Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90. https://doi.org/10.1038/nrmicro2540.
Article
CAS
Google Scholar
Russell JA, Dubilier N, Rudgers JA. Nature’s microbiome: introduction. Mol Ecol. 2014;23:1225–37. https://doi.org/10.1111/mec.12676.
Article
Google Scholar
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015. https://doi.org/10.3402/mehd.v26.26191.
Article
Google Scholar
Koskella B, Hall LJ, Metcalf CJE. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15. https://doi.org/10.1038/s41559-017-0340-2.
Article
Google Scholar
Suzuki TA, Ley RE. The role of the microbiota in human genetic adaptation. Science. 2020. https://doi.org/10.1126/science.aaz6827.
Article
Google Scholar
Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton Hanson J, et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol. 2012;21:2617–27.
Article
Google Scholar
Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23:1301–17.
Article
CAS
Google Scholar
Hale VL, Tan CL, Niu K, Yang Y, Knight R, Zhang Q, et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. 2018;75:515–27. https://doi.org/10.1007/s00248-017-1041-8
Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF, Pontén TS, et al. The microbiome of new world vultures. Nat Commun. 2014. https://doi.org/10.1038/ncomms6498.
Article
Google Scholar
Jacob S, Parthuisot N, Vallat A, Ramon-Portugal F, Helfenstein F, Heeb P. Microbiome affects egg carotenoid investment, nestling development and adult oxidative costs of reproduction in Great tits. Funct Ecol. 2015;29:1048–58. https://doi.org/10.1111/1365-2435.12404.
Article
Google Scholar
Sullam KE, Rubin BER, Dalton CM, Kilham SS, Flecker AS, Russell JA. Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME J. 2015;9:1508–22. https://doi.org/10.1038/ismej.2014.231.
Article
Google Scholar
Turjeman S, Corl A, Wolfenden A, Tsalyuk M, Lublin A, Choi O, et al. Migration, pathogens and the avian microbiome: a comparative study in sympatric migrants and residents. Mol Ecol. 2020;29:4706–20. https://doi.org/10.1111/mec.15660.
Article
CAS
Google Scholar
Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson ME, Pierce NE. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Mol Ecol. 2014;23:1268–83.
Article
Google Scholar
Carrillo-Araujo M, Tas N, Alcántara-Hernández RJ, Gaona O, Schondube JE, Medellín RA, et al. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Front Microbiol. 2015;6:1–9.
Article
Google Scholar
Kropáčková L, Těšický M, Albrecht T, Kubovčiak J, Čížková D, Tomášek O, et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol. 2017;26:5292–304. https://doi.org/10.1111/mec.14144.
Article
Google Scholar
Ingala MR, Becker DJ, Bak Holm J, Kristiansen K, Simmons NB. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol Evol. 2019;9:6508–23.
Article
Google Scholar
Amato KR. Co-evolution in context: the importance of studying gut microbiomes in wild animals. Microbiome Sci Med. 2013;1:10–29.
Article
Google Scholar
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56. https://doi.org/10.1038/s41575-018-0061-2.
Article
CAS
Google Scholar
Bodawatta KH, Hird SM, Grond K, Poulsen M, Jønsson KA. Avian gut microbiomes taking flight. Trends Microbiol. 2021. https://doi.org/10.1016/j.tim.2021.07.003.
Article
Google Scholar
Bodawatta KH, Sam K, Jønsson KA, Poulsen M. Comparative analyses of the digestive tract microbiota of New Guinean Passerine birds. Front Microbiol. 2018;9:1–13.
Article
Google Scholar
Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.01403.
Article
Google Scholar
Kreisinger J, Čížková D, Kropáčková L, Albrecht T. Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. 2015. https://doi.org/10.1371/journal.pone.0137401.
Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47:659–68.
Article
Google Scholar
Kropáčková L, Pechmanová H, Vinkler M, Svobodová J, Velová H, Těšičký M, et al. Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major). PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0179945.
Article
Google Scholar
Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018. https://doi.org/10.1111/jav.01788.
Article
Google Scholar
Capunitan DC, Johnson O, Terrill RS, Hird SM. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol Ecol. 2020;29:829–47. https://doi.org/10.1111/mec.15354.
