Xiong W, Sun Y, Zeng Z. Antimicrobial use and antimicrobial resistance in food animals. Environ Sci Pollut Res. 2018;25(19):18377–84.
Article
CAS
Google Scholar
Verso LL, Lessard M, Talbot G, Fernandez B, Fliss I. Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiot Antimicrob Proteins. 2018;10(2):299–312.
Article
Google Scholar
Lee JS, Kim TH, Song MH, Oh HJ, Yun W, Lee JH, Kim YJ, Lee BK, Kim HB, Cho JH. Effects of microencapsulated organic acids on growth performance, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs. J Anim Sci Technol. 2021;63(1):104.
Article
CAS
PubMed Central
PubMed
Google Scholar
Recharla N, Balasubramanian B, Song M, Puligundla P, Kim S-k, Jeong JY, Park S. Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets. J Anim Sci Technol. 2021;63(3):575.
Article
CAS
PubMed Central
PubMed
Google Scholar
Trukhachev VI, Chmykhalo VK, Belanova AA, Beseda DK, Chikindas ML, Bren AB, Ermakov AM, Donnik IM, Belousova MM, Zolotukhin PV. Probiotic biomarkers and models upside down: from humans to animals. Vet Microbiol. 2021;261:109156.
Article
CAS
PubMed
Google Scholar
Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29.
Article
CAS
PubMed
Google Scholar
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Adv Nutr. 2019;10(suppl_1):49–66.
Article
Google Scholar
Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173–83.
Article
CAS
PubMed
Google Scholar
Dubreuil JD. Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? Biosci. Microbiota Food Health. 2017. https://doi.org/10.12938/bmfh.16-030.
Article
PubMed Central
PubMed
Google Scholar
Kim T-r, Choi K-s, Ji Y, Holzapfel WH, Jeon M-G. Anti-inflammatory effects of Lactobacillus reuteri LM1071 via MAP kinase pathway in IL-1β-induced HT-29 cells. J Anim Sci Technol. 2020;62(6):864.
Article
CAS
PubMed Central
PubMed
Google Scholar
Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: a review. Livest Sci. 2019;223:84–96.
Article
Google Scholar
Kang J, Lee JJ, Cho JH, Choe J, Kyoung H, Kim SH, Kim HB, Song M. Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs. J Anim Sci Technol. 2021;63(3):520–30.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kim YJ, Cho SB, Song MH, Lee SI, Hong SM, Yun W, Lee JH, Oh HJ, Chang SY, An JW, et al. Effects of different Bacillus licheniformis and Bacillus subtilis ratios on nutrient digestibility, fecal microflora, and gas emissions of growing pigs. J Anim Sci Technol. 2022;64(2):291–301.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huang C, Qiao S, Li D, Piao X, Ren J. Effects of Lactobacilli on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian Aust J Anim Sci. 2004;17(3):401–9.
Article
Google Scholar
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Curtis TP, Sloan WT, Scannell JW. Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci. 2002;99(16):10494–99.
Article
CAS
PubMed Central
PubMed
Google Scholar
Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci. 2016;113(21):5970–75.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509(7500):357–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fournier P-E, Drancourt M. New microbes new infections promotes modern prokaryotic taxonomy: a new section “taxonogenomics: new genomes of microorganisms in humans”. New Microbes New Infect. 2015;7:48.
Article
PubMed Central
PubMed
Google Scholar
Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev. 2015;28(1):237–64.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Dubourg G. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1(12):1–8.
Article
Google Scholar
Mun D, Kim H, Shin M, Ryu S, Song M, Oh S, Kim Y. Decoding the intestinal microbiota repertoire of sow and weaned pigs using culturomic and metagenomic approaches. J Anim Sci Technol. 2021;63(6):1423–32.
Article
CAS
PubMed Central
PubMed
Google Scholar
Marcobal A, Kashyap P, Nelson T, Aronov P, Donia M, Spormann A, Fischbach M, Sonnenburg J. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7(10):1933–43.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sridharan GV, Choi K, Klemashevich C, Wu C, Prabakaran D, Pan LB, Steinmeyer S, Mueller C, Yousofshahi M, Alaniz RC. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat Commun. 2014;5(1):1–13.
Article
Google Scholar
Kolmeder CA, de Vos WM. Metaproteomics of our microbiome—developing insight in function and activity in man and model systems. J Proteom. 2014;97:3–16.
Article
CAS
Google Scholar
Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43.
Article
CAS
PubMed
Google Scholar
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.
Article
CAS
PubMed
Google Scholar
Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol. 2020;96(1):fiz187.
