Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris RN, Lauer A, Simon MA, Banning JL, Alford RA. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquat Organ. 2009;83:11–6.
Article
PubMed
Google Scholar
Schloss PD. An integrated view of the skin microbiome. Nature. 2014;514:44–5.
Article
CAS
PubMed
Google Scholar
Woodhams DC, Bletz M, Kueneman J, McKenzie V. Managing amphibian disease with skin microbiota. Trends Microbiol. 2016;24:161–4.
Article
CAS
PubMed
Google Scholar
Jiménez RR, Sommer S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers Conserv. 2017;26:763–86.
Article
Google Scholar
Rollins-Smith LA. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta (BBA)-Biomembr. 2009;1788:1593–9.
Article
CAS
Google Scholar
Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, et al. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS ONE. 2018;13:e0199295.
Article
PubMed
PubMed Central
Google Scholar
Malvin GM. Microvascular regulation of cutaneous gas exchange in amphibians. Am Zool. 1988;28:999–1007.
Article
Google Scholar
Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE. 2014;9:e96375.
Article
PubMed
PubMed Central
Google Scholar
Whittaker K, Koo MS, Wake DB, Vredenburg VT. Global declines of amphibians. Encycl Biodivers. 2007;2007:1–9.
Google Scholar
Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 2016;10:1682–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Courchamp F, Hoffmann BD, Russell JC, Leclerc C, Bellard C. Climate change, sea-level rise, and conservation: Keeping island biodiversity afloat. Trends Ecol Evol. 2014;29:127–30.
Article
PubMed
Google Scholar
Muletz CR, Myers JM, Domangue RJ, Herrick JB, Harris RN. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv. 2012;152:119–26.
Article
Google Scholar
Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc R Soc B. 2016;283:20161553.
Article
PubMed
PubMed Central
Google Scholar
Belden LK, Hughey MC, Rebollar EA, Umile TP, Loftus SC, Burzynski EA, et al. Panamanian frog species host unique skin bacterial communities. Front Microbiol. 2015;6:1171.
Article
PubMed
PubMed Central
Google Scholar
Bletz MC, Archer H, Harris RN, McKenzie VJ, Rabemananjara FCE, Rakotoarison A, et al. Host ecology rather than host phylogeny drives amphibian skin microbial community structure in the biodiversity hotspot of Madagascar. Front Microbiol. 2017;8:1530.
Article
PubMed
PubMed Central
Google Scholar
Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23:1238–50.
Article
PubMed
Google Scholar
Cramp RL, McPhee RK, Meyer EA, Ohmer ME, Franklin CE. First line of defence: the role of sloughing in the regulation of cutaneous microbes in frogs. Conserv Physiol. 2014;2:cou012.
Article
PubMed
PubMed Central
Google Scholar
Davis LR, Bigler L, Woodhams DC. Developmental trajectories of amphibian microbiota: response to bacterial therapy depends on initial community structure. Environ Microbiol. 2017;19:1502–17.
Article
PubMed
Google Scholar
Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 2014;8:830–40.
Article
CAS
PubMed
Google Scholar
Kueneman JG, Bletz MC, McKenzie VJ, Becker CG, Joseph MB, Abarca JG, et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol. 2019;3:381–9.
Article
PubMed
Google Scholar
Muletz-Wolz CR, Fleischer RC, Lips KR. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol. 2019;28:2917–31.
CAS
PubMed
Google Scholar
Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24.
Article
CAS
PubMed
Google Scholar
McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 2012;6:588–96.
Article
CAS
PubMed
Google Scholar
Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC. Stability of microbiota facilitated by host immune regulation: Informing probiotic strategies to manage amphibian disease. PLoS ONE. 2014;9:e87101.
Article
PubMed
PubMed Central
Google Scholar
Colombo BM, Scalvenzi T, Benlamara S, Pollet N. Microbiota and mucosal immunity in amphibians. Front Immunol. 2015;6:111.
Article
PubMed
PubMed Central
Google Scholar
Prest TL, Kimball AK, Kueneman JG, McKenzie VJ. Host associated bacterial community succession during amphibian development. Mol Ecol. 2018;27:1992–2006.
Article
CAS
PubMed
Google Scholar
Belden LK, Harris RN. Infectious diseases in wildlife: the community ecology context. Front Ecol Environ. 2007;5:533–9.
Article
Google Scholar
Rebollar EA, Simonetti SJ, Shoemaker WR, Harris RN. Direct and indirect horizontal transmission of the antifungal probiotic bacterium Janthinobacterium lividum on green frog (Lithobates clamitans) tadpoles. Appl Environ Microbiol. 2016;82:2457–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walke JB, Harris RN, Reinert LK, Rollins-Smith LA, Woodhams DC. Social immunity in amphibians: evidence for vertical transmission of innate defenses. Biotropica. 2011;43:396–400.
