Jovel J, Dieleman LA, Kao D, Mason AL, Wine E. The human gut microbiome in health and disease. Metagenomics. 2018:197–213. https://doi.org/10.1016/B978-0-08-102268-9.00010-0.
Ungerfeld E, Leigh M, Forster R, Barboza P. Influence of season and diet on Fiber digestion and bacterial community structure in the rumen of muskoxen (Ovibos moschatus). Microorganisms. 2018;6(3):89. https://doi.org/10.3390/microorganisms6030089.
Article
CAS
PubMed Central
Google Scholar
Greene LK, McKenney EA, O’Connell TM, Drea CM. The critical role of dietary foliage in maintaining the gut microbiome and metabolome of folivorous sifakas. Sci Rep. 2018;8:1–13.
Article
CAS
Google Scholar
den Besten G, van Eunen K, Groen A, Venema K, Reijngoud D, Bakker B. The role of short-chain fatty acids in the between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40. https://doi.org/10.1194/jlr.R036012.
Article
CAS
Google Scholar
Park W. Gut microbiomes and their metabolites shape human and animal health. J Microbiol. 2018;56(3):151–3. https://doi.org/10.1007/s12275-018-0577-8.
Article
PubMed
Google Scholar
Münger E, Montiel-Castro AJ, Langhans W, Pacheco-López G. Reciprocal interactions between gut microbiota and host social behavior. Front Integr Neurosci. 2018;12:1–14. https://doi.org/10.3389/fnint.2018.00021.
Article
CAS
Google Scholar
Pennisi E. Gut bacteria linked to mental well-being and depression. Science (80- ). 2019;363:569. https://doi.org/10.1126/science.363.6427.569.
Article
CAS
Google Scholar
Li J, Zhan S, Liu X, Lin Q, Jiang J, Li X. Divergence of fecal microbiota and their associations with host phylogeny in Cervinae. Front Microbiol. 2018;9:1–11. https://doi.org/10.3389/fmicb.2018.01823.
Article
Google Scholar
Amato KR, Sanders J, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2019;13(3):576–87. https://doi.org/10.1038/s41396-018-0175-0.
Article
CAS
PubMed
Google Scholar
Nishida AH, Ochman H. Rates of gut microbiome divergence in mammals. Mol Ecol. 2018;27(8):1884–97. https://doi.org/10.1111/mec.14473.
Article
PubMed
PubMed Central
Google Scholar
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10(1):1–15. https://doi.org/10.1038/s41467-019-10191-3.
Article
CAS
Google Scholar
Moeller AH, Suzuki TA, Lin D, Lacey EA, Wasser SK, Nachman MW. Dispersal limitation promotes the diversification of the mammalian gut microbiota. PNAS. 2017;114(52):13768–73. https://doi.org/10.1073/pnas.1700122114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohl KD. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc B Biol Sci. 2020;375(1798):20190251. https://doi.org/10.1098/rstb.2019.0251.
Article
CAS
Google Scholar
Lim SJ, Bordenstein SR. An introduction to phylosymbiosis. Proc R Soc B Biol Sci. 2020;287:1-10.
Brooks AW, Kohl KD, Brucker RM, Van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14(11):1–19. https://doi.org/10.1371/journal.pbio.2000225.
Article
CAS
Google Scholar
Watson SE, Hauffe HC, Bull M, McKinney MA, Atwood TA, Perkins SE. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. 2019;13(12):2916–26. https://doi.org/10.1038/s41396-019-0480-2.
Article
PubMed
PubMed Central
Google Scholar
Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier JC, Bibi F, et al. Gut microbiome and dietary patterns in different Saudi populations and monkeys. Sci Rep. 2016;6(1):1–9. https://doi.org/10.1038/srep32191.
Article
CAS
Google Scholar
Goertz S, De Menezes AB, Birtles RJ, Id JF, Lowe E, Maccoll ADC, et al. Geographical location influences the composition of the gut microbiota in wild house mice ( Mus musculus domesticus ) at a fine spatial scale. PLoS One. 2019;14:1–16.
Article
Google Scholar
Orkin JD, Campos FA, Guadamuz A, Melin AD, Myers MS, Hernandez SEC. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 2019;13(1):183–96. https://doi.org/10.1038/s41396-018-0256-0.
