Poulson TL, White WB. The cave environment. Science. 1969;165:971–81.
Article
CAS
PubMed
Google Scholar
Christman MC, Culver DC, Madden MK, White D. Patterns of endemism of the eastern North American cave fauna. J Biogeogr. 2005;32:1441–52.
Article
Google Scholar
Christman MC, Culver DC. The relationship between cave biodiversity and available habitat. J Biogeogr. 2001;28:367–80.
Article
Google Scholar
Mammola S. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography (Cop). 2019;42:1331–51.
Article
Google Scholar
Smrž J, Kováč L, Mikeš J, Šustr V, Lukešová A, Tajovský K, et al. Food sources of selected terrestrial cave arthropods. Subterr Biol. 2015;16:37–46.
Article
Google Scholar
Phillips HRP, Guerra CA, Bartz MLC, Briones MJI, Brown G, Crowther TW, et al. Global distribution of earthworm diversity. Science. 2019;366:480–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves WK, Reynolds JW. New records of cave-dwelling earthworms (Oligochaeta: Lumbricidae, Megascolecidae and Naididae) and other annelids (Aeolosomatida, Branchiobdellida and Hirudinea) in the Southeastern United States, with notes on their ecology. Megadrilogica. 1999;7:65–71.
Google Scholar
Reynolds JW. Note on some cave earthworms (Oligochaeta: Lumbricidae) from the Isle of Man, U.K. Megadrilogica. 1996;6:89–90.
Protas ME, Trontelj P, Patel NH. Genetic basis of eye and pigment loss in the cave crustacean, Asellus aquaticus. Proc Natl Acad Sci U S A. 2011;108:5702–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shapira M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol. 2016;31:539–49.
Article
PubMed
Google Scholar
Ankrah NYD, Douglas AE. Nutrient factories: metabolic function of beneficial microorganisms associated with insects. Environ Microbiol. 2018;20:2002–11.
Article
PubMed
Google Scholar
Chu CC, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci U S A. 2013;110:11917–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80:5254–64.
Article
PubMed
PubMed Central
Google Scholar
Thakuria D, Schmidt O, Finan D, Egan D, Doohan FM. Gut wall bacteria of earthworms: a natural selection process. ISME J. 2010;4:357–66.
Article
PubMed
Google Scholar
Rossmassler K, Dietrich C, Thompson C, Mikaelyan A, Nonoh JO, Scheffrahn RH, et al. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome. 2015;:1–6.
Ding J, Zhu D, Li H, Ding K, Chen QL, Lassen SB, et al. The gut microbiota of soil organisms show species-specific responses to liming. Sci Total Environ. 2019;659:715–23.
Article
CAS
PubMed
Google Scholar
Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66:1328–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017;25:217–28.
Article
CAS
PubMed
Google Scholar
Růžička V, Šmilauer P, Mlejnek R. Colonization of subterranean habitats by spiders in Central Europe. Int J Speleol. 2013;42:133–40.
Article
Google Scholar
Rutgers M, Orgiazzi A, Gardi C, Römbke J, Jänsch S, Keith AM, et al. Mapping earthworm communities in Europe. Appl Soil Ecol. 2016;97:98–111.
Article
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org/. 2021.
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.
Article
CAS
PubMed
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006; Complex Systems:1695.
Bredon M, Dittmer J, Noël C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome. 2018;6:1–19.
Article
Google Scholar
O’brien PA, Webster NS, Miller DJ, Bourne DG. Host-microbe coevolution: Applying evidence from model systems to complex marine invertebrate holobionts. MBio. 2019;10:1–14.
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos. 2017;126:508–31.
Article
Google Scholar
Bon D, Gilard V, Massou S, Pérès G, Malet-Martino M, Martino R, et al. In vivo 31P and 1H HR-MAS NMR spectroscopy analysis of the unstarved Aporrectodea caliginosa (Lumbricidae). Biol Fertil Soils. 2006;43:191–8.
Article
CAS
Google Scholar
Xiang Q, Zhu D, Chen QL, Delgado-Baquerizo M, Su JQ, Qiao M, et al. Effects of diet on gut microbiota of soil collembolans. Sci Total Environ. 2019;676:197–205.
Article
CAS
PubMed
Google Scholar
Mathipi V, de Mandal S, Chawngthu Z, Lalfelpuii R, Kumar NS, Lalthanzara H. Diversity and metabolic potential of earthworm gut microbiota in Indo-Myanmar biodiversity hotspot. J Pure Appl Microbiol. 2020;14:1503–11.
Article
Google Scholar
Sampedro L, Whalen JK. Changes in the fatty acid profiles through the digestive tract of the earthworm Lumbricus terrestris L. Appl Soil Ecol. 2007;35:226–36.
Article
Google Scholar
Drake HL, Horn MA. As the Worm Turns: The earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol. 2007;61:169–89.
Article
CAS
PubMed
Google Scholar
Trigo D, Lavelle P. Changes in respiration rate and some physicochemical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta). Biol Fertil Soils. 1993;15:185–8.
Article
Google Scholar
Knapp BA, Seeber J, Podmirseg SM, Meyer E, Insam H. Application of denaturing gradient gel electrophoresis for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions. Bull Entomol Res. 2008;98:271–9.
Article
CAS
PubMed
Google Scholar
Knapp BA, Podmirseg SM, Seeber J, Meyer E, Insam H. Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biol Biochem. 2009;41:2299–307.
Article
CAS
Google Scholar
Rudi K, Ødegård K, Løkken TT, Wilson R. A feeding induced switch from a variable to a homogenous state of the earthworm gut microbiota within a host population. PLoS ONE. 2009;4: e7528.
Article
PubMed
PubMed Central
Google Scholar
Egert M, Marhan S, Wagner B, Scheu S, Friedrich MW. Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol Ecol. 2004;48:187–97.
Gong X, Chen TW, Zieger SL, Bluhm C, Heidemann K, Schaefer I, et al. Phylogenetic and trophic determinants of gut microbiota in soil oribatid mites. Soil Biol Biochem. 2018;123:155–64.
Article
CAS
Google Scholar
Condon C, Liveris D, Squires C, Schwartz I, Squires CL. rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol. 1995;177:4152–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. rrndb: The ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1 November:1–7.
Valdivia-Anistro JA, Eguiarte-Fruns LE, Delgado-Sapién G, Márquez-Zacarías P, Gasca-Pineda J, Learned J, et al. Variability of rRNA operon copy number and growth rate dynamics of bacillus isolated from an extremely oligotrophic aquatic ecosystem. Front Microbiol. 2016;6:1–15.
Article
Google Scholar