Article
Google Scholar
Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, et al. Amphibian skin may select for rare environmental microbes. ISME J. 2014;8:2207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8:218–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crump ML. Amphibian reproductive ecology on the community level. Herpetol Communit Wildl Res Rep. 1982;13:21–36.
Google Scholar
Gomez-Mestre I, Pyron RA, Wiens JJ. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution. 2012;66:3687–700.
Article
PubMed
Google Scholar
Sheridan JA. Ecology and behavior of Polypedates leucomystax (Anura: Rhacophoridae) in Northeast Thailand. Herpetol Rev. 2008;39:165–9.
Google Scholar
Grosjean S, Delorme M, Dubois A, Ohler A. Evolution of reproduction in the Rhacophoridae (Amphibia, Anura). J Zool Syst Evol Res. 2008;46:169–76.
Article
Google Scholar
Kasuya E, Feng AS, Narins PM. Unusual mating behavior of Malaysian treefrogs, Polypedates leucomystax. Naturwissenschaften. 1991;78:362–5.
Article
Google Scholar
Pearlindah P, Kusumawati E, Wulandari DR, Listyorini D. Embryo development of tree frog Polypedates leucomystax at Campus of State University of Malang. J Trop Life Sci. 2012;2:99–102.
Article
Google Scholar
Yorke CD. Survival of Embryos and Larvae of the Frog Polypedates leucomystax in Malaysia. J Herpetol. 1983;235–41.
Gould J. Safety bubbles: a review of the proposed functions of froth nesting among anuran amphibians. Ecologies. 2021;2:112–37.
Article
Google Scholar
Fleming RI, Mackenzie CD, Cooper A, Kennedy MW. Foam nest components of the túngara frog: a cocktail of proteins conferring physical and biological resilience. Proc R Soc B Biol Sci. 2009;276:1787–95.
Article
CAS
Google Scholar
Meegaskumbura M, Senevirathne G, Biju SD, Garg S, Meegaskumbura S, Pethiyagoda R, et al. Patterns of reproductive-mode evolution in Old World tree frogs (Anura, Rhacophoridae). Zool Scr. 2015;44:509–22.
Article
Google Scholar
Kabisch K, Herrmann H-J, Klossek P, Luppa H, Brauer K. Foam gland and chemical analysis of the foam of Polypedates leucomystax (Gravenhorst 1829) (Anura: Rhacophoridae). Russ J Herpetol. 1998;5:10–4.
Google Scholar
Hissa DC, Bezerra WM, De FCDT, Ramos MV, Lopes JLDS, Beltramini LM, et al. Frog foam nest protein diversity and synthesis. J Exp Zool Part A Ecol Genet Physiol. 2016;325:425–33.
Article
CAS
Google Scholar
Sheridan JA. Reproductive variation corresponding to breeding season length in three tropical frog species. J Trop Ecol. 2009;25:583–92.
Article
Google Scholar
Grafe TU, Keller A. A Bornean amphibian hotspot: the lowland mixed dipterocarp rainforest at Ulu Temburong National Park, Brunei Darussalam. Salamandra. 2009;45:25–38.
Google Scholar
Huson DH, Steel M, El-Hadidi M, Mitra S, Peter S, Willmann M. A simple statistical test of taxonomic or functional homogeneity using replicated microbiome sequencing samples. J Biotechnol. 2017;250:45–50.
Article
CAS
PubMed
Google Scholar
Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates. Microbiome. 2019;7:1–14.
Article
Google Scholar
Banning JL, Weddle AL, Wahl GW, Simon MA, Lauer A, Walters RL, et al. Antifungal skin bacteria, embryonic survival, and communal nesting in four-toed salamanders, Hemidactylium scutatum. Oecologia. 2008;156:423–9.
Article
PubMed
Google Scholar
Hughey MC, Delia J, Belden LK. Diversity and stability of egg-bacterial assemblages: the role of paternal care in the glassfrog Hyalinobatrachium colymbiphyllum. Biotropica. 2017;49:792–802.
Article
Google Scholar
Carey C, Cohen N, Rollins-Smith L. Amphibian declines: an immunological perspective. Dev Comp Immunol. 1999;23:459–72.
Article
CAS
PubMed
Google Scholar
Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial vertical transmission during human pregnancy. Cell Host Microbe. 2017;21:561–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharp KH, Eam B, John Faulkner D, Haygood MG. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol. 2007;73:622–9.
Article
CAS
PubMed
Google Scholar
Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11:e1001631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol. 2020;28:28–45.