Article
CAS
PubMed
Google Scholar
Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22(5):826–37. https://doi.org/10.1111/ele.13240.
Article
CAS
PubMed
Google Scholar
Kohl KD, Varner J, Wilkening JL, Dearing MD. Gut microbial communities of American pikas (Ochotona princeps): evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol. 2018;87(2):323–30. https://doi.org/10.1111/1365-2656.12692.
Article
PubMed
Google Scholar
Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM. Covariation of diet and gut microbiome in African megafauna. PNAS. 2019;116:1–6.
Article
Google Scholar
Ottichilo WK, De Leeuw J, Skidmore AK, Prins HHT, Said MY. Population trends of large non-migratory wild herbivores and livestock in the Masai Mara ecosystem, Kenya, between 1977 and 1997. Afr J Ecol. 2000;38(3):202–16. https://doi.org/10.1046/j.1365-2028.2000.00242.x.
Article
Google Scholar
Goheen JR, Augustine DJ, Veblen KE, Kimuyu DM, Palmer TM, Porensky LM, et al. Conservation lessons from large-mammal manipulations in east African savannas: the KLEE, UHURU, and GLADE experiments. Ann N Y Acad Sci. 2018;1429(1):31–49. https://doi.org/10.1111/nyas.13848.
Article
PubMed
Google Scholar
Veldhuis MP, Ritchie ME, Ogutu JO, Morrison TA, Beale CM, Estes AB, et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science (80- ). 2019;363:1424–8. https://doi.org/10.1126/science.aav0564.
Article
CAS
Google Scholar
Augustine DJ. Response of native ungulates to drought in semi-arid Kenyan rangeland. Afr J Ecol. 2010;48(4):1009–20. https://doi.org/10.1111/j.1365-2028.2010.01207.x.
Article
Google Scholar
Broten MD, Said M. Population Trends of Ungulates in and around Kenya’s Masai Mara Reserve. In: Serengeti II: Dynamics, Management, and Conservation of an Ecosystem. 1995. p. 169–93.
Cerling TE, Harris JM, Passey BH. Diets of east African Bovidae based on stable isotope analysis. J Mammal. 2003;84(2):456–70. https://doi.org/10.1644/1545-1542(2003)084<0456:DOEABB>2.0.CO;2.
Article
Google Scholar
Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ, Kuzmina ML, et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. PNAS. 2015;112(26):8019–24. https://doi.org/10.1073/pnas.1503283112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Codron D, Codron J, Lee-Thorp JA, Sponheimer M, De Ruiter D, Sealy J, et al. Diets of savanna ungulates from stable carbon isotope composition of faeces. J Zool. 2007;273(1):21–9. https://doi.org/10.1111/j.1469-7998.2007.00292.x.
Article
Google Scholar
Codron J, Lee-Thorp JA, Sponheimer M, Codron D, Grant R, De Ruiter D. Elephant (Loxodonta Africana) diets in Kruger National Park, South Africa: spatial and landscape differences. J Mammal. 2006;87(1):27–34. https://doi.org/10.1644/05-MAMM-A-017R1.1.
Article
Google Scholar
Scheelings TF, Moore RJ, Van TTH, Klaassen M, Reina RD. Microbial symbiosis and coevolution of an entire clade of ancient vertebrates: the gut microbiota of sea turtles and its relationship to their phylogenetic history. Anim Microbiome. 2020;2:2–12.
Article
Google Scholar
Tinker KA, Ottesen EA. Phylosymbiosis across deeply diverging lineages in omnivorous cockroaches. Appl Environ Microbiol. 2020;86(7):e02513–9. https://doi.org/10.1128/AEM.02513-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt E, Mykytczuk N, Schulte-Hostedde AI. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J. 2019;13(5):1293–305. https://doi.org/10.1038/s41396-019-0345-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perofsky AC, Lewis RJ, Meyers LA. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J. 2019;13(1):50–63. https://doi.org/10.1038/s41396-018-0251-5.
Article
PubMed
Google Scholar
Greene LK, Clayton JB, Rothman RS, Semel BP, Semel MA, Gillespie TR, et al. Local habitat , not phylogenetic relatedness , predicts gut microbiota better within folivorous than frugivorous lemur lineages. Biol Lett. 2019;15:5–11.
