Pilla R, Suchodolski JS. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front Vet Sci. 2019. https://doi.org/10.3389/fvets.2019.00498.
Article
PubMed
PubMed Central
Google Scholar
Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801. https://doi.org/10.1038/nri3535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bentley AM, Otto CM, Shofer FS. Comparison of dogs with septic peritonitis: 1988–1993 versus 1999–2003. J Vet Emerg Crit Care. 2007;17(4):391–8. https://doi.org/10.1111/j.1476-4431.2007.00251.x.
Article
Google Scholar
Dayer T, Howard J, Spreng D. Septic peritonitis from pyloric and non-pyloric gastrointestinal perforation: prognostic factors in 44 dogs and 11 cats. J Small Anim Pract. 2013;54(12):625–9. https://doi.org/10.1111/jsap.12151.
Article
CAS
PubMed
Google Scholar
Coté E. Pneumonia. In Small animal critical care medicine. 2nd edition. Edited by Silverstein DC, Hopper K. St. Louis, MO: Elsevier Saunders; 2015: 120–6
Lappin MR, Blondeau J, Boothe D, Breitschwerdt EB, Guardabassi L, Lloyd DH, Papich MG, Rankin SC, Sykes JE, Turnidge J, Weese JS. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: antimicrobial guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med. 2017;31(2):279–94. https://doi.org/10.1111/jvim.14627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilmis B, Le Monnier A, Zahar JR. Gut microbiota, antibiotic therapy and antimicrobial resistance: a narrative review. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8020269.
Article
PubMed
PubMed Central
Google Scholar
Trott DJ, Filippich LJ, Bensink JC, Downs MT, McKenzie SE, Townsend KM, Moss SM, Chin JJ. Canine model for investigating the impact of oral enrofloxacin on commensal coliforms and colonization with multidrug-resistant Escherichia coli. J Med Microbiol. 2004;53(Pt 5):439–43. https://doi.org/10.1099/jmm.0.05473-0.
Article
CAS
PubMed
Google Scholar
Grønvold AM, L’Abée-Lund TM, Sørum H, Skancke E, Yannarell AC, Mackie RI. Changes in fecal microbiota of healthy dogs administered amoxicillin. FEMS Microbiol Ecol. 2010;71(2):313–26. https://doi.org/10.1111/j.1574-6941.2009.00808.x.
Article
CAS
PubMed
Google Scholar
Lawrence M, Kukanich K, Kukanich B, Heinrich E, Coetzee JF, Grauer G, Narayanan S. Effect of cefovecin on the fecal flora of healthy dogs. Vet J. 2013;198(1):259–66. https://doi.org/10.1016/j.tvjl.2013.04.010.
Article
CAS
PubMed
Google Scholar
Ogeer-Gyles J, Mathews KA, Sears W, Prescott JF, Weese JS, Boerlin P. Development of antimicrobial drug resistance in rectal Escherichia coli isolates from dogs hospitalized in an intensive care unit. J Am Vet Med Assoc. 2006;229(5):694–9. https://doi.org/10.2460/javma.229.5.694.
Article
CAS
PubMed
Google Scholar
Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905–14. https://doi.org/10.1093/cid/cis580.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prescott HC, Dickson RP, Rogers MA, Langa KM, Iwashyna TJ. Hospitalization type and subsequent severe sepsis. Am J Respir Crit Care Med. 2015;192(5):581–8. https://doi.org/10.1164/rccm.201503-0483OC.
Article
PubMed
PubMed Central
Google Scholar
Zhu H, Liu Y, Li S, Jin Y, Zhao L, Zhao F, Feng J, Yan W, Wei Y. Altered gut microbiota after traumatic splenectomy is associated with endotoxemia. Emerg Microbes Infect. 2018;7(1):197. https://doi.org/10.1038/s41426-018-0202-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–12. https://doi.org/10.1016/j.ccc.2015.11.004.
Article
PubMed
PubMed Central
Google Scholar
Deng P, Swanson KS. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr. 2015. https://doi.org/10.1017/s0007114514002943.
Article
PubMed
Google Scholar
Vázquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol. 2016. https://doi.org/10.1038/nmicrobiol.2016.177.
Article
PubMed
Google Scholar
Suchodolski JS, Dowd SE, Wilke V, Steiner JM, Jergens AE. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS ONE. 2012;7(6): e39333. https://doi.org/10.1371/journal.pone.0039333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isaiah A, Parambeth JC, Steiner JM, Lidbury JA, Suchodolski JS. The fecal microbiome of dogs with exocrine pancreatic insufficiency. Anaerobe. 2017. https://doi.org/10.1016/j.anaerobe.2017.02.010.
