Ørskov ER. Reflex closure of the oesophageal groove and its potential application in ruminant nutrition. S Afr J Anim Sci. 1972;2(2):168–76.
Google Scholar
Khan MA, Bach A, Weary DM, von Keyserlingk MAG. Invited review: transitioning from milk to solid feed in dairy heifers. J Dairy Sci. 2016;99(2):885–902. https://doi.org/10.3168/jds.2015-9975.
Article
CAS
PubMed
Google Scholar
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10(1):2200. https://doi.org/10.1038/s41467-019-10191-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dill-McFarland KA, Weimer PJ, Breaker JD, Suen G. Diet influences early microbiota development in dairy calves without long-term impacts on milk production. Appl Environ Microbiol. 2019;85(2):02141–18.
Google Scholar
Oikonomou G, Teixeira AGV, Foditsch C, Bicalho ML, Machado VS, Bicalho RC. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One. 2013;8(4):e63157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uyeno Y, Sekiguchi Y, Kamagata Y. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Lett Appl Microbiol. 2010;51(5):570–7. https://doi.org/10.1111/j.1472-765X.2010.02937.x.
Article
CAS
PubMed
Google Scholar
Song Y, Malmuthuge N, Steele MA, Guan LL. Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning. FEMS Microbiol Ecol. 2018;94(3):fix179.
Google Scholar
Dias J, Marcondes MI, Motta de Souza S, da Mata ESB C, Fontes Noronha M, Tassinari Resende R, et al. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Appl Env Microbiol. 2018;84(9):02675–17.
Article
Google Scholar
Malmuthuge N, Griebel PJ. L. GL. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl Env Microbiol. 2014;80(6):2021–8. https://doi.org/10.1128/AEM.03864-13.
Article
CAS
Google Scholar
Malmuthuge N, Li M, Goonewardene LA, Oba M, Guan LL. Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune responses and tight junctions in dairy calves during weaning transition. J Dairy Sci. 2013;96(5):3189–200. https://doi.org/10.3168/jds.2012-6200.
Article
CAS
PubMed
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh P, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–51. https://doi.org/10.1126/science.1155725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foditsch C, Pereira RVV, Ganda EK, Gomez MS, Marques EC, Santin T, et al. Oral administration of Faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers. PLoS One. 2016;10(12):e0145485.
Article
Google Scholar
Dias NW, Timlin CL, Santili FV, Wilson TB, White RR, Mercadante VRG. Establishing the efficacy of Faecalibacterium prausnitzii as a probiotic to enhance pre-weaning health, growth and performance of beef calves. J Anim Sci. 2018;96(suppl_1):61.
Article
Google Scholar
Soberon F, Raffrenato E, Everett RW, Van Amburgh ME. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. J Dairy Sci. 2012;95(2):783–93. https://doi.org/10.3168/jds.2011-4391.
Article
CAS
PubMed
Google Scholar
Geiger AJ, Parsons CLM, James RE, Akers RM. Growth, intake, and health of Holstein heifer calves fed an enhanced preweaning diet with or without postweaning exogenous estrogen. J Dairy Sci. 2016;99(5):3995–4004. https://doi.org/10.3168/jds.2015-10405.
Article
CAS
PubMed
Google Scholar
Khan MA, Weary DM, von Keyserlingk MAG. Hay intake improves performance and rumen development of calves fed higher quantities of milk. J Dairy Sci. 2011;94(7):3547–53. https://doi.org/10.3168/jds.2010-3871.
Article
CAS
PubMed
Google Scholar
Steele MA, Penner GB, Chaucheyras-Durand F, Guan LL. Development and physiology of the rumen and the lower gut: targets for improving gut health. J Dairy Sci. 2016;99(6):4955–66. https://doi.org/10.3168/jds.2015-10351.
Article
CAS
PubMed
Google Scholar
Groenendijk M, Lowe K, Schreurs N, Molenaar A, McCoard SA, Luo D, et al. Growth performance of crossbred dairy calves fed different milk allowances using an automatic feeding system. NZ J Anim Sci Prod. 2018;78:21–5.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ, Timmerman HM, Rijkers GT, Smidt H. Characterization of Romboutsia ilealis gen. Nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. Nov., Intestinibacter gen. Nov., Terrisporobacter gen. Nov. and Asaccharospora gen. Nov. Int J Syst Evol Microbiol. 2014;64(Pt 5):1600–16. https://doi.org/10.1099/ijs.0.059543-0.
Article
CAS
PubMed
Google Scholar
Gerritsen J, Umanets A, Staneva I, Hornung B, Ritari J, Paulin L, Rijkers GT, de Vos WM, Smidt H. Romboutsia hominis sp. nov., the first human gut-derived representative of the genus Romboutsia, isolated from ileostoma effluent. Int J Syst Evol Microbiol. 2018;68(11):3479–86. https://doi.org/10.1099/ijsem.0.003012.
