Ward MP, Ramer JC, Proudfoot J, Garner MM, Juan-Sallés C, Wu CC. Outbreak of Salmonellosis in a Zoologic Collection of Lorikeets and Lories (Trichoglossus, Lorius, and Eos spp.). Avian Dis. 2003;47(2):493–8.
Article
CAS
PubMed
Google Scholar
Shima AL, Osborn KG. An epornitic of Salmonella typhimurium in a collection of lories and lorikeets. J Zoo Wildl Med. 1989;20(3):373–6.
Google Scholar
Mackie JT, Black D, Prior H. Enteritis associated with adeno-virus-like particles in captive lorikeets. Aust Vet J. 2003;81(5):293–5.
Article
CAS
PubMed
Google Scholar
Ferrell ST, Tell L. Clostridium tertium infection in a rainbow lorikeet (Trichoglossus haematodus haematodus) with enteritis. J Avian Med Surg. 2001;15(3):204–8.
Article
Google Scholar
Karunakaran N, Nagarajan K, Prathiba A, Soundararajan C, Bharathi SV: Incidence, Diagnosis and Treatment of Clostridial Enteritis in Lories and Lorikeets. Intas Polivet 2018, 19:385+.
Melander RJ, Zurawski DV, Melander C. Narrow-spectrum antibacterial agents. Medchemcomm. 2018;9(1):12–21.
Article
CAS
PubMed
Google Scholar
Sze MA, Schloss PD. Leveraging existing 16S rRNA gene surveys to identify reproducible biomarkers in individuals with colorectal tumors. mBio 2018, 9(3):e00630–00618.
Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–44.
Article
PubMed
PubMed Central
Google Scholar
Wen C, Zheng Z, Shao T, Liu L, Xie Z, Le Chatelier E, He Z, Zhong W, Fan Y, Zhang L, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017;18(1):142.
Article
PubMed
PubMed Central
Google Scholar
Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med. 2012;4(137):137rv135.
Article
Google Scholar
Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017;356:j831.
Article
PubMed
Google Scholar
Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, McHardy Alice C, Dangl Jeffrey L, Knight R, Ley R, et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe. 2015;17(5):603–16.
Article
CAS
PubMed
Google Scholar
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waite DW, Deines P, Taylor MW. Gut Microbiome of the critically endangered New Zealand Parrot, the Kakapo (Strigops habroptilus). PLoS ONE. 2012;7(4):e35803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM, Tizard I, Suchodolski JS. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol. 2010;146:320–5.
Article
CAS
PubMed
Google Scholar
Ryu H, Grond K, Verheijen B, Elk M, Buehler DM, Santo Domingo JW. IIntestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in delaware bay. Appl Environ Microbiol. 2014;80(6):1838.
Article
PubMed
PubMed Central
Google Scholar
Hale VL, Tan CL, Niu K, Yang Y, Knight R, Zhang Q, Cui D, Amato KR. Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microb Ecol. 2018;75(2):515–27.
Article
PubMed
Google Scholar
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, Caporaso JG, Svanbäck R. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett. 2014;17(8):979–87.
Article
PubMed
PubMed Central
Google Scholar
Escallón C, Belden LK, Moore IT. The Cloacal microbiome changes with the breeding season in a wild bird. Integr Org Biol. 2019, 1(1).
Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc Biol Sci. 1839;2016(283):20161553.
Google Scholar
Amato KR, Metcalf JL, Song SJ, Hale VL, Clayton J, Ackermann G, Humphrey G, Niu K, Cui D, Zhao H, et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecol Conserv. 2016;7:225–37.
Article
Google Scholar
Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, Kilpatrick AM, Powers KE, Foster JT, McKenzie VJ. Deconstructing the bat skin microbiome: influences of the host and the environment. Front Microbiol. 2016;7:1753.
Article
PubMed
PubMed Central
Google Scholar
Kohl KD, Weiss RB, Cox J, Dale C, Denise Dearing M. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett. 2014;17(10):1238–46.
Article
PubMed
Google Scholar
Stumpf RM, Gomez A, Amato KR, Yeoman CJ, Polk JD, Wilson BA, Nelson KE, White BA, Leigh SR. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol Cons. 2016;199:56–66.