Article
PubMed
Google Scholar
Oh JK, Vasquez R, Kim SH, Hwang I-C, Song JH, Park JH, Kim IH, Kang D-K. Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. J Anim Sci Technol. 2021;63(5):1142.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, Park KI, Song M, Kim Y. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. J Anim Sci Technol. 2021;63(6):1314.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kang J, Lee JJ, Cho JH, Choe J, Kyoung H, Kim SH, Kim HB, Song M. Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs. J Anim Sci Technol. 2021;63(3):520.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shin D, Chang SY, Bogere P, Won K, Choi J-Y, Choi Y-J, Lee HK, Hur J, Park B-Y, Kim Y. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE. 2019;14(8):e0220843.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chang SYBS, Kang DR, Il Choi Y, Kim YH, Choe HS, Heo JY, Shim KS. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics. Korean J Food Sci Anim Resour. 2018;38(2):403–16.
PubMed Central
PubMed
Google Scholar
Bugenyi AW, Cho H-S, Heo J. Association between oropharyngeal microbiome and weight gain in piglets during pre and post weaning life. J Anim Sci Technol. 2020;62(2):247.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li Y, Guo Y, Wen Z, Jiang X, Ma X, Han X. Weaning stress perturbs gut microbiome and its metabolic profile in piglets. Sci Rep. 2018;8(1):18068.
Article
CAS
PubMed Central
PubMed
Google Scholar
Peltoniemi O, Yun J, Björkman S, Han T. Coping with large litters: the management of neonatal piglets and sow reproduction. J Anim Sci Technol. 2021;63(1):1.
Article
PubMed Central
PubMed
Google Scholar
Wang Y, Gong L, Wu YP, Cui ZW, Wang YQ, Huang Y, Zhang XP, Li WF. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J Zhejiang Univ Sci B. 2019;20(2):180–92.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li XQ, Zhu YH, Zhang HF, Yue Y, Cai ZX, Lu QP, Zhang L, Weng XG, Zhang FJ, Zhou D, et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances. PLoS ONE. 2012;7(7):e40666.
Article
CAS
PubMed Central
PubMed
Google Scholar
Patel S, Majumder A, Goyal A. Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol. 2012;52(1):3–12.
Article
CAS
PubMed
Google Scholar
Li H, Liu F, Lu J, Shi J, Guan J, Yan F, Li B, Huo G. Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice. Front Microbiol. 2020;11:512.
Article
PubMed Central
PubMed
Google Scholar
Salminen MK, Tynkkynen S, Rautelin H, Saxelin M, Vaara M, Ruutu P, Sarna S, Valtonen V, Järvinen A. Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin Infect Dis. 2002;35(10):1155–60.
Article
PubMed
Google Scholar
Valeriano V, Balolong M, Kang DK. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol. 2017;122(3):554–67.
Article
CAS
PubMed
Google Scholar
Jayaraman B, Nyachoti CM. Husbandry practices and gut health outcomes in weaned piglets: a review. Anim Nutr. 2017;3(3):205–11.
Article
PubMed Central
PubMed
Google Scholar
Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci. 2014;92(4):1496–503.
Article
CAS
PubMed
Google Scholar
Wang T, Teng K, Liu Y, Shi W, Zhang J, Dong E, Zhang X, Tao Y, Zhong J. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Front Microbiol. 2019;10:90.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xu J, Sun L, Xing X, Sun Z, Gu H, Lu X, Li Z, Ren Q. Culturing bacteria from fermentation pit muds of baijiu with culturomics and amplicon-based metagenomic approaches. Front Microbiol. 2020;11:1223.
Fenske GJ, Ghimire S, Antony L, Christopher-Hennings J, Scaria J. Integration of culture-dependent and independent methods provides a more coherent picture of the pig gut microbiome. FEMS Microbiol Ecol. 2020;96(3):fiaa022.
Wang W, Hu H, Zijlstra RT, Zheng J, Gänzle MG. Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome. 2019;7(1):48.
Article
PubMed Central
PubMed
Google Scholar
Tan Z, Yang T, Wang Y, Xing K, Zhang F, Zhao X, Ao H, Chen S, Liu J, Wang C. Metagenomic analysis of cecal microbiome identified microbiota and functional capacities associated with feed efficiency in landrace finishing pigs. Front Microbiol. 2017;8:1546.
Article
PubMed Central
PubMed
Google Scholar
Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen A, Kjeldsen NJ, Liu C, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1:16161.
Article
CAS
PubMed
Google Scholar
Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, Perrotta AR, Berdy B, Zhao S, Lieberman TD, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med. 2019;25(9):1442–52.
Article
CAS
PubMed
Google Scholar
Gutiérrez N, Garrido D. Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes. mSystems. 2019;4(4):e00185–19.
Xu YT, Ma XK, Wang CL, Yuan MF, Piao XS. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets. Asian Australas J Anim Sci. 2018;31(1):106–15.
Article
CAS
PubMed
Google Scholar
Kerkaert HR, Cemin HS, Woodworth JC, DeRouchey JM, Dritz SS, Tokach MD, Goodband RD, Haydon KD, Hastad CW, Post ZB. Improving performance of finishing pigs with added valine, isoleucine, and tryptophan: validating a meta-analysis model. J Anim Sci 2021;99(1):skab006.