Article
CAS
PubMed
Google Scholar
Oke M, Ching RTY, Carter LG, Johnson KA, Liu H, McMahon SA, et al. Unusual chromophore and cross-links in ranasmurfin: a blue protein from the foam nests of a tropical frog. Angew Chem. 2008;120:7971.
Article
Google Scholar
Shigeri Y, Nakata M, Kubota HY, Tomari N, Yamamoto Y, Uegaki K, et al. Identification of novel proteins in foam nests of the Japanese Forest Green Tree Frog, Rhacophorus arboreus. Zoolog Sci. 2020;38.
Tinsley R, Stott L, York J, Everard A, Chapple S, Jackson J, et al. Acquired immunity protects against helminth infection in a natural host population: long-term field and laboratory evidence. Int J Parasitol. 2012;42:931–8.
Article
PubMed
Google Scholar
Raffel TR, Lloyd-Smith JO, Sessions SK, Hudson PJ, Rohr JR. Does the early frog catch the worm? Disentangling potential drivers of a parasite age-intensity relationship in tadpoles. Oecologia. 2011;165:1031–42.
Article
PubMed
Google Scholar
Knutie SA, Wilkinson CL, Kohl KD, Rohr JR. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun. 2017;8:1–8.
Article
CAS
Google Scholar
Kearns PJ, Fischer S, Fernández-Beaskoetxea S, Gabor CR, Bosch J, Bowen JL, et al. Fight fungi with fungi: antifungal properties of the amphibian mycobiome. Front Microbiol. 2017;8:2494.
Article
PubMed
PubMed Central
Google Scholar
Muletz Wolz CR, Yarwood SA, Campbell Grant EH, Fleischer RC, Lips KR. Effects of host species and environment on the skin microbiome of Plethodontid salamanders. J Anim Ecol. 2018;87:341–53.
Article
PubMed
Google Scholar
Gross R, Guzman CA, Sebaihia M, Martins dos Santos VAP, Pieper DH, Koebnik R, et al. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics. 2008;9:1–14.
Zipkin EF, DiRenzo GV, Ray JM, Rossman S, Lips KR. Tropical snake diversity collapses after widespread amphibian loss. Science. 2020;367:814–6.
Article
CAS
PubMed
Google Scholar
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363:1459–63.
Article
CAS
PubMed
Google Scholar
Fisher MC, Garner TWJ. Chytrid fungi and global amphibian declines. Nat Rev Microbiol. 2020;18:332–43.
Article
CAS
PubMed
Google Scholar
Campbell Grant EH, Miller DA, Muths E. A synthesis of evidence of drivers of amphibian declines. Herpetologica. 2020;000–000.
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, et al. Status and trends of amphibian declines and extinctions worldwide. Science. 2004;306:1783–6.
Article
CAS
PubMed
Google Scholar
Lips KR. Overview of chytrid emergence and impacts on amphibians. Philos Trans R Soc B Biol Sci. 2016;371:20150465.
Article
Google Scholar
Kielgast J, Lötters S. Forest weaverbird nests utilized by foam-nest frogs (Rhacophoridae: Chiromantis) in Central Africa. Salamandra. 2009;45:170–1.
Google Scholar
Méndez-Narváez J, Flechas SV, Amézquita A. Foam nests provide context-dependent thermal insulation to embryos of three leptodactylid frogs. Physiol Biochem Zool. 2015;88:246–53.
Article
PubMed
Google Scholar
Culp CE, Falkinham JO, Belden LK. Identification of the natural bacterial microflora on the skin of eastern newts, bullfrog tadpoles and redback salamanders. Herpetologica. 2007;63:66–71.
Article
Google Scholar
Lauer A, Simon MA, Banning JL, Lam BA, Harris RN. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2008;2:145–57.
Article
CAS
PubMed
Google Scholar
16S Illumina Amplicon Protocol. https://earthmicrobiome.org/protocols-and-standards/16s/. Accessed 5 April 2021.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Curr Protoc Microbiol. 2012;36:10–7.
Google Scholar
Kwon S, Park S, Lee B, Yoon S. In-depth analysis of interrelation between quality scores and real errors in Illumina reads. In: Conference proceedings of the annual international conference of the IEEE engineering in medicine and biology society. 2013. pp. 635–8.
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.
Article
CAS
PubMed
Google Scholar
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems. 2017;2.
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
Article
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
Article
PubMed
PubMed Central
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:1–18.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. R A Lang Environ Stat Comput. 2013:201.
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5–6. 2019. https://CRAN.R-project.org/package=vegan.
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput Biol. 2016;12:e1004957.
Article
PubMed
PubMed Central
Google Scholar
Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao C-H, Yu G, Cai P. ggVennDiagram: an intuitive, easy-to-use, and highly customizable R package to generate Venn diagram. Front Genet. 2021;12:1598.
Article
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
Article
Google Scholar