Article
Google Scholar
Clayton JB, Gomez A, Amato K, Knights D, Travis DA, Blekhman R, Knight R, Leigh S, Stumpf R, Wolf T, et al. The gut microbiome of nonhuman primates: lessons in ecology and evolution. Am J Primatol. 2018;80(6):e22867.
Article
PubMed
Google Scholar
West AG, Waite DW, Deines P, Bourne DG, Digby A, McKenzie VJ, Taylor MW. The microbiome in threatened species conservation. Biol Cons. 2019;229:85–98.
Article
Google Scholar
Keyburn AL, Yan X-X, Bannam TL, Van Immerseel F, Rood JI, Moore RJ. Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet Res. 2010;41(2):21–21.
Article
PubMed
Google Scholar
Shane S. The significance of campylobacter jejuni infection in poultry: A review. Avian Pathol. 1992;21(2):189–213.
Article
CAS
PubMed
Google Scholar
Pisani J, Speer B, Howerth EW, Clubb SL. Clostridial infections in psittacine birds. J Avian Med Surg. 1998;12(3):202–4.
Google Scholar
O’Toole D, Mills K, Ellis R, Farr R, Davis M. Clostridial enteritis in Red Lories (Eos Bounea). J Vet Diagn Invest. 1993;5(1):111–3.
Article
CAS
PubMed
Google Scholar
Guimarães MB, Torres LN, Mesquita RG, Ampuero F, Cunha MPV, Ferreira TSP, Ferreira AJP, Catão-Dias JL, Moreno AM, Knöbl T. Clostridium perfringens Type A Enteritis in Blue and Yellow Macaw (Ara ararauna). Avian Diseases 2014, 58(4):650–653, 654.
Asaoka Y, Yanai T, Hirayama H, Une Y, Saito E, Sakai H, Goryo M, Fukushi H, Masegi T. Fatal necrotic enteritis associated with Clostridium perfringens in wild crows (Corvus macrorhynchos). Avian Pathol. 2004;33(1):19–24.
Article
PubMed
Google Scholar
Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–8.
Article
CAS
PubMed
Google Scholar
Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med. 2018;10:464.
Article
Google Scholar
Ferreira RBR, Gill N, Willing BP, Antunes LCM, Russell SL, Croxen MA, Finlay BB. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS ONE. 2011;6(5):e20338–e20338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gray KL: After 14 lorikeets die, zoo hopes illness gone. In: Columbus Dispatch. 2012.
Uzal FA, Vidal JE, McClane BA, Gurjar AA. Clostridium Perfringens toxins involved in mammalian veterinary diseases. Open Toxinol J. 2010;2:24–42.
Article
CAS
Google Scholar
Liu K. Soybean trypsin inhibitor assay: further improvement of the standard method approved and reapproved by American Oil Chemists’ Society and American Association of Cereal Chemists International. J Am Oil Chem Soc. 2019;96(6):635–45.
Article
CAS
Google Scholar
Droual R, Farver TB, Bickford AA. Relationship of sex, age, and concurrent intestinal disease to necrotic enteritis in Turkeys. Avian Dis. 1995;39(3):599–605.
Article
CAS
PubMed
Google Scholar
Wobeser G, Rainnie DJ. Epizootic necrotic enteritis in wild geese. J Wildl Dis. 1987;23(3):376–85.
Article
CAS
PubMed
Google Scholar
Silva ROS, Lobato FCF. Clostridium perfringens: a review of enteric diseases in dogs, cats and wild animals. Anaerobe. 2015;33:14–7.
Article
PubMed
Google Scholar
Shivaprasad HL, Uzal F, Kokka R, Fisher DJ, McClane BA, Songer AG. Ulcerative Enteritis-Like Disease Associated with Clostridium perfringens Type A in Bobwhite Quail (Colinus virginianus). Avian Dis. 2008;52(4):635–40.
Article
CAS
PubMed
Google Scholar
McOrist S, Reece RL. Clostridial enteritis in free-living lorikeets (Trichoglossus spp.). Avian Pathol. 1992;21(3):503–7.