Article
PubMed
Google Scholar
Omori M, Maeda S, Igarashi H, Ohno K, Sakai K, Yonezawa T, Horigome A, Odamaki T, Matsuki N. Fecal microbiome in dogs with inflammatory bowel disease and intestinal lymphoma. J Vet Med Sci. 2017;79(11):1840–7. https://doi.org/10.1292/jvms.17-0045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kilian E, Suchodolski JS, Hartmann K, Mueller RS, Wess G, Unterer S. Long-term effects of canine parvovirus infection in dogs. PLoS ONE. 2018;13(3): e0192198. https://doi.org/10.1371/journal.pone.0192198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI. Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. Microb Ecol. 2002;44(2):186–97. https://doi.org/10.1007/s00248-002-0001-z.
Article
CAS
PubMed
Google Scholar
Middelbos IS, Vester Boler BM, Qu A, White BA, Swanson KS, Fahey GC Jr. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS ONE. 2010;5(3): e9768. https://doi.org/10.1371/journal.pone.0009768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foster ML, Dowd SE, Stephenson C, Steiner JM, Suchodolski JS. Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs. Vet Med Int. 2013. https://doi.org/10.1155/2013/658373.
Article
PubMed
PubMed Central
Google Scholar
Suchodolski JS, Camacho J, Steiner JM. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol. 2008;66(3):567–78. https://doi.org/10.1111/j.1574-6941.2008.00521.x.
Article
CAS
PubMed
Google Scholar
Forster GM, Stockman J, Noyes N, Heuberger AL, Broeckling CD, Bantle CM, Ryan EP. A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top Companion Anim Med. 2018;33(4):126–35. https://doi.org/10.1053/j.tcam.2018.08.003.
Article
PubMed
Google Scholar
Ghosh A, Dowd SE, Zurek L. Dogs leaving the ICU carry a very large multi-drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer. PLoS ONE. 2011;6(7): e22451. https://doi.org/10.1371/journal.pone.0022451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.01543.
Article
PubMed
Google Scholar
Pilla R, Gaschen FP, Barr JW, Olson E, Honneffer J, Guard BC, Blake AB, Villanueva D, Khattab MR, AlShawaqfeh MK, et al. Effects of metronidazole on the fecal microbiome and metabolome in healthy dogs. J Vet Intern Med. 2020;34(5):1853–66. https://doi.org/10.1111/jvim.15871.
Article
PubMed
PubMed Central
Google Scholar
Igarashi H, Maeda S, Ohno K, Horigome A, Odamaki T, Tsujimoto H. Effect of oral administration of metronidazole or prednisolone on fecal microbiota in dogs. PLoS ONE. 2014;9(9): e107909. https://doi.org/10.1371/journal.pone.0107909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suchodolski JS, Dowd SE, Westermarck E, Steiner JM, Wolcott RD, Spillmann T, Harmoinen JA. The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small intestine as demonstrated by massive parallel 16S rRNA gene sequencing. BMC Microbiol. 2009. https://doi.org/10.1186/1471-2180-9-210.
Article
PubMed
PubMed Central
Google Scholar
Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11): e280. https://doi.org/10.1371/journal.pbio.0060280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagman R, Greko C. Antimicrobial resistance in Escherichia coli isolated from bitches with pyometra and from urine samples from other dogs. Vet Rec. 2005;157(7):193–6. https://doi.org/10.1136/vr.157.7.193.
Article
CAS
PubMed
Google Scholar
Proulx A, Hume DZ, Drobatz KJ, Reineke EL. In vitro bacterial isolate susceptibility to empirically selected antimicrobials in 111 dogs with bacterial pneumonia. J Vet Emerg Crit Care. 2014;24(2):194–200. https://doi.org/10.1111/vec.12128.
Article
Google Scholar
Dickinson AE, Summers JF, Wignal J, Boag AK, Keir I. Impact of appropriate empirical antimicrobial therapy on outcome of dogs with septic peritonitis. J Vet Emerg Crit Care. 2015;25(1):152–9. https://doi.org/10.1111/vec.12273.
Article
Google Scholar
Cole SD, Peak L, Tyson GH, Reimschuessel R, Ceric O, Rankin SC. New Delhi metallo-β-lactamase-5-producing Escherichia coli in companion animals, United States. Emerg Infect Dis. 2020;26(2):381–3. https://doi.org/10.3201/eid2602.191221.
