besson M, Hollman RD, Stewart FJ. The gills of reef fish support a distinct microbiome influenced by host-specific factors. Appl Environ Microbiol. 2018;84:e00063–18. https://doi.org/10.1128/AEM.00063-18.
Article
PubMed
PubMed Central
Google Scholar
Hazon N, Wells A, Pillans RD, Good JP, Anderson WG, Franklin CE. Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity. Comp Biochem Physiol - B Biochem Mol Biol. 2003;136:685–700. https://doi.org/10.1016/s1096-4959(03)00280-x.
Article
PubMed
Google Scholar
Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammoniaoxidizing archaea of the phylum thaumarchaeo. Int J Syst Evol Microbiol. 2017;67:5067–79. https://doi.org/10.1099/ijsem.0.002416.
Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37. https://doi.org/10.1038/ismej.2012.169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci. 2010;15:25–34. https://doi.org/10.2741/3603.
Article
CAS
PubMed Central
Google Scholar
Meyer W, Seegers U. Basics of skin structure and function in elasmobranchs: a review. J Fish Biol. 2012;80:1940–67. https://doi.org/10.1111/j.1095-8649.2011.03207.x.
Article
CAS
PubMed
Google Scholar
Cooper RL, Thiery AP, Fletcher AG, Delbarre DJ, Rasch LJ, Fraser GJ. An ancient Turing-like patterning mechanism regulates skin denticle development in sharks. Sci Adv. 2018;4:eaau5484. https://doi.org/10.1126/sciadv.aau5484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M. Shark Skin: Taking a Bite Out of Bacteria. In: Lee M, editor. Remarkable Natural Material Surfaces and Their Engineering Potential. Cham: Springer International Publishing; 2014. https://doi.org/10.1007/978-3-319-03125-5_2.
Reddy ST, Chung KK, McDaniel CJ, Darouiche RO, Landman J, Brennan AB. Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. J Endourol. 2011;25:1547–52. https://doi.org/10.1089/end.2010.0611.
Article
PubMed
PubMed Central
Google Scholar
Mann EE, Manna D, Mettetal MR, May RM, Dannemiller EM, Chung KK, et al. Surface micropattern limits bacterial contamination. Antimicrob Resist Infect Control. 2014;3:28. https://doi.org/10.1186/2047-2994-3-28.
Ritchie KB, Schwarz M, Mueller J, Lapacek VA, Merselis D, Walsh CJ, et al. Survey of antibiotic-producing bacteria associated with the epidermal mucus layers of rays and skates. Front Microbiol. 2017;8:1050. https://doi.org/10.3389/fmicb.2017.01050.
Cho SH, Lee BD, An H, Eun JB. Kenojeinin I, antimicrobial peptide isolated from the skin of the fermented skate, Raja kenojei. Peptides. 2005;26:581–7. https://doi.org/10.1016/j.peptides.2004.11.011.
Article
CAS
PubMed
Google Scholar
Morohoshi T, Oi T, Suzuki T, Sato S. Identification and characterization of a novel extracellular polyhydroxyalkanoate depolymerase in the complete genome sequence of Undibacterium sp. KW1 and YM2 strains. PLoS One. 2020;15:e0232698. https://doi.org/10.1371/journal.pone.0232698.
Kämpfer P, Irgang R, Busse HJ, Poblete-Morales M, Kleinhagauer T, Glaeser SP, et al. Undibacterium danionis sp. Nov. isolated from a zebrafish (Danio rerio). Int J Syst Evol Microbiol. 2016;66:3625–31. https://doi.org/10.1099/ijsem.0.001244.
Lee SY, Kang W, Kim PS, Kim HS, Sung H, Shin NR, et al. Undibacterium piscinae sp. Nov., isolated from Korean shiner intestine. Int J Syst Evol Microbiol. 2019;69:3148–54. https://doi.org/10.1099/ijsem.0.003604.
Lokesh J, Kiron V, Sipkema D, Fernandes JMO, Moum T. Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (Salmo salar) reveals stage-specific microbial signatures. Microbiologyopen. 2019;8:e00672. https://doi.org/10.1002/mbo3.672.
Article
CAS
PubMed
Google Scholar
Fitzpatrick JL, Kempster RM, Daly-Engel TS, Collin SP, Evans JP. Assessing the potential for post-copulatory sexual selection in elasmobranchs. J Fish Biol. 2012;80:1141–58. https://doi.org/10.1111/j.1095-8649.2012.03256.x.
Article
CAS
PubMed
Google Scholar
MacManes MD. Promiscuity in mice is associated with increased vaginal bacterial diversity. Naturwissenschaften. 2011;98:951–60. https://doi.org/10.1007/s00114-011-0848-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
White J, Richard M, Massot M, Meylan S. Cloacal bacterial diversity increases with multiple mates: Evidence of sexual transmission in female common lizards. PLoS One. 2011;6:e22339. https://doi.org/10.1371/journal.pone.0022339.
Yildirim S, Yeoman CJ, Janga SC, Thomas SM, Ho M, Leigh SR, et al. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME J. 2014;8:2431–44. https://doi.org/10.1038/ismej.2014.90.
Article
CAS
PubMed
PubMed Central
Google Scholar