Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C, Jordano P. Missing and forbidden links in mutualistic networks. Proc Biol Sci. 2011;278:725–32.
PubMed
Google Scholar
Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, et al. Parasites in food webs: the ultimate missing links. Ecol Lett. 2008;11:533–46.
Article
PubMed
PubMed Central
Google Scholar
Levine SH. Competitive interactions in ecosystems. Am Nat. 1976;110:903–10.
Article
Google Scholar
Holt RD. Predation, apparent competition, and the structure of prey communities. Theor Popul Biol. 1977;12:197–229.
Article
CAS
PubMed
Google Scholar
Miller TE, TerHorst CP. Indirect effects in communities and ecosystems. In: Gibson D, (ed). Oxford Bibliogr Ecol. New York: Oxford University Press; 2012.
Michalet R, Chen SY, An LZ, Wang XT, Wang YX, Guo P, et al. Communities: Are they groups of hidden interactions? J Veg Sci. 2015;26:207–18.
Article
Google Scholar
Blanc LA, Walters JR. Cavity excavation and enlargement as mechanisms for indirect interactions in an avian community. Ecology. 2008;89:506–14.
Article
PubMed
Google Scholar
Irwin RE. The consequences of direct versus indirect species interactions to selection on traits: Pollination and nectar robbing in Ipomopsis aggregata. Am Nat. 2006;167:315–28.
Article
PubMed
Google Scholar
Poelman EH, Gols R, Snoeren TAL, Muru D, Smid HM, Dicke M. Indirect plant-mediated interactions among parasitoid larvae. Ecol Lett. 2011;14:670–6.
Article
PubMed
Google Scholar
Wootton JT. The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst. 1994;25:443–66.
Article
Google Scholar
Strauss SY. Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol Evol. 1991;6:206–10.
Article
CAS
Google Scholar
Bascompte J. Mutualistic networks. Front Ecol Environ. 2009;7:429–36.
Article
Google Scholar
Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett. 2008;11:564–75.
Article
PubMed
Google Scholar
Carnicer J, Jordano P, Melian CJ. The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology. 2009;90:1958–70.
Article
PubMed
Google Scholar
Allesina S, Tang S. Stability criteria for complex ecosystems. Nature. 2012;483:205–8.
Article
CAS
PubMed
Google Scholar
Bascompte J, Stouffer DB. The assembly and disassembly of ecological networks. Philos Trans R Soc B-Biol Sci. 2009;364:1781–7.
Article
Google Scholar
Okuyama T, Holland JN. Network structural properties mediate the stability of mutualistic communities. Ecol Lett. 2008;11:208–16.
Article
PubMed
Google Scholar
Mello MAR, Marquitti FMD, Guimaraes PR, Kalko EKV, Jordano P, de Aguiar MAM. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks. Oecologia. 2011;167:131–40.
Article
PubMed
Google Scholar
Bascompte J, Jordano P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst. 2007;38:567–93.
Article
Google Scholar
Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol. 2011;49:291–315.
Article
CAS
PubMed
Google Scholar
Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182:314–30.
Article
CAS
PubMed
Google Scholar
Andrews JH. Biological control in the phyllosphere. Annu Rev Phytopathol. 1992;30:603–35.
Article
CAS
PubMed
Google Scholar
Lindow SE. Phyllosphere microbiology: a perspective. In: Bailey M, Lilley A, Timms-Wilson T, Spencer-Phillips P, editors. Microb Ecol Aer Plant Surfaces. Oxfordshire: CAB International; 2006. p. 1–20.
Google Scholar
Kohn LM. Mechanisms of fungal speciation. Annu Rev Phytopathol. 2005;43:279–308.
Article
CAS
PubMed
Google Scholar
Persoh D. Plant-associated fungal communities in the light of meta’omics. Fungal Divers. 2015;75:1–25.
Article
Google Scholar
Roper M, Pepper RE, Brenner MP, Pringle A. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc Natl Acad Sci USA. 2008;105:20583–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galante TE, Horton TR, Swaney DP. 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia. 2011;103:1175–83.
Article
PubMed
Google Scholar
Chen JQ, Franklin JF, Spies TA. Contrasting microclimates among clear-cut, edge, and interior of old-growth douglas-fir forest. Agric For Meteorol. 1993;63:219–37.
Article
Google Scholar
Milleron M, de Heredia U, Lorenzo Z, Perea R, Dounavi A, Alonso J, et al. Effect of canopy closure on pollen dispersal in a wind-pollinated species (Fagus sylvatica L.). Plant Ecol. 2012;213:1715–28.
Article
Google Scholar
Epps MJ, Arnold AE. Diversity, abundance and community network structure in sporocarp-associated beetle communities of the central Appalachian Mountains. Mycologia. 2010;102:785–802.
Article
PubMed
Google Scholar
Hilario RR, Ferrari SF. Feeding ecology of a group of buffy-headed marmosets (Callithrix flaviceps): fungi as a preferred resource. Am J Primatol. 2010;72:515–21.
PubMed
Google Scholar
Johnson CN. Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol. 1996;11:503–7.
Article
CAS
PubMed
Google Scholar
Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. Ecosystem services provided by bats. Ann N Y Acad Sci. 2011;1223:1–38.
Shilton LA, Altringham JD, Compton SG, Whittaker RJ. Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc R Soc B-Biol Sci. 1999;266:219–23.
Article
Google Scholar
Dumont ER. Bats and fruit: an ecomorphological approach. In: Kunz TH, Fenton MB, editors. Bat Ecol. Chicago: The University of Chicago Press; 2003. p. 398–429.
Google Scholar
Medellin RA, Gaona O. Seed dispersal by bats and birds in forest and disturbed habitats of Chiapas. Mexico Biotropica. 1999;31:478–85.
Article
Google Scholar
Cardoso DaSilva JM, Uhl C, Murray G. Plant succession, landscape management, and the ecology of frugivorous birds in abandoned Amazonian pastures. Conserv Biol. 1996;10:491–503.
Article
Google Scholar
Tiscornia S, Ruiz R, Bettucci L. Fungal endophytes from vegetative and reproductive tissues of Eugenia uruguayensis in Uruguay. Sydowia. 2012;64:313–28.
Google Scholar
Martinson EO, Herre EA, Machado CA, Arnold AE. Culture-free survey reveals diverse and distinctive fungal communities associated with seveloping figs (Ficus spp.) in Panama. Microb Ecol. 2012;64:1073–84.
Article
PubMed
Google Scholar
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque C, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109:1–6.
Google Scholar
Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R. Diversity and phylogenetic affinities of foliar fungal endophytes in lobolly pine inferred by culturing and environmental PCR. Mycologia. 2007;99:185–206.
Article
CAS
PubMed
Google Scholar
Martinson EO, Herre EA, Machado CA, Arnold AE. Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (Ficus spp.) in Panama. Microb Ecol. 2012;64:1073–84.
Article
PubMed
Google Scholar
Unterseher M, Persoh D, Schnittler M. Leaf-inhabiting endophytic fungi of European Beech (Fagus sylvatica L.) co-occur in leaf litter but are rare on decaying wood of the same host. Fungal Divers. 2013;60:43–54.
Article
Google Scholar
Hiergeist A, Gläsner J, Reischl U, Gessner A. Analyses of intestinal microbiota: culture versus sequencing. ILAR J. 2015;56:228–40.
Article
CAS
PubMed
Google Scholar
Ward DM, Weller R, Bateson MM. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Lett Nat. 1990;345:183–7.
Article
Google Scholar
Stefani FOP, Bell TH, Marchand C, de la Providencia IE, El Yassimi A, St-Arnaud M, et al. Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. Hu S, editor. PLoS ONE. 2015;10:e0128272.
Bertolino S, Vizzini A, Wauters LA, Tosi G. Consumption of hypogeous and epigeous fungi by the red squirrel (Sciurus vulgaris) in subalpine conifer forests. For Ecol Manag. 2004;202:227–33.
Article
Google Scholar
Spain AM, Elshahed MS, Najar FZ, Krumholz LR. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism. PeerJ. 2015;3:e1259.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao M, Zhang D, Su X, Duan S, Wan J, Yuan W, et al. An Integrated Metagenomics/ Metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Sci Rep. 2015;5.
Kirschner R, Hsu T, Tuan NN, Chen C-L, Huang S-L. Characterization of fungal and bacterial components in gut/fecal microbiome. Curr Drug Metab. 2015;16:272–83.
Article
CAS
PubMed
Google Scholar
Sørensen J, Nicolaisen MH, Ron E, Simonet P. Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil. 2009;321:483–512.
Article
CAS
Google Scholar
Dostál P. Post-dispersal seed mortality of exotic and native species: Effects of fungal pathogens and seed predators. Basic Appl Ecol. 2010;11:676–84.
Article
Google Scholar
Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den BPJ, Gradwell GR, editors. Dyn Popul. Wageningen: Pudoc; 1971. p. 298–312.
Google Scholar
Janzen DH. Seed predation by animals. Annu Rev Ecol Syst. 1971;2:465–92.
Article
Google Scholar
Gillett JB. Pest pressure, an underestimated factor in evolution. Syst Assoc Publ Number. 1962;4:37–46.
Google Scholar
Morrison DW. Foraging and day-roosting dynamics of canopy fruit bats in Panama. J Mammal. 1980;61:20–9.
Article
Google Scholar
Gilbert GS. Dimensions of plant disease in tropical forests. In: Burslem D, Pinard M, Hartley S, editors. Biot Interact Trop their Role Maint Species Divers. Cambridge: Cambridge; 2005. p. 141–64.
Chapter
Google Scholar
Haelewaters D, Gorczak M, Kaishian P, De Kesel A, Blackwell M. Laboulbeniomycetes, enigmatic fungi with a turbulent taxonomic history. In: Zaragoza Ó, Casadevall ABT-E of M (eds). Encycl Mycol Vol 1. Oxford: Elsevier; 2021. p. 263–83.
Blackwell M. Minute mycological mysteries: the influence of arthropods on the lives of fungi. Mycologia. 1994;86:1–17.
Article
Google Scholar
Machado CA, Robbins N, Gilbert MTP, Herre EA. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Natl Acad Sci USA. 2005;102:6558–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cappelli A, Ulissi U, Valzano M, Damiani C, Epis S, Gabrielli MG, et al. A Wickerhamomyces anomalus killer strain in the malaria vector Anopheles stephensi. PLoS ONE. 2014;9:95988.
Article
CAS
Google Scholar
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and functions of yeast communities associated with insects. Microorg. 2021;9:1552.
Article
CAS
Google Scholar
Kunčič MK, Kogej T, Drobne D, Gunde-Cimerman N. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol. 2010;76:329–37.
Article
CAS
Google Scholar
Amend A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog. 2014;10:e1004277.
Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–8.
Article
CAS
PubMed
Google Scholar
Lafond M, Bouza B, Eyrichine S, Rouffineau F, Saulnier L, Giardina T, et al. In vitro gastrointestinal digestion study of two wheat cultivars and evaluation of xylanase supplementation. J Anim Sci Biotechnol. 2015;6:5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco M del M, et al. Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A. 2008;105:12932–7.
Yurkov A, Krüger D, Begerow D, Arnold N, Tarkka MT. Basidiomycetous yeasts from boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microb Ecol. 2012;63:295–303.
Article
PubMed
Google Scholar
Petrik S, Marova I, Haronikova A, Kostovova I, Breierova E. Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production—a comparative screening study. Ann Microbiol. 2013;63:1537–51.
Article
CAS
Google Scholar
Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP. Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology. 2008;77:1–6.
Article
CAS
Google Scholar
de Melo PGV, Beux M, Pagnoncelli MGB, Soccol VT, Rodrigues C, Soccol CR. Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Lett Appl Microbiol. 2016;62:96–101.
Article
CAS
Google Scholar
Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv. 2015;33:873–87.
Article
PubMed
Google Scholar
Kandasamy D, Gershenzon J, Hammerbacher A. Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J Chem Ecol. 2016;42:952–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehead SR, Poveda K. Herbivore-induced changes in fruit-frugivore interactions. J Ecol. 2011;99:964–9.
Article
Google Scholar
Bennett JW, Hung R, Lee S, Padhi S. 18 Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents Bt - fungal Associations. In: Hock B, editor. Mycota IX Fungal Assoc. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 373–93.
Bloss J, Acree TE, Bloss JM, Hood WR, Kunz TH. Potential use of chemical cues for colony-mate recognition in the big brown bat. Eptesicus fuscus J Chem Ecol. 2002;28:819–34.
Article
CAS
PubMed
Google Scholar
Bartelt RJ, Wicklow DT. Volatiles from Fusarium verticillioides (Sacc.) Nirenb. and their attractiveness to nitidulid beetles. J Agric Food Chem. 1999;47:2447–54.