Article
CAS
Google Scholar
García-Amado MA, Shin H, Sanz V, Lentino M, Martínez LM, Contreras M, et al. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS ONE. 2018;13:1–16.
Article
Google Scholar
Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: comparison of faecal and cloacal sampling. Mol Ecol Resour. 2018;18:424–34. https://doi.org/10.1111/1755-0998.12744.
Article
CAS
Google Scholar
van Veelen HPJ, Falcao Salles J, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156.
Article
Google Scholar
Woodhams DC, Bletz MC, Becker CG, Bender HA, Buitrago-Rosas D, Diebboll H, et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 2020;21:1–20.
Google Scholar
Hall R. Southeast Asia’s changing palaeogeography. Blumea - Biodiversity, Evol Biogeogr Plants. 2009;54:148–61. https://doi.org/10.3767/000651909X475941.
Article
Google Scholar
Nugraha AMS, Hall R. Late Cenozoic palaeogeography of Sulawesi, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol. 2018;490:191–209.
Article
Google Scholar
Evans BJ, Andayani N, Melnick DJ, Supriatna J, Setiadi MI, Cannatella DC. Monkeys and toads define areas of endemism on Sulawesi. Evolution. 2006;57:1436.
Google Scholar
Shekelle M, Meier R, Wahyu I, Ting N, Meier R, Wahyu I, et al. Molecular phylogenetics and chronometrics of tarsiidae based on 12S mtDNA haplotypes: evidence for miocene origins of crown tarsiers and numerous species within the Sulawesian Clade. Int J Primatol. 2010;31:1083–106.
Article
Google Scholar
Allen R, Damayanti CS, Frantz LAF, Leus K, Hulme-Beaman A, Gillemot S, et al. Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events. Proc R Soc B Biol Sci. 2018;285:20172566.
Article
Google Scholar
Moss SJ, Wilson MEJ. Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. Biogeogr Geol Evol SE Asia. 1987;133:63.
Google Scholar
Esselstyn JA, Achmadi AS, Handika H, Giarla TC, Rowe KC. A new climbing shrew from Sulawesi highlights the tangled taxonomy of an endemic radiation. J Mammal. 2019;100:1713–25. https://doi.org/10.1093/jmammal/gyz077.
Article
Google Scholar
Wikramanayake E, Dinerstein E, Loucks CJ, Olson DM, Morrison J, Lamoreaux J, et al. Terrestrial ecoregions of the Indo-Pacific: a conservation assessment. Electr Green J. 2002. https://doi.org/10.5860/choice.40-0287.
Article
Google Scholar
Zhang W, Li N, Tang X, Liu N, Zhao W. Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii. Ecol Evol. 2018;8:4695–703. https://doi.org/10.1002/ece3.4029.
Article
Google Scholar
Li H, Zhou R, Zhu J, Huang X, Qu J. Environmental filtering increases with elevation for the assembly of gut microbiota in wild pikas. Microb Biotechnol. 2019;12:976–92.
Article
CAS
Google Scholar
Bodawatta KH, Koane B, Maiah G, Sam K, Poulsen M, Jønsson KA. Species-specific but not phylosymbiotic gut microbiomes of New Guinean passerine birds are shaped by diet and flight-associated gut modifications. Proc R Soc B Biol Sci. 2021. https://doi.org/10.1098/rspb.2021.0446.
Article
Google Scholar
Herder EA, Spence AR, Tingley MW, Hird SM. Elevation correlates with significant changes in relative abundance in hummingbird fecal microbiota, but composition changes little. Front Ecol Evol. 2021;8:534.
Article
Google Scholar
Foster JT, Woodworth BL, Eggert LE, Hart PJ, Palmer D, Duffy DC, et al. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers. Mol Ecol. 2007;16:4738–46. https://doi.org/10.1111/j.1365-294X.2007.03550.x.
Article
CAS
Google Scholar
Galen SC, Witt CC. Diverse avian malaria and other haemosporidian parasites in Andean house wrens: evidence for regional co-diversification by host-switching. J Avian Biol. 2014;45:374–86.