Article
Google Scholar
Gogarten JF, Davies TJ, Benjamino J, Gogarten JP, Graf J, Mielke A, et al. Factors influencing bacterial microbiome composition in a wild non-human primate community in Taï National Park, Côte d’Ivoire. ISME J. 2018;12(10):2559–74. https://doi.org/10.1038/s41396-018-0166-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amato KR, Mallott EK, Mcdonald D, Dominy NJ, Goldberg T, Lambert JE, et al. Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol. 2019;20(1):201. https://doi.org/10.1186/s13059-019-1807-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8(1):14319. https://doi.org/10.1038/ncomms14319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groussin M, Mazel F, Alm EJ. Co-evolution and co-speciation of host-gut Bacteria systems. Cell Host Microbe. 2020;28(1):12–22. https://doi.org/10.1016/j.chom.2020.06.013.
Article
CAS
PubMed
Google Scholar
Gerardo NM, Hoang KL, Stoy KS. Evolution of animal Immunity in the light of beneficial symbioses. Philos Trans R Soc B2. 2020;375:20190601.
Article
CAS
Google Scholar
Popkes M, Valenzano DR. Microbiota-host interactions shape ageing dynamics. Philos Trans R Soc B2. 2020;375:20190596.
Article
CAS
Google Scholar
Perofsky AC, Lewis RJ, Abondano LA, Difiore A, Meyers LA. Hierarchical social networks shape gut microbial composition in wild verreaux’s sifaka. Proc R Soc B Biol Sci. 2017;284:1-10.
Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, et al. Social behaviour and gut microbiota in red-bellied lemurs ( Eulemur rubriventer ): in search of the role of immunity in the evolution of sociality. J Anim Ecol. 2017;87(2):1–12. https://doi.org/10.1111/1365-2656.12781.
Article
Google Scholar
Opie C, Atkinson QD, Shultz S. The evolutionary history of primate mating systems. Commun Integr Biol. 2012;5(5):458–61. https://doi.org/10.4161/cib.20821.
Article
PubMed
PubMed Central
Google Scholar
Shultz S, Opie C, Atkinson QD. Stepwise evolution of stable sociality in primates. Nature. 2011;479(7372):219–22. https://doi.org/10.1038/nature10601.
Article
CAS
PubMed
Google Scholar
Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G, Tung J, et al. Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc R Soc B Biol Sci. 2019;286:1-9.
Muegge BD, Kuczynski J, Kinghts D, Clemente JC, Fontana L, Henrissat B, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science (80- ). 2017;332:970–4.
Article
Google Scholar
Clemens ET, Maloiy GMO. Digestive physiology of east African wild ruminants. Comp Biochem Physiol Part A Physiol. 1983;76(2):319–33. https://doi.org/10.1016/0300-9629(83)90333-X.
Article
CAS
Google Scholar
Illius AW, Gordon IJ. The functional significance of the browser-grazer dichotomy in African ruminants. Oecologia. 1994;98:167–75.
Article
PubMed
Google Scholar
Pérez-Barbería JF, Gordon IJ, Illius AW. Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia. 2001;129(4):498–508. https://doi.org/10.1007/s004420100768.
Article
PubMed
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science (80- ). 2008;320:1647.
Article
CAS
PubMed Central
Google Scholar
McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57(4):690–704. https://doi.org/10.1093/icb/icx090.
Article
PubMed
PubMed Central
Google Scholar
Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton Hanson J, et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol. 2012;21(11):2617–27. https://doi.org/10.1111/j.1365-294X.2012.05568.x.
Article
PubMed
Google Scholar
Godon JJ, Arulazhagan P, Steyer JP, Hamelin J. Vertebrate bacterial gut diversity: size also matters. BMC Ecol. 2016;16:1–9.
Article
Google Scholar
Liu P, Cheng A, Huang S, Lu H, Oshida T. Body-size scaling is related to gut microbial diversity, metabolism and dietary niche of arboreal folivorous flying squirrels. Sci Rep. 2020:1–12. https://doi.org/10.1038/s41598-020-64801-y.
Budd K, Gunn JC, Eggert LS, Finch T, Klymus K, Sitati N. Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna (Loxodonta africana) and forest elephants (L . cyclotis). Ecol Evol. 2020;10(12):1–14.
Metcalf JL, Song SJ, Morton JT, Weiss S, Seguin-Orlando A, Joly F, et al. Evaluating the impact of domestication and captivity on the horse gut microbiome. Sci Rep. 2017;7(1):15497. https://doi.org/10.1038/s41598-017-15375-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller EA, Livermore J, Alberts SC, Tung J, Archie EA. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome. 2017;5:1–14.
Article
Google Scholar
Moeller AHA, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2(1):e1500997. https://doi.org/10.1126/sciadv.1500997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson KVA. Gut microbiome composition and diversity are related to human personality traits. Hum Microbiome J. 2020;15 December 2019:100069. https://doi.org/10.1016/j.humic.2019.100069.
Article
Google Scholar
Shipley LA. Grazer s and browsers: how digestive morphology affects diet selection. In: Launchbaugh KL, Sanders KD, Mosley JC, editors. Grazing Behavior of Livestock and Wildlife. Moscow: Univ. of Idaho; 1999. p. 20-7.
Venter JA, Vermeulen MM, Brooke CF. Feeding ecology of large browsing and grazing herbivores. In: Gordon IJ, Prins HHT, editors. The ecology of browsing and grazing II. Cham: Springer International Publishing; 2019. p. 127–53. https://doi.org/10.1007/978-3-030-25865-8_5.
Chapter
Google Scholar
Hofmann RR. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia. 1989;78(4):443–57. https://doi.org/10.1007/BF00378733.
Article
CAS
PubMed
Google Scholar
Spencer LM. Morphological correlates of dietary resource partitioning in the African Bovidae. J Mammal. 1995;76(2):448–71. https://doi.org/10.2307/1382355.
Article
Google Scholar
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5(1):14567. https://doi.org/10.1038/srep14567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards JE, Shetty SA, Van Den Berg P, Burden F, Van Doorn DA, Pellikaan WF, et al. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub) species. Anim Microbiome. 2020;2:1–16.
Google Scholar
Ilmberger N, Güllert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, et al. A comparative metagenome survey of the fecal microbiota of a breast-and a plant-fed asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One. 2014;9:1–12.
Article
Google Scholar
Roggenbuck M, Sauer C, Poulsen M, Bertelsen MF, Sørensen SJ. The giraffe (Giraffa camelopardalis) rumen microbiome. FEMS Microbiol Ecol. 2014;90(1):237–46. https://doi.org/10.1111/1574-6941.12402.
Article
CAS
PubMed
Google Scholar
Tan SC, Chong CW, Yap IKS, Thong KL, Teh CSJ. Comparative assessment of faecal microbial composition and metabonome of swine, farmers and human control. Sci Rep. 2020;10:1–13.
Article
Google Scholar
Zeng B, Zhang S, Xu H, Kong F, Yu X, Wang P, et al. Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments. Microbiol Res. 2020;235 November 2019:126447. https://doi.org/10.1016/j.micres.2020.126447.
Article
CAS
PubMed
Google Scholar
Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–40. https://doi.org/10.3390/d5030627.
Article
Google Scholar
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306.
Kohl KD, Denise DM. The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol. 2016;7:1–9.
Google Scholar
Coordinators NR. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2018;46(D1):D8–D13. https://doi.org/10.1093/nar/gkx1095.
Article
CAS
Google Scholar
Shorrocks B. The biology of African savannas. New York: Oxford University Press; 2007. https://doi.org/10.1093/acprof:oso/9780198570660.001.0001.
Book
Google Scholar
Wright ADG, Auckland CH, Lynn DH. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol. 2007;73(13):4206–10. https://doi.org/10.1128/AEM.00103-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014;8(2):295–308. https://doi.org/10.1038/ismej.2013.155.
Article
CAS
PubMed
Google Scholar
Liu J, Pu YY, Xie Q, Wang JK, Liu JX. Pectin induces an in vitro rumen microbial population shift attributed to the Pectinolytic Treponema group. Curr Microbiol. 2014;70(1):67–74. https://doi.org/10.1007/s00284-014-0672-y.