Nie A, Sun B, Fu Z, Yu D. Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis. 2019;10(12):1–14.
Article
CAS
Google Scholar
Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS. Mechanism of insulin’s anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am J Physiol Endocrinol Metabol. 2006;291(4):E729–36.
Article
CAS
Google Scholar
Dabrowski K, Terjesen BF, Zhang Y, Phang JM, Lee KJ. A concept of dietary dipeptides: a step to resolve the problem of amino acid availability in the early life of vertebrates. J Exp Biol. 2005;208(Pt 15):2885–94.
Article
CAS
PubMed
Google Scholar
Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin Y-L. Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci. 2007;112(1–2):8–22.
Article
Google Scholar
Liang R, Wang G, Zhang D, Ye G, Li M, Shi Y, Shi J, Chen H, Peng G. Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development. J Biol Chem. 2021;296:100015.
Article
CAS
PubMed
Google Scholar
Robinson KL. WEC: Thiouracil as a supplement in rations for fattening pigs. J Sci Food Agric. 1951;2(8):365–71.
Article
CAS
Google Scholar
Braude R, Cotchin E. Thiourea and methylthiouracil as supplements in rations of fattening pigs. Br J Nutr. 1949;3(2–3):171–86.
Article
CAS
PubMed
Google Scholar
Ren M, Zhang S, Liu X, Li S, Mao X, Zeng X, Qiao S. Different lipopolysaccharide branched-chain amino acids modulate porcine intestinal endogenous β-defensin expression through the Sirt1/ERK/90RSK pathway. J Agric Food Chem. 2016;64(17):3371–79.
Article
CAS
PubMed
Google Scholar
Li Y, Hou S, Chen J, Peng W, Wen W, Chen F, Huang X. Oral administration of Lactobacillus delbrueckii during the suckling period improves intestinal integrity after weaning in piglets. J Funct Foods. 2019;63:103591.
Article
CAS
Google Scholar
Yang F, Wang A, Zeng X, Hou C, Liu H, Qiao S. Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 2015;15(1):1–11.
Article
Google Scholar
Park MR, Shin M, Mun D, Jeong SY, Jeong DY, Song M, Ko G, Unno T, Kim Y, Oh S. Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Sci Rep. 2020;10(1):21701.
Article
CAS
PubMed Central
PubMed
Google Scholar
Heo J, Shin D, Chang SY, Bogere P, Park MR, Ryu S, Lee WJ, Yun B, Lee HK, Kim Y, Oh S. Comparative genome analysis and evaluation of probiotic characteristics of Lactobacillus plantarum strain JDFM LP11. Korean J Food Sci Anim Resour. 2018;38(5):878–88.
Article
PubMed Central
PubMed
Google Scholar
Shin D, Chang SY, Bogere P, Won K, Choi JY, Choi YJ, Lee HK, Hur J, Park BY, Kim Y, Heo J. Beneficial roles of probiotics on the modulation of gut microbiota and immune response in pigs. PLoS ONE. 2019;14(8):e0220843.
Article
CAS
PubMed Central
PubMed
Google Scholar
NNR Council. Nutrient requirement of swine. 11th ed. Washington, DC: National Academy Press; 2012.
Google Scholar
Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, Tramontano M, Driessen M, Hercog R, Jung F-E. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 2017;35(11):1069–76.
Article
CAS
PubMed
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
PubMed Central
PubMed
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kim J, Nguyen SG, Guevarra RB, Lee I, Unno T. Analysis of swine fecal microbiota at various growth stages. Arch Microbiol. 2015;197(6):753–9.
Article
CAS
PubMed
Google Scholar
Deda O, Chatziioannou AC, Fasoula S, Palachanis D, Raikos Ν, Theodoridis GA, Gika HG. Sample preparation optimization in fecal metabolic profiling. J Chromatogr B. 2017;1047:115–23.
Article
CAS
Google Scholar
Song W-S, Park H-G, Kim S-M, Jo S-H, Kim B-G, Theberge AB, Kim Y-G. Chemical derivatization-based LC–MS/MS method for quantitation of gut microbial short-chain fatty acids. J Ind Eng Chem. 2020;83:297–302.
Article
CAS
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217.
Article
CAS
PubMed Central
PubMed
Google Scholar
Oksanen J. vegan: Community Ecology Package. R package version 1.17-9. http://cran.r-project.org/package=vegan 2011.
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ni Y, Yu G, Chen H, Deng Y, Wells PM, Steves CJ, Ju F, Fu J. M2IA: a web server for microbiome and metabolome integrative analysis. Bioinformatics. 2020;36(11):3493–8.
Article
CAS
PubMed
Google Scholar
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.
Article
CAS
PubMed Central
PubMed
Google Scholar
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4.
Article
CAS
PubMed Central
PubMed
Google Scholar