Article
Google Scholar
Moyle RG, Oliveros CH, Andersen MJ, Hosner PA, Benz BW, Manthey JD, et al. ARTICLE tectonic collision and uplift of Wallacea triggered the global songbird radiation. 2016. https://doi.org/10.1038/ncomms12709
Gelang M, Cibois A, Pasquet E, Olsson U, Alström P, Ericson PGP. Phylogeny of babblers (Aves, Passeriformes): major lineages, family limits and classification. Zool Scr. 2009;38:225–36. https://doi.org/10.1111/j.1463-6409.2008.00374.x.
Article
Google Scholar
Cai T, Cibois A, Alström P, Moyle RG, Kennedy JD, Shao S, et al. Near-complete phylogeny and taxonomic revision of the world’s babblers (Aves: Passeriformes). Mol Phylogenet Evol. 2019;2019(130):346–56. https://doi.org/10.1016/j.ympev.2018.10.010.
Article
Google Scholar
Koller M. Robustlmm: an R package for Robust estimation of linear Mixed-Effects models. J Stat Softw. 2016. https://doi.org/10.18637/jss.v075.i06.
Article
Google Scholar
Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;26:1873–9.
Article
CAS
Google Scholar
Montoya-Ciriaco N, Gómez-Acata S, Muñoz-Arenas LC, Dendooven L, Estrada-Torres A, Aníbal H, de la Vega-Pérez D, Navarro-Noya YE. Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. Microbiome. 2020. https://doi.org/10.1186/s40168-020-0783-6.
Article
Google Scholar
Alou M, Ndongo S, Frégère L, Labas N, Andrieu C, Richez M, et al. Taxonogenomic description of four new clostridium species isolated from human gut: `Clostridium amazonitimonense’, `Clostridium merdae’, `Clostridium massilidielmoense’ and `Clostridium nigeriense’. N Microbes N Infect. 2018;21:128–39. https://doi.org/10.1016/j.nmni.2017.11.003.
Article
CAS
Google Scholar
Song J, Choo YJ, Cho JC. Perlucidibaca piscinae gen. nov., sp. Nov., a freshwater bacterium belonging to the family Moraxellaceae. Int J Syst Evol Microbiol. 2008;58:97–102. https://doi.org/10.1099/ijs.0.65039-0.
Article
CAS
Google Scholar
Platas G, Morón R, González I, Collado J, Genilloud O, Peláez F, et al. Production of antibacterial activities by members of the family pseudonocardiaceae: influence of nutrients. World J Microbiol Biotechnol. 1998;14:521–7. https://doi.org/10.1023/A:1008874203344.
Article
CAS
Google Scholar
Thoemmes MS, Cove MV. Comparing the microbial communities of natural and supplemental nests of an endangered ecosystem engineer. bioRxiv. 2019. https://doi.org/10.1101/727966.
Article
Google Scholar
Uchimura Y, Wyss M, Brugiroux S, Limenitakis JP, Stecher B, McCoy KD, et al. Complete genome sequences of 12 species of stable defined moderately diverse mouse microbiota 2. Genome Announc. 2016;4:951–67. https://doi.org/10.1128/genomeA.00951-16.
Article
Google Scholar
Liang JQ, Li T, Nakatsu G, Chen YX, Yau TO, Chu E, et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 2019;69:1248–57. https://doi.org/10.1136/gutjnl-2019-318532.
Article
CAS
Google Scholar
Dominianni C, Wu J, Hayes RB, Ahn J. Comparison of methods for fecal microbiome biospecimen collection. 2014.https://doi.org/10.1186/1471-2180-14-103
Bodawatta KH, Puzejova K, Sam K, Poulsen M, Jønsson KA. Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major). Anim Microbiome. 2020. https://doi.org/10.1186/s42523-020-00026-8.
Article
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4. https://doi.org/10.1038/ismej.2012.8.
Article
CAS
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Author correction: reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 (Nat Biotechnol 2019;37(8):(852–857). https://doi.org/10.1038/s41587-019-0209-9). Nat Biotechnol. 2019;37:1091. https://doi.org/10.1038/s41587-019-0252-6.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
Google Scholar
Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gks1219.
Article
Google Scholar
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018. https://doi.org/10.1186/s40168-018-0605-2.
Article
Google Scholar
McMurdie PJ, Holmes S. Waste Not, Want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10.
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0061217.
Article
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
Article
CAS
Google Scholar
Paliy O, Shankar V. Application of multivariate statistical techniques in microbial ecology. Mol Ecol. 2016;25:1032–57.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
Google Scholar