Rangel LI, Hamilton O, de Jonge R, Bolton MD. Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. Plant J. 2021;108:632–45.
Article
CAS
PubMed
Google Scholar
Colgan W, Claridge AW. Mycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals. Mycol Res. 2002;106:314–20.
Article
Google Scholar
Charalambidou I, Santamaria L, Langevoord O. Effect of ingestion by five avian dispersers on the retention time, retrieval and germination of Ruppia maritima seeds. Funct Ecol. 2003;17:747–53.
Article
Google Scholar
Vega FE, Simpkins A, Aime MC, Posada F, Peterson SW, Rehner SA, et al. Fungal endophyte diversity in coffee plants from Colombia, Hawai’i Mexico and Puerto Rico. Fungal Ecol. 2010;3:122–38.
Article
Google Scholar
Paul NC, Lee HB, Lee JH, Shin KS, Ryu TH, Kwon HR, et al. Endophytic fungi from Lycium chinense Mill and characterization of two new korean records of Colletotrichum. Int J Mol Sci. 2014;15:15272–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taylor MW, Tsai P, Anfang N, Ross HA, Goddard MR. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ Microbiol. 2014;16:2848–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooke AP. Tent selection, roosting ecology and social organization of the tent-making bat, Ectophylla alba, in Costa Rica. J Zool. 1990;221:11–9.
Article
Google Scholar
Reid FA. A field guide to the mammals of Central America and southeast Mexico. New York: Oxford University Press; 1997.
Google Scholar
Rodríguez-Herrera B, Pineda W. The IUCN Red List of Threatened Species 2015. 2015.
Rodríguez-Herrera B, Medellín RA, Gamba-Rios M. Roosting requirements of white tent-making bat Ectophylla alba (Chiroptera: Phyllostomidae). Acta Chiropterologica. 2008;10:89–95.
Article
Google Scholar
De la Llata Quiroga E, Ruedas LA, Mora JM. A comparison of fruit removal in Ficus colubrinae between birds and Ectophylla alba (Chiroptera: Phyllostomidae) in a Costa Rican rain forest. Stud Neotrop Fauna Environ. 2021;1–8.
Gazis R, Chaverri P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol. 2010;3:240–54.
Article
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: White TJ, editor. PCR Protoc A Guid to Methods Appl. San Diego: Academic Press; 1990. p. 315–22.
Google Scholar
Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–2.
Callahan BJ, McMurdie P, Rosen M, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
Article
PubMed
PubMed Central
Google Scholar
Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013. p. 5271–7.
Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352–359.
Liu C, Cui Y, Li X, Yao M. microeco : an R package for data mining in microbial community ecology. FEMS Microbiol Ecol. 2021;97.
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol Evol. 2019;10:389–400.
Article
Google Scholar
Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62:142–60.
Article
CAS
PubMed
Google Scholar
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
Article
PubMed
PubMed Central
Google Scholar
Royle JA, Nichols JD. Estimating abundance from repeated presence–absence data or point counts. Ecology. 2003;84:777–90.
Article
Google Scholar
Porter TM, Hajibabaei M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol. 2018;27:313–38.
Article
PubMed
Google Scholar
Nguyen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol. 2015;205:1389–93.
Article
CAS
PubMed
Google Scholar
McLaren MR, Willis AD, Callahan BJ. Consistent and correctable bias in metagenomic sequencing experiments. Turnbaugh P, Garrett WS, Turnbaugh P, Quince C, Gibbons S, editors. Elife. 2019;8:e46923.
Hu Y-J, Lane A, Satten GA. A rarefaction-based extension of the LDM for testing presence–absence associations in the microbiome. Bioinformatics. 2021;37:1652–7.
Article
CAS
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. Public Library of Science; 2014;10:e1003531.
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
Article
Google Scholar
Gazis R, Chaverri P. Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: Is this evidence of protective mutualism? Fungal Ecol. 2015;17:18–29.
Article
Google Scholar
Rodriguez RJ, Jr. JFW, Arnold AE, Redman RS, White Jr JF, Arnold AE, et al. Fungal endophytes: Diversity and functional roles: Tansley review. New Phytol. 2009;182:314–30.
Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L. Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol. 2010;3:338–46.
Article
Google Scholar