Article
PubMed
PubMed Central
Google Scholar
Schmidt VM, Pinchbeck G, McIntyre KM, Nuttall T, McEwan N, Dawson S, Williams NJ. Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli. J Antimicrob Chemother. 2018;73(12):3305–16. https://doi.org/10.1093/jac/dky352.
Article
CAS
PubMed
Google Scholar
Boothe D, Debavalya N. Impact of routine antimicrobial therapy on canine fecal Escherichia coli antimicrobial resistance: a pilot study. Intern J Appl Res Vet Med. 2011;9(4):396–406.
CAS
Google Scholar
Werner M, Suchodolski JS, Straubinger RK, Wolf G, Steiner JM, Lidbury JA, Neuerer F, Hartmann K, Unterer S. Effect of amoxicillin-clavulanic acid on clinical scores, intestinal microbiome, and amoxicillin-resistant Escherichia coli in dogs with uncomplicated acute diarrhea. J Vet Intern Med. 2020;34(3):1166–76. https://doi.org/10.1111/jvim.15775.
Article
PubMed
PubMed Central
Google Scholar
Gibson JS, Morton JM, Cobbold RN, Filippich LJ, Trott DJ. Risk factors for dogs becoming rectal carriers of multidrug-resistant Escherichia coli during hospitalization. Epidemiol Infect. 2011;139(10):1511–21. https://doi.org/10.1017/s0950268810002785.
Article
CAS
PubMed
Google Scholar
Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, Cook CH, O’Neill PJ, Mazuski JE, Askari R, et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372(21):1996–2005. https://doi.org/10.1056/NEJMoa1411162.
Article
PubMed
PubMed Central
Google Scholar
Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, Kollef M, Li Bassi G, Luna CM, Martin-Loeches I, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J. 2017. https://doi.org/10.1183/13993003.00582-2017.
Article
PubMed
Google Scholar
Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011. https://doi.org/10.1086/591861.
Article
PubMed
Google Scholar
Damborg P, Top J, Hendrickx AP, Dawson S, Willems RJ, Guardabassi L. Dogs are a reservoir of ampicillin-resistant Enterococcus faecium lineages associated with human infections. Appl Environ Microbiol. 2009;75(8):2360–5. https://doi.org/10.1128/aem.02035-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marques C, Belas A, Franco A, Aboim C, Gama LT, Pomba C. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J Antimicrob Chemother. 2018;73(2):377–84. https://doi.org/10.1093/jac/dkx401.
Article
CAS
PubMed
Google Scholar
Coburn PS, Baghdayan AS, Dolan GT, Shankar N. Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Mol Microbiol. 2007;63(2):530–44. https://doi.org/10.1111/j.1365-2958.2006.05520.x.
Article
CAS
PubMed
Google Scholar
Damborg P, Sørensen AH, Guardabassi L. Monitoring of antimicrobial resistance in healthy dogs: first report of canine ampicillin-resistant Enterococcus faecium clonal complex 17. Vet Microbiol. 2008;132(1–2):190–6. https://doi.org/10.1016/j.vetmic.2008.04.026.
Article
CAS
PubMed
Google Scholar
Iseppi R, Messi P, Anacarso I, Bondi M, Sabia C, Condò C, de Niederhausern S. Antimicrobial resistance and virulence traits in Enterococcus strains isolated from dogs and cats. New Microbiol. 2015;38(3):369–78.
PubMed
Google Scholar
Jackson CR, Fedorka-Cray PJ, Davis JA, Barrett JB, Brousse JH, Gustafson J, Kucher M. Mechanisms of antimicrobial resistance and genetic relatedness among enterococci isolated from dogs and cats in the United States. J Appl Microbiol. 2010;108(6):2171–9. https://doi.org/10.1111/j.1365-2672.2009.04619.x.
Article
CAS
PubMed
Google Scholar
Kataoka Y, Umino Y, Ochi H, Harada K, Sawada T. Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. J Vet Med Sci. 2014;76(10):1399–402. https://doi.org/10.1292/jvms.13-0576.
Article
PubMed
PubMed Central
Google Scholar
Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis. 1998;4(2):239–49. https://doi.org/10.3201/eid0402.980211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, Chakraborty T. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014. https://doi.org/10.1186/1471-2180-14-187.
Article
PubMed
PubMed Central
Google Scholar
Timofte D, Maciuca IE, Williams NJ, Wattret A, Schmidt V. Veterinary hospital dissemination of CTX-M-15 extended-spectrum beta-lactamase-producing Escherichia coli ST410 in the United Kingdom. Microb Drug Resist. 2016;22(7):609–15. https://doi.org/10.1089/mdr.2016.0036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mateus A, Brodbelt DC, Barber N, Stärk KD. Antimicrobial usage in dogs and cats in first opinion veterinary practices in the UK. J Small Anim Pract. 2011;52(10):515–21. https://doi.org/10.1111/j.1748-5827.2011.01098.x.