Article
CAS
PubMed
Google Scholar
Rupiper DJ. Hemorrhagic enteritis in a group of great-billed parrots (Tanygnathus megalorynchos). J Assoc Avian Veterinar. 1993;7(4):209–11.
Google Scholar
Grau-Roma L, Navarro M, Blatter S, Wenker C, Kittl S, Uzal FA, Posthaus H. Clostridium perfringens–associated necrotic enteritis-like disease in coconut lorikeets (Trichoglossus haematodus). Vet Pathol. 2021;58(2):423–7.
Article
CAS
PubMed
Google Scholar
Ritchie BW, Harrison GJ, Harrison LR. Avian medicine: principles and application. Lake Worth: Wingers Publishing, Inc.; 1994.
Google Scholar
Bildfell RJ, Eltzroth EK, Songer JG. Enteritis as a cause of mortality in the western bluebird (Sialia mexicana). Avian Dis. 2001;45(3):760–3.
Article
CAS
PubMed
Google Scholar
Góngora E, Elliott KH, Whyte L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci Rep. 2021;11(1):1200.
Article
PubMed
PubMed Central
Google Scholar
Drovetski SV, O’Mahoney MJV, Matterson KO, Schmidt BK, Graves GR. Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore. Animal Microbiome. 2019;1(1):2.
Article
PubMed
PubMed Central
Google Scholar
Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47(5):659–68.
Article
Google Scholar
Le Roy CI, Woodward MJ, Ellis RJ, La Ragione RM, Claus SP. Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Vet Res. 2019;15(1):37.
Article
PubMed
PubMed Central
Google Scholar
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome medicine. 2016;8(1):39–39.
Article
PubMed
PubMed Central
Google Scholar
Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA Ssequencing. PLOS Biol. 2008;6(11):e280.
Article
PubMed
PubMed Central
Google Scholar
Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci. 2011;108(1):4554–61.
Article
CAS
PubMed
Google Scholar
Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Investig. 2014;124(10):4212–8.
Article
PubMed
PubMed Central
Google Scholar
Lu J, Hofacre C, Smith F, Lee MD. Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal. 2008;2(5):669–76.
Article
CAS
PubMed
Google Scholar
Uzal FA, Navarro MA, Li J, Freedman JC, Shrestha A, McClane BA. Comparative pathogenesis of enteric clostridial infections in humans and animals. Anaerobe. 2018;53:11–20.
Article
PubMed
PubMed Central
Google Scholar
Cooper KK, Songer JG, Uzal FA. Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest. 2013;25(3):314–27.
Article
PubMed
Google Scholar
Pattison M, McMullin P, Bradbury J, Alexander D (eds.). Poultry diseases (Chapter 18, Clostridia), 6th edn: Saunders Ltd.; 2007.
Altman RB, Clubb SL, Dorrestein GM, Quesenberry K (eds.). Avian medicine and surgery. Saunders; 1997.
Pizarro M, Höfle U, Rodríguez-Bertos A, González-Huecas M, Castaño M. Ulcerative enteritis (Quail Disease) in lories. Avian Dis. 2005;49(4):606–8.
Article
PubMed
Google Scholar
Stanley D, Keyburn AL, Denman SE, Moore RJ. Changes in the caecal microflora of chickens following Clostridium perfringens challenge to induce necrotic enteritis. Vet Microbiol. 2012;159(1):155–62.
Article
PubMed
Google Scholar
Lin Y, Xu S, Zeng D, Ni X, Zhou M, Zeng Y, Wang H, Zhou Y, Zhu H, Pan K, et al. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE. 2017;12(8):e0182426.
Article
PubMed
PubMed Central
Google Scholar
Antonissen G, Eeckhaut V, Van Driessche K, Onrust L, Haesebrouck F, Ducatelle R, Moore RJ, Van Immerseel F. Microbial shifts associated with necrotic enteritis. Avian Pathol. 2016;45(3):308–12.
Article
CAS
PubMed
Google Scholar
Fasina YO, Newman MM, Stough JM, Liles MR. Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poult Sci. 2016;95(2):247–60.
Article
CAS
PubMed
Google Scholar
Hadley TL. Disorders of the psittacine gastrointestinal tract. Vet Clin N A Exotic Animal Pract. 2005;8(2):329–49.