Article
CAS
PubMed
Google Scholar
Xie X, Yang C, Guan LL, Wang J, Xue M, Liu JX. Persistence of cellulolytic bacteria fibrobacter and treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Front Microbiol. 2018;9 JUN:1363. doi:https://doi.org/10.3389/fmicb.2018.01363.
Milani C, Alessandri G, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, et al. Multi-omics approaches to decipher the impact of diet and host physiology on the mammalian gut microbiome. Appl Environ Microbiol. 2020;86:1–21.
Google Scholar
Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol. 2014;80(18):5717–22. https://doi.org/10.1128/AEM.01451-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
De La Cuesta-Zuluaga J, Escobar JS. Considerations for optimizing microbiome analysis using a marker gene. Front Nutr. 2016;3:26. https://doi.org/10.3389/fnut.2016.00026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallott EK, Malhi RS, Amato KR. Assessing the comparability of different DNA extraction and amplification methods in gut microbial community profiling. Access Microbiol. 2019;1(7):1-15.
Green DS, Zipkin EF, Incorvaia DC, Holekamp KE. Long-term ecological changes influence herbivore diversity and abundance inside a protected area in the Mara-Serengeti ecosystem. Glob Ecol Conserv. 2019;20:e00697. https://doi.org/10.1016/j.gecco.2019.e00697.
Article
Google Scholar
Kingdon J. East African mammals: volume I. Chicago: The University of Chicago Press; 1984.
Google Scholar
Kingdon J. East African mammals: volume IIIC. Chicago: The University of Chicago Press; 1982.
Google Scholar
Kingdon J. East African mammals: volume IIID. Chicago: The University of Chicago Press; 1982.
Google Scholar
Kingdon J. East African mammals: volume IIIB. Chicago: The University of Chicago Press; 1979.
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. https://doi.org/10.1038/ismej.2012.8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and Curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–20. https://doi.org/10.1128/AEM.01043-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing. Accessed 28 Aug 2019
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for Dat analysis. Springer-Verlag New York: New York, NY; 2009. https://doi.org/10.1007/978-0-387-98141-3.
Book
Google Scholar
Kolde R. Pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019;:1–8. https://cran.r-project.org/package=pheatmap.
De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90(12):3566–74. https://doi.org/10.1890/08-1823.1.
Article
PubMed
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. https://doi.org/10.1128/AEM.01541-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin L, Wu D, Li C, Zhang A, Xiong Y, Wei R, et al. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbio. 2020;80(3):293–304. https://doi.org/10.1007/s13199-020-00673-0.
Article
CAS
Google Scholar
Bo T-B, Zhang X-Y, Wen J, Deng K, Qin X-W, Wang D-H. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (Lasiopodomys brandtii). ISME J. 2019;13(12):3037–53. https://doi.org/10.1038/s41396-019-0492-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:1–11.
Article
Google Scholar
Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–3. https://doi.org/10.1093/bioinformatics/btq706.
Article
CAS
PubMed
Google Scholar
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–4. https://doi.org/10.1093/bioinformatics/btq166.
Article
CAS
PubMed
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Fox J, Weisberg S, Fox J. An R companion to applied regression. Thousand Oaks, CA: Sage; 2011.
Google Scholar
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R Packag version 24–6. 2018. https://cran.r-project.org/web/packages/vegan/index.html. Accessed 28 Aug 2019.
Upham N, Esselstyn J, Jetz W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019;17(12):e3000494. https://doi.org/10.1371/journal.pbio.3000494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20(2):289–90. https://doi.org/10.1093/bioinformatics/btg412.
Article
CAS
PubMed
Google Scholar
Kim S. Ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods. 2015;22(6):665–74. https://doi.org/10.5351/CSAM.2015.22.6.665.
Article
PubMed
PubMed Central
Google Scholar
Ochieng EO. Characterizing the spatial distributions of elephants in Mpala, Kenya. 2015.
Kartzinel TR, Pringle RM. Multiple dimensions of dietary diversity in large mammalian herbivores. J Anim Ecol. 2020;89(6):1–15.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
PubMed
PubMed Central
Google Scholar
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46(W1):W537–44. https://doi.org/10.1093/nar/gky379.
Article
CAS
PubMed
PubMed Central
Google Scholar