Article
CAS
PubMed
Google Scholar
Singleton DA, Sánchez-Vizcaíno F, Dawson S, Jones PH, Noble PJM, Pinchbeck GL, Williams NJ, Radford AD. Patterns of antimicrobial agent prescription in a sentinel population of canine and feline veterinary practices in the United Kingdom. Vet J. 2017. https://doi.org/10.1016/j.tvjl.2017.03.010.
Article
PubMed
PubMed Central
Google Scholar
Aslantaş Ö, Yilmaz E. Prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC β-lactamase (pAmpC) producing Escherichia coli in dogs. J Vet Med Sci. 2017;79(6):1024–30. https://doi.org/10.1292/jvms.16-0432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aly SA, Debavalya N, Suh SJ, Oryazabal OA, Boothe DM. Molecular mechanisms of antimicrobial resistance in fecal Escherichia coli of healthy dogs after enrofloxacin or amoxicillin administration. Can J Microbiol. 2012;58(11):1288–94. https://doi.org/10.1139/w2012-105.
Article
CAS
PubMed
Google Scholar
López M, Tenorio C, Torres C. Study of vancomycin resistance in faecal enterococci from healthy humans and dogs in Spain a decade after the avoparcin ban in Europe. Zoonoses Public Health. 2013;60(2):160–7. https://doi.org/10.1111/j.1863-2378.2012.01502.x.
Article
CAS
PubMed
Google Scholar
Rashid MU, Weintraub A, Nord CE. Development of antimicrobial resistance in the normal anaerobic microbiota during one year after administration of clindamycin or ciprofloxacin. Anaerobe. 2015. https://doi.org/10.1016/j.anaerobe.2014.10.004.
Article
PubMed
Google Scholar
Rashid MU, Zaura E, Buijs MJ, Keijser BJ, Crielaard W, Nord CE, Weintraub A. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin Infect Dis. 2015. https://doi.org/10.1093/cid/civ137.
Article
PubMed
Google Scholar
Haak BW, Lankelma JM, Hugenholtz F, Belzer C, de Vos WM, Wiersinga WJ. Long-term impact of oral vancomycin, ciprofloxacin and metronidazole on the gut microbiota in healthy humans. J Antimicrob Chemother. 2019;74(3):782–6. https://doi.org/10.1093/jac/dky471.
Article
CAS
PubMed
Google Scholar
Martiny P, Goggs R. Biomarker guided diagnosis of septic peritonitis in dogs. Front Vet Sci. 2019. https://doi.org/10.3389/fvets.2019.00208.
Article
PubMed
PubMed Central
Google Scholar
Fransson BA, Bergström A, Wardrop KJ, Hagman R. Assessment of three automated assays for C-reactive protein determination in dogs. Am J Vet Res. 2007;68(12):1281–6. https://doi.org/10.2460/ajvr.68.12.1281.
Article
CAS
PubMed
Google Scholar
Radhakrishnan A, Drobatz KJ, Culp WT, King LG. Community-acquired infectious pneumonia in puppies: 65 cases (1993–2002). J Am Vet Med Assoc. 2007;230(10):1493–7. https://doi.org/10.2460/javma.230.10.1493.
Article
PubMed
Google Scholar
Hayes G, Mathews K, Doig G, Kruth S, Boston S, Nykamp S, Poljak Z, Dewey C. The acute patient physiologic and laboratory evaluation (APPLE) score: a severity of illness stratification system for hospitalized dogs. J Vet Intern Med. 2010;24(5):1034–47. https://doi.org/10.1111/j.1939-1676.2010.0552.x.
Article
CAS
PubMed
Google Scholar
CLSI: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th Ed. In CLSI supplement VET08. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Article
CAS
PubMed
Google Scholar
Technical Bulletin: ABRx™ Antibiotic Resistance Panel. http://www.diatherix.com/assets/pdf/resources/ABRx_Technical_Bulletin.pdf
16S Illumina Amplicon Protocol. https://earthmicrobiome.org/protocols-and-standards/16s/.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Edgar RC. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 2016074161. https://doi.org/10.1101/074161.
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014, 42(Database issue):D633–42. https://doi.org/10.1093/nar/gkt1244.
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4): e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
CAS
PubMed
PubMed Central
Google Scholar
R: A language and environment for statistical computing. https://www.R-project.org/.