Article
Google Scholar
Wilson GH, Ritchie BW, Greenacre CB, Fontenot D. Clostridium: passenger or pathogen? In: Annual conference of the association of avian veterinarians: 1999, 251–253.
Boujon P, Henzi M, Penseyres JH, Belloy L. Enterotoxaemia involving β2-toxigenic Clostridium perfringens in a white stork (Ciconia ciconia). Vet Rec. 2005;156(23):746–7.
Article
CAS
PubMed
Google Scholar
Garmory HS, Chanter N, French NP, Bueschel D, Songer JG, Titball RW. Occurrence of Clostridium perfringens beta2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol Infect. 2000;124(1):61–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uzal FA, Songer JG, Prescott JF, Popoff MR, editors. Clostridial diseases of animals. New York: Wiley; 2016.
Google Scholar
Silva ROS, Junior FCF, Marques MVR, Junior CAO, Martins NRD, Lobato FCF. Genotyping and antimicrobial susceptibility of Clostridium perfringens isolated from Tinamidae, Cracidae and Ramphastidae species in Brazil. Ciência Rural. 2014;44(3):486–91.
Article
Google Scholar
Silva ROS, Ribeiro MG, Palhares MS, Borges AS, Maranhão RPA, Silva MX, Lucas TM, Olivo G, Lobato FCF. Detection of A/B toxin and isolation of Clostridium difficile and Clostridium perfringens from foals. Equine Vet J. 2013;45(6):671–5.
Article
CAS
PubMed
Google Scholar
Silva ROS, Santos RLR, Pires PS, Pereira LC, Pereira ST, Duarte MC, de Assis RA, Lobato FCF. Detection of toxins A/B and isolation of Clostridium difficile and Clostridium perfringens from dogs in Minas Gerais, Brazil. Braz J Microbiol. 2013;44(1):133–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schotte U, Truyen U, Neubauer H. Significance of β2-toxigenic Clostridium perfringens infections in animals and their predisposing factors—a review. J Vet Med Ser B. 2004;51(10):423–6.
Article
CAS
Google Scholar
Crespo R, Fisher DJ, Shivaprasad HL, Fernández-Miyakawa ME, Uzal FA. Toxinotypes of clostridium perfringens isolated from sick and healthy avian species. J Vet Diagn Invest. 2007;19(3):329–33.
Article
PubMed
Google Scholar
Berto G, Agnoletti F, Drigo I, Tonon E, Vascellari M, Fracas V, Bano L. Clostridial co-infection episodes in commercial laying hens. Avian Pathol. 2015;44(3):200–3.
Article
CAS
PubMed
Google Scholar
Forero AJ, Muñoz M, Camargo M, Soto-De León SC, Ríos-Chaparro DI, Birchenall C, Pinilla D, Pardo JM, Josa DF, Patarroyo MA, et al. High frequency of toxigenic Clostridium difficile and Clostridium perfringens coinfection among diarrheic patients at health care facility-onset (HCFO) and community-onset (CO) centers in Bogotá, Colombia. Gut Pathogens. 2019;11(1):27.
Article
PubMed
PubMed Central
Google Scholar
Uzal FA, Diab SS, Blanchard P, Moore J, Anthenill L, Shahriar F, Garcia JP, Songer JG. Clostridium perfringens type C and Clostridium difficile co-infection in foals. Vet Microbiol. 2012;156(3):395–402.
Article
CAS
PubMed
Google Scholar
Diniz AN, Silva ROS, Oliveira Junior CA, Pierezan F, Lobato FCF. Clostridium perfringens type A netF and netE positive and Clostridium difficile co-infection in two adult dogs. Anaerobe. 2016;38:94–6.
Article
PubMed
PubMed Central
Google Scholar
Morrissey EM, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, Koch BJ, Liu CM, Hayer M, McHugh TA, et al. Phylogenetic organization of bacterial activity. ISME J. 2016;10(9):2336–40.
Article
PubMed
PubMed Central
Google Scholar
Hermans PG, Morgan KL. Prevalence and associated risk factors of necrotic enteritis on broiler farms in the United Kingdom; a cross-sectional survey. Avian Pathol. 2007;36(1):43–51.
Article
CAS
PubMed
Google Scholar
Kaldhusdal M, Skjerve E. Association between cereal contents in the diet and incidence of necrotic enteritis in broiler chickens in Norway. Prev Vet Med. 1996;28(1):1–16.
Article
Google Scholar
Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TTN, Sukumaran AT. Avian pathogenic escherichia coli and clostridium perfringens: challenges in no antibiotics ever broiler production and potential solutions. Microorganisms. 2020;8(10):1533.
Article
CAS
PubMed Central
Google Scholar
Gerlach H. Bacteria. In: Ritchie B, Harrison G, Harrison L, editors. Avian medicine: principles and applications. Lake Worth: Wingers Publishing, Inc.; 1994. p. 949–83.
Google Scholar
Gibert M, Jolivet-Renaud C, Popoff MR. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. 1997;203(1):65–73.
Article
CAS
PubMed
Google Scholar
Palliyeguru MWCD, Rose SP, Mackenzie AM. Effect of trypsin inhibitor activity in soya bean on growth performance, protein digestibility and incidence of sub-clinical necrotic enteritis in broiler chicken flocks. Br Poult Sci. 2011;52(3):359–67.
Article
CAS
PubMed
Google Scholar
Bradbury JH, Hammer B, Tue N, Anders M, Millar JS. Protein quantity and quality and trypsin inhibitor content of sweet potato cultivars from the highlands of Papua New Guinea. J Agric Food Chem. 1985;33(2):281–5.
Article
CAS
Google Scholar
Zhang Z, Corke H. Trypsin inhibitor activity in vegetative tissue of sweet potato plants and its response to heat treatment. J Sci Food Agric. 2001;81(14):1358–63.
Article
CAS
Google Scholar
Senanayake SA, Ranaweera KKDS, Gunaratne A, Bamunuarachchi A. Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomea batatas (L) Lam) in Sri Lanka. Food Sci Nutr. 2013;1(4):284–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lacey JA, Stanley D, Keyburn AL, Ford M, Chen H, Johanesen P, Lyras D, Moore RJ. Clostridium perfringens-mediated necrotic enteritis is not influenced by the pre-existing microbiota but is promoted by large changes in the post-challenge microbiota. Vet Microbiol. 2018;227:119–26.
Article
CAS
PubMed
Google Scholar
Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7(1):141–141.
Article
PubMed
PubMed Central
Google Scholar
Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190(7):2505–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Austin MC, Hallstrand TS, Hoogestraat DR, Balmforth G, Stephens K, Butler-Wu S, Yeung CCS. Rhodococcus fascians infection after haematopoietic cell transplantation: not just a plant pathogen? JMM Case Rep. 2016;3(2):e005025–e005025.
Article
PubMed
PubMed Central
Google Scholar
Glünder G, Siegmann O. Iccurrence of aeromonas hydrophila in wild birds. Avian Pathol. 1989;18(4):685–95.
Article
PubMed
Google Scholar
França M, Walker RL, Kokka R, Shivaprasad HL. Aeromonas species associated with necrotizing enteritis and septicemia in an adult Male Ostrich (Struthio camelus). Avian Dis. 2009;53(2):310–6.
Article
PubMed
Google Scholar
Brook I, Walker RI. Pathogenicity of Clostridium species with other bacteria in mixed infections. J Infect. 1986;13(3):245–53.
Article
CAS
PubMed
Google Scholar
Keyburn AL, Sheedy SA, Ford ME, Williamson MM, Awad MM, Rood JI, Moore RJ. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect Immun. 2006;74(11):6496–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brzęk P, Ciminari ME, Kohl KD, Lessner K, Karasov WH, Caviedes-Vidal E. Effect of age and diet composition on activity of pancreatic enzymes in birds. J Comp Physiol B. 2013;183(5):685–97.
Article
PubMed
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
AACC: AACC Method 22–40: Measurement of trypsin inhibitor activity of soy products—spectrophotometric method, 11th edn. St. Paul, MN: AACC International; 1999.
Preacher KJ: Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence; 2001.
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663–27663.
PubMed
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Article
Google Scholar
Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol). 1996;58(1):267–88.
Google Scholar
Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat 2004, 32(2):407–499, 493.