Donovan DM, Kerr DE, Wall RJ. Engineering disease resistant cattle. Transgenic Res. 2005;14(5):563–7.
Article
CAS
PubMed
Google Scholar
Aghamohammadi M, Haine D, Kelton DF, Barkema HW, Hogeveen H, Keefe GP, Dufour S. Herd-level mastitis-associated costs on Canadian dairy farms. Front Vet Sci. 2018;5:100.
Article
PubMed Central
PubMed
Google Scholar
Bradley A. Bovine mastitis: an evolving disease. Vet J. 2002;164(2):116–28.
Article
CAS
PubMed
Google Scholar
Watts JL. Etiological agents of bovine mastitis. Vet Microbiol. 1988;16(1):41–66.
Article
CAS
PubMed
Google Scholar
Rainard P. Mammary microbiota of dairy ruminants: fact or fiction? Vet Res. 2017;48(1):25.
Article
PubMed Central
PubMed
Google Scholar
Olde Riekerink RG, Barkema HW, Kelton DF, Scholl DT. Incidence rate of clinical mastitis on Canadian dairy farms. J Dairy Sci. 2008;91(4):1366–77.
Article
CAS
PubMed
Google Scholar
Levison LJ, Miller-Cushon EK, Tucker AL, Bergeron R, Leslie KE, Barkema HW, DeVries TJ. Incidence rate of pathogen-specific clinical mastitis on conventional and organic Canadian dairy farms. J Dairy Sci. 2016;99(2):1341–50.
Article
CAS
PubMed
Google Scholar
Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis. 2018;65(Suppl 1):149–65.
Article
PubMed
Google Scholar
Park S, Ronholm J. Staphylococcus aureus in Agriculture: lessons in evolution from a multispecies pathogen. Clin Microbiol Rev. 2021. https://doi.org/10.1128/CMR.00182-20.
Article
PubMed Central
PubMed
Google Scholar
Hoque MN, Istiaq A, Clement RA, Gibson KM, Saha O, Islam OK, Abir RA, Sultana M, Siddiki AZ, Crandall KA, et al. Insights Into the resistome of bovine clinical mastitis microbiome, a key factor in disease complication. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.00860.
Article
PubMed Central
PubMed
Google Scholar
WHO. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR): Critically Important Antimicrobials for Human Medicine. 3rd Revision 2011. In.; 2011.
Scott HM, Acuff G, Bergeron G, Bourassa MW, Gill J, Graham DW, Kahn LH, Morley PS, Salois MJ, Simjee S, et al. Critically important antibiotics: criteria and approaches for measuring and reducing their use in food animal agriculture. Ann N Y Acad Sci. 2019;1441(1):8–16.
Article
PubMed Central
PubMed
Google Scholar
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci. 2017;4:237.
Article
PubMed
Google Scholar
Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017;77(8):1783–812.
Article
CAS
PubMed Central
PubMed
Google Scholar
Derakhshani H, Fehr KB, Sepehri S, Francoz D, De Buck J, Barkema HW, Plaizier JC, Khafipour E. Invited review: microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J Dairy Sci. 2018;101(12):10605–25.
Article
CAS
PubMed
Google Scholar
Hu X, Li S, Fu Y, Zhang N. Targeting gut microbiota as a possible therapy for mastitis. Eur J Clin Microbiol Infect Dis. 2019;38(8):1409–23.
Article
PubMed
Google Scholar
El-Sayed A, Kamel M. Bovine mastitis prevention and control in the post-antibiotic era. Trop Anim Health Prod. 2021;53(2):236.
Article
PubMed
Google Scholar
Arroyo R, Martin V, Maldonado A, Jimenez E, Fernandez L, Rodriguez JM. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin Infect Dis. 2010;50(12):1551–8.
Article
CAS
PubMed
Google Scholar
Fernandez L, Cardenas N, Arroyo R, Manzano S, Jimenez E, Martin V, Rodriguez JM. Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin Infect Dis. 2016;62(5):568–73.
Article
CAS
PubMed
Google Scholar
Gao J, Liu YC, Wang Y, Li H, Wang XM, Wu Y, Zhang DR, Gao S, Qi ZL. Impact of yeast and lactic acid bacteria on mastitis and milk microbiota composition of dairy cows. AMB Express. 2020;10(1):22.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rainard P, Foucras G. A critical appraisal of probiotics for mastitis control. Front Vet Sci. 2018;5:251.
Article
PubMed Central
PubMed
Google Scholar
Klostermann K, Crispie F, Flynn J, Ross RP, Hill C, Meaney W. Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. J Dairy Res. 2008;75(3):365–73.
Article
CAS
PubMed
Google Scholar
Mignacca SA, Dore S, Spuria L, Zanghi P, Amato B, Dupre I, Armas F, Biasibetti E, Camperio C, Lollai SA, et al. Intramammary infusion of a live culture of Lactococcus lactis in ewes to treat staphylococcal mastitis. J Med Microbiol. 2017;66(12):1798–810.
Article
PubMed
Google Scholar
Frola ID, Pellegrino MS, Espeche MC, Giraudo JA, Nader-Macias ME, Bogni CI. Effects of intramammary inoculation of Lactobacillus perolens CRL1724 in lactating cows’ udders. J Dairy Res. 2012;79(1):84–92.
Article
CAS
PubMed
Google Scholar
Angelopoulou A, Warda AK, Hill C, Ross RP. Non-antibiotic microbial solutions for bovine mastitis—live biotherapeutics, bacteriophage, and phage lysins. Crit Rev Microbiol. 2019;45(5–6):564–80.
Article
CAS
PubMed
Google Scholar
Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Anim Microbiome. 2020;2(1):11.
Article
PubMed Central
PubMed
Google Scholar
Andrews T, Neher DA, Weicht TR, Barlow JW. Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PLoS ONE. 2019;14(11): e0225001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ganda EK, Bisinotto RS, Lima SF, Kronauer K, Decter DH, Oikonomou G, Schukken YH, Bicalho RC. Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary treatment using a third-generation cephalosporin. Sci Rep. 2016;6:37565.
Article
CAS
PubMed Central
PubMed
Google Scholar
Falentin H, Rault L, Nicolas A, Bouchard DS, Lassalas J, Lamberton P, Aubry JM, Marnet PG, Le Loir Y, Even S. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front Microbiol. 2016;7:480.
Article
PubMed Central
PubMed
Google Scholar
Ganda EK, Gaeta N, Sipka A, Pomeroy B, Oikonomou G, Schukken YH, Bicalho RC. Normal milk microbiome is reestablished following experimental infection with Escherichia coli independent of intramammary antibiotic treatment with a third-generation cephalosporin in bovines. Microbiome. 2017;5(1):74.
Article
PubMed Central
PubMed
Google Scholar
Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 2019;22(1):178–93.
Article
PubMed Central
Google Scholar
National Mastitis Council HJSMM: Current concepts of bovine mastitis; 2016.
Hogan J, Gonzalez R, Harmon R, Nickerson S, Oliver S, Pankey J, Smith K. Laboratory handbook on bovine mastitis. National Mastitis Council, Madison, WI. 1999;78(7):485–8.
Google Scholar
Cameron M, Barkema HW, De Buck J, De Vliegher S, Chaffer M, Lewis J, Keefe GP. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol. J Dairy Sci. 2017;100(3):2137–47.
Article
CAS
PubMed
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
CAS
PubMed Central
PubMed
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590-596.
CAS
PubMed
Google Scholar
Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45(W1):W180-w188.
Article
CAS
PubMed Central
PubMed
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5(1):27.
Article
PubMed Central
PubMed
Google Scholar
Cameron ES, Schmidt PJ, Tremblay BJ-M, Emelko MB, Müller KM. To rarefy or not to rarefy: Enhancing diversity analysis of microbial communities through next-generation sequencing and rarefying repeatedly. bioRxiv 2021:2020.2009.2009.290049.
Oksanen J. Vegan: ecological diversity. R Project. 2013;368:1–11.
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Article
PubMed Central
PubMed
Google Scholar
Team RC: R: A language and environment for statistical computing. 2013.
Altshuler I, Hamel J, Turney S, Magnuson E, Levesque R, Greer CW, Whyte LG. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ Microbiol. 2019;21(10):3711–27.
Article
CAS
PubMed
Google Scholar
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6(2):343–51.
Article
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed Central
PubMed
Google Scholar
Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6(1):158.
Article
PubMed Central
PubMed
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.
Article
PubMed Central
PubMed
Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27(5):824–34.
Article
CAS
PubMed Central
PubMed
Google Scholar
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11(11):1144–6.
Article
CAS
PubMed
Google Scholar
Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32(4):605–7.
Article
CAS
PubMed
Google Scholar
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7: e7359.
Article
PubMed Central
PubMed
Google Scholar
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2(11):1533–42.
Article
CAS
PubMed
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55.
Article
CAS
PubMed Central
PubMed
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Article
CAS
PubMed
Google Scholar
van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018;46(W1):W278–81.
Article
PubMed Central
PubMed
Google Scholar
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49(W1):W29–35.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27(1):29–34.
Article
CAS
PubMed Central
PubMed
Google Scholar
Oikonomou G, Bicalho ML, Meira E, Rossi RE, Foditsch C, Machado VS, Teixeira AG, Santisteban C, Schukken YH, Bicalho RC. Microbiota of cow’s milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PLoS ONE. 2014;9(1): e85904.
Article
PubMed Central
PubMed
Google Scholar
Skeie SB, Haland M, Thorsen IM, Narvhus J, Porcellato D. Bulk tank raw milk microbiota differs within and between farms: a moving goalpost challenging quality control. J Dairy Sci. 2019;102(3):1959–71.
Article
CAS
PubMed
Google Scholar
Porcellato D, Smistad M, Bombelli A, Abdelghani A, Jorgensen HJ, Skeie SB. Longitudinal study of the bulk tank milk microbiota reveals major temporal shifts in composition. Front Microbiol. 2021;12: 616429.
Article
PubMed Central
PubMed
Google Scholar
Demontier E, Dubé-Duquette A, Brouillette E, Larose A, Ster C, Lucier JF, Rodrigue S, Park S, Jung D, Ruffini J, et al. Relative virulence of Staphylococcus aureus bovine mastitis strains representing the main Canadian spa types and clonal complexes as determined using in vitro and in vivo mastitis models. J Dairy Sci. 2021;104(11):11904–21.
Article
CAS
PubMed
Google Scholar
Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol. 2017;15(11):675–87.
Article
CAS
PubMed
Google Scholar
Benjamin AL, Green BB, Hayden LR, Barlow JW, Kerr DE. Cow-to-cow variation in fibroblast response to a toll-like receptor 2/6 agonist and its relation to mastitis caused by intramammary challenge with Staphylococcus aureus. J Dairy Sci. 2015;98(3):1836–50.
Article
CAS
PubMed
Google Scholar
Petzl W, Zerbe H, Günther J, Yang W, Seyfert HM, Nürnberg G, Schuberth HJ. Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet Res. 2008;39(2):18.
Article
PubMed
Google Scholar
DiGiulio DB, Romero R, Amogan HP, Kusanovic JP, Bik EM, Gotsch F, Kim CJ, Erez O, Edwin S, Relman DA. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS ONE. 2008;3(8): e3056.
Article
PubMed Central
PubMed
Google Scholar
Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, et al. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS ONE. 2009;4(7): e6462.
Article
PubMed Central
PubMed
Google Scholar
Feazel LM, Robertson CE, Ramakrishnan VR, Frank DN. Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope. 2012;122(2):467–72.
Article
PubMed Central
PubMed
Google Scholar
Mallon CA, Elsas JDV, Salles JF. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23(11):719–29.
Article
CAS
PubMed
Google Scholar
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol. 2020;97(1):241.
Article
Google Scholar
Condas LAZ, De Buck J, Nobrega DB, Carson DA, Roy JP, Keefe GP, DeVries TJ, Middleton JR, Dufour S, Barkema HW. Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J Dairy Sci. 2017;100(7):5613–27.
Article
CAS
PubMed
Google Scholar
De Buck J, Ha V, Naushad S, Nobrega DB, Luby C, Middleton JR, De Vliegher S, Barkema HW. Non-aureus staphylococci and bovine udder health: current understanding and knowledge gaps. Front Vet Sci. 2021;8: 658031.
Article
PubMed Central
PubMed
Google Scholar
Mahmmod YS, Klaas IC, Svennesen L, Pedersen K, Ingmer H. Communications of Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary infections and teat apex colonization. J Dairy Sci. 2018;101(8):7322–33.
Article
CAS
PubMed
Google Scholar
Leroy S, Lebert I, Andant C, Talon R. Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus. Int J Food Microbiol. 2020;326: 108653.
Article
CAS
PubMed
Google Scholar
Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465(7296):346–9.
Article
CAS
PubMed
Google Scholar
Sandiford S, Upton M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci. Antimicrob Agents Chemother. 2012;56(3):1539–47.
Article
CAS
PubMed Central
PubMed
Google Scholar
Otto M, Echner H, Voelter W, Gotz F. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun. 2001;69(3):1957–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sung HS, Jo YL. Purification and characterization of an antibacterial substance from Aerococcus urinaeequi strain HS36. J Microbiol Biotechnol. 2020;30(1):93–100.
Article
CAS
PubMed
Google Scholar
Park S, Classen A, Gohou HM, Maldonado R, Kretschmann E, Duvernay C, Kim GJ, Ronholm J. A new, reliable, and high-throughput strategy to screen bacteria for antagonistic activity against Staphylococcus aureus. BMC Microbiol. 2021;21(1):189.
Article
CAS
PubMed Central
PubMed
Google Scholar