Article
CAS
PubMed
Google Scholar
Bermingham EN, Young W, Butowski CF, Moon CD, Maclean PH, Rosendale D, et al. The fecal microbiota in the domestic cat (Felis catus) is influenced by interactions between age and diet; A five year longitudinal study. Front Microbiol. 2018;9:1231.
Article
PubMed
PubMed Central
Google Scholar
Holdeman LV, Moore WEC. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int J Syst Evol Microbiol. 1974;24(2):260–77.
Google Scholar
Yutin N, Galperin MY. A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. Environ Microbiol. 2013;15(10):2631–41. https://doi.org/10.1111/1462-2920.12173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shkoporov AN, Efimov BA, Kondova I, Ouwerling B, Chaplin AV, Shcherbakova VA, Langermans JAM. Peptococcus simiae sp. nov., isolated from rhesus macaque faeces and emended description of the genus Peptococcus. Int J Syst Evol Microbiol. 2016;66(12):5187–91. https://doi.org/10.1099/ijsem.0.001494.
Article
CAS
PubMed
Google Scholar
Smith EA, Macfarlane GT. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol. 1998;25(4):355–68. https://doi.org/10.1111/j.1574-6941.1998.tb00487.x.
Article
CAS
Google Scholar
Macfarlane GT, Gibson GR, Beatty E, Cummings JH. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol Ecol. 1992;10(2):81–8. https://doi.org/10.1111/j.1574-6941.1992.tb00002.x.
Article
Google Scholar
Macfarlane GT, Gibson GR, Cummings JH. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 1992;72(1):57–64. https://doi.org/10.1111/j.1365-2672.1992.tb04882.x.
Article
CAS
PubMed
Google Scholar
Granado-Serrano AB, Martín-Garí M, Sánchez V, Riart Solans M, Berdún R, Ludwig IA, Rubió L, Vilaprinyó E, Portero-Otín M, Serrano JCE. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci Rep. 2019;9(1):1772. https://doi.org/10.1038/s41598-019-38874-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YR, Du HS, Wu ZZ, Wang C, Liu Q, Guo G, et al. Branched-chain volatile fatty acids and folic acid accelerated the growth of Holstein dairy calves by stimulating nutrient digestion and rumen metabolism. Animal. 2020;14(6):1176–83. https://doi.org/10.1017/S1751731119002969.
Article
CAS
PubMed
Google Scholar
Bedford A, Gong J. Implications of butyrate and its derivatives for gut health and animal production. Anim Nutr. 2018;4(2):151–9. https://doi.org/10.1016/j.aninu.2017.08.010.
Article
PubMed
Google Scholar
Yañez-Ruiz DR, Abecia L, Newbold CJ. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front Microbiol. 2015;6:1133.
Article
PubMed
PubMed Central
Google Scholar
Malmuthuge N, Griebel PJ, Guan Le L. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front Vet Sci. 2015;2:36.
Article
PubMed
PubMed Central
Google Scholar
De Dea LJ, Santarelli M, Yamaguishi CT, Soccol CR, Neviani E. Recovery and identification of bovine colostrum microflora using traditional and molecular approaches. Food Technol Biotech. 2011;49(3):364–8.
Google Scholar
Liu J, Taft DH, Maldonado-Gomez MX, Johnson D, Treiber ML, Lemay DG, DePeters EJ, Mills DA. The fecal resistome of dairy cattle is associated with diet during nursing. Nat Commun. 2019;10(1):4406. https://doi.org/10.1038/s41467-019-12111-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
National Animal Welfare Advisory Committee: Code of Welfare: Dairy Cattle. In. Edited by Welfare MfPIMRABA. Wellington, New Zealand; 2016.
Liu J, Zhu Y, Jay-Russell M, Lemay DG, Mills DA. Reservoirs of antimicrobial resistance genes in retail raw milk. Microbiome. 2020;8(1):99. https://doi.org/10.1186/s40168-020-00861-6.
Article
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RC. R: a language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2018.
Google Scholar
Team R. RStudio: Integrated Development for R. Boston, MA: RStudio, PBC; 2020.
Google Scholar
Beals EW. Bray-Curtis ordination: An effective strategy for analysis of multivariate ecological data. In: MacFadyen A, Ford ED, editors. Advances in Ecological Research. London: Academic Press; 1984. p. 1–55.
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.
Article
Google Scholar
Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18(1):117–43. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.
Article
Google Scholar
de Mendiburu F: Statistical procedures for agricultural research using R. In., 1.3–1 edn; 2019.
Rohart F, Gautier B, Singh A, Lê Cao K-A. MixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752.
Article
PubMed
PubMed Central
Google Scholar
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006 Complex Systems:1695.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar