McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36. https://doi.org/10.1073/pnas.1218525110.
Article
PubMed
PubMed Central
Google Scholar
Sachs JL, Skophammer RG, Regus JU. Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci U S A. 2011;108(SUPPL. 2):10800–7. https://doi.org/10.1073/pnas.1100304108.
Article
PubMed
PubMed Central
Google Scholar
Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett. 2014;17:1238–46. https://doi.org/10.1111/ele.12329.
Article
PubMed
Google Scholar
Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68:1108–14.
Article
CAS
Google Scholar
Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Animal behavior and the microbiome. Science. 2012;338:198–9. https://doi.org/10.1126/SCIENCE.1227412.
Article
CAS
PubMed
Google Scholar
Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC, Horak RD, et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 2020;367:573–6.
Article
CAS
Google Scholar
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5: e1000423.
Article
Google Scholar
Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–8.
Article
CAS
Google Scholar
Pitlik SD, Koren O. How holobionts get sick-toward a unifying scheme of disease. Microbiome. 2017;5:64.
Article
Google Scholar
Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14:685–90. https://doi.org/10.1038/ni.2608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wasimuddin, Corman VM, Ganzhorn JU, Rakotondranary J, Ratovonamana YR, Drosten C, et al. Adenovirus infection is associated with altered gut microbial communities in a non-human primate. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-019-49829-z.
Article
CAS
Google Scholar
Borewicz KA, Kim HB, Singer RS, Gebhart CJ, Sreevatsan S, Johnson T, et al. Changes in the porcine intestinal microbiome in response to infection with Salmonella enterica and Lawsonia intracellularis. PLoS ONE. 2015;10: e0139106. https://doi.org/10.1371/journal.pone.0139106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li RW, Li W, Sun J, Yu P, Baldwin RL, Urban JF. The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome. Sci Rep. 2016. https://doi.org/10.1038/srep20606.
Article
PubMed
PubMed Central
Google Scholar
van Tilburg BE, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11:1–16. https://doi.org/10.1038/s41467-020-16431-1.
Article
CAS
Google Scholar
Zaneveld JR, McMinds R, Thurber RV. Stress and stability: Applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121. https://doi.org/10.1038/nmicrobiol.2017.121.
Article
CAS
PubMed
Google Scholar
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite–mutualist continuum. Nat Rev Microbiol. 2021;19:623–38. https://doi.org/10.1038/s41579-021-00550-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peachey LE, Castro C, Molena RA, Jenkins TP, Griffin JL, Cantacessi C. Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Sci Rep. 2019;9:11121.
Article
Google Scholar
Twigg HL, Knox KS, Zhou J, Crothers KA, Nelson DE, Toh E, et al. Effect of advanced HIV infection on the respiratory microbiome. Am J Respir Crit Care Med. 2016;194:226–35. https://doi.org/10.1164/rccm.201509-1875OC.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70–89. https://doi.org/10.1111/imr.12567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montero BK, Wasimuddin, Schwensow N, Gillingham MAF, Ratovonamana YR, Rakotondranary SJ, Corman V, et al. Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non − human primate. PLoS ONE. 2021;17:e1009675.
Moeller AH, Shilts M, Li Y, Rudicell RS, Lonsdorf EV, Pusey AE, et al. Siv-induced instability of the chimpanzee gut microbiome. Cell Host Microbe. 2013;14:340–5. https://doi.org/10.1016/j.chom.2013.08.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn M, Piecyk A, Jorge F, Cerrato R, Kalbe M, Dheilly NM. The host phenotype and microbiome varies with infection status, parasite origin and parasite microbiome composition. Mol Ecol. 2022. https://doi.org/10.21203/rs.3.rs-323107/v1.
Article
PubMed
Google Scholar
Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol. 2013;16:221–7. https://doi.org/10.1016/j.mib.2013.03.009.
Article
PubMed
PubMed Central
Google Scholar
Ezenwa VO. Helminth–microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol. 2016;38:527–34. https://doi.org/10.1111/pim.12348.
Article
CAS
PubMed
Google Scholar
Hoarau AOG, Mavingui P, Lebarbenchon C. Coinfections in wildlife: Focus on a neglected aspect of infectious disease epidemiology. PLoS Pathog. 2020;16: e1008790. https://doi.org/10.1371/journal.ppat.1008790.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frisan T. Co- and polymicrobial infections in the gut mucosa: The host–microbiota–pathogen perspective. Cell Microbiol. 2021;23: e13279.
Article
CAS
Google Scholar
Couturier-Maillard A, Froux N, Piotet-Morin J, Michaudel C, Brault L, Le Bérichel J, et al. Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation article. Mucosal Immunol. 2018;11:1181–90.
Article
CAS
Google Scholar
Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159:944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048.
Article
CAS
PubMed
Google Scholar
Din AU, Mazhar M, Wasim M, Ahmad W, Bibi A, Hassan A, et al. SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. Biomed Pharmacother. 2021;133: 110947.
Article
CAS
Google Scholar
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental factors and host microbiomes shape host–pathogen dynamics. Trends Parasitol. 2020;36:616–33. https://doi.org/10.1016/j.pt.2020.04.010.
Article
CAS
PubMed
Google Scholar
Andersson M, Scherman K, Råberg L. Infection dynamics of the tick-borne pathogen “Candidatus Neoehrlichia mikurensis” and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol. 2014;80:1645–9. https://doi.org/10.1128/AEM.03469-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science. 2010;330:243–6. https://doi.org/10.1126/science.1190333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abd-Elmonsef Mahmoud G, Osman YA, Abdel-Hakeem SS. Hydrolytic bacteria associated with natural helminth infection in the midgut of Red Sea marbled spinefoot rabbit fish Siganus rivulatus. Microb Pathog. 2020;147:104404.
Article
CAS
Google Scholar
Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, et al. Genetically diverse filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerg Infect Dis. 2017;23:482–6. https://doi.org/10.3201/eid2303.161119.
Article
PubMed
PubMed Central
Google Scholar
Orłowska A, Smreczak M, Potyrało P, Bomba A, Trębas P, Rola J. First detection of bat astroviruses (BtAstVs) among bats in Poland: The genetic BtAstVs diversity reveals multiple co-infection of bats with different strains. Viruses. 2021;13:158. https://doi.org/10.3390/v13020158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petney TN, Andrews RH. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance*. Int J Parasitol. 1998;28:377–93.
Article
CAS
Google Scholar
Mason LMK, Duffell E, Veldhuijzen IK, Petriti U, Bunge EM, Tavoschi L. Hepatitis b and c prevalence and incidence in key population groups with multiple risk factors in the EU/ EEA: A systematic review. Eurosurveillance. 2019;24:1800614. https://doi.org/10.2807/1560-7917.ES.2019.24.30.1800614.
Article
PubMed Central
Google Scholar
Yang T, Chen Q, Li D, Wang T, Gou Y, Wei B, et al. High prevalence of syphilis, HBV, and HCV co-infection, and low rate of effective vaccination against hepatitis B in HIV-infected patients in West China hospital. J Med Virol. 2018;90:101–8. https://doi.org/10.1002/jmv.24912.
Article
PubMed
Google Scholar
Kohl C, Brinkmann A, Radonić A, Dabrowski PW, Mühldorfer K, Nitsche A, et al. The virome of German bats: comparing virus discovery approaches. Sci Rep. 2021;11:1–18. https://doi.org/10.1038/s41598-021-86435-4.
Article
CAS
Google Scholar
Fackelmann G, Gillingham MAF, Schmid J, Heni AC, Wilhelm K, Schwensow N, et al. Human encroachment into wildlife gut microbiomes. Commun Biol. 2021;4:1–11. https://doi.org/10.1038/s42003-021-02315-7.
Article
Google Scholar
Cattadori IM, Boag B, Hudson PJ. Parasite co-infection and interaction as drivers of host heterogeneity. Int J Parasitol. 2008;38:371–80.
Article
CAS
Google Scholar
Al-Neama RT, Bown KJ, Blake DP, Birtles RJ. Determinants of Eimeria and Campylobacter infection dynamics in UK domestic sheep: the role of co-infection. Parasitology. 2021;148:623–9. https://doi.org/10.1017/S0031182021000044.
Article
CAS
PubMed
Google Scholar
Pedersen AB, Antonovics J. Anthelmintic treatment alters the parasite community in a wild mouse host. Biol Lett. 2013;9:20130205. https://doi.org/10.1098/rsbl.2013.0205.
Article
PubMed
PubMed Central
Google Scholar
Hafer N, Milinski M. Inter- and intraspecific conflicts between parasites over host manipulation. Proc R Soc B Biol Sci. 2016;283:20152870. https://doi.org/10.1098/rspb.2015.2870.
Article
CAS
Google Scholar
Risely A, Gillingham MAF, Béchet A, Brändel S, Heni AC, Heurich M, et al. Phylogeny- and abundance-based metrics allow for the consistent comparison of core gut microbiome diversity indices across host species. Front Microbiol. 2021;12:659918. https://doi.org/10.3389/fmicb.2021.659918.
Article
PubMed
PubMed Central
Google Scholar
Tipton L, Darcy JL, Hynson NA. A developing symbiosis: Enabling cross-talk between ecologists and microbiome scientists. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.00292.
Article
PubMed
PubMed Central
Google Scholar
Kumar M, Ji B, Zengler K, Nielsen J. Modelling approaches for studying the microbiome. Nat Microbiol. 2019;4:1253–67. https://doi.org/10.1038/s41564-019-0491-9.
Article
CAS
PubMed
Google Scholar
Leite FLL, Singer RS, Ward T, Gebhart CJ, Isaacson RE. Vaccination against Lawsonia intracellularis decreases shedding of Salmonella enterica serovar Typhimurium in co-infected pigs and alters the gut microbiome. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-21255-7.
Article
PubMed
PubMed Central
Google Scholar
Abdelhamid MK, Quijada NM, Dzieciol M, Hatfaludi T, Bilic I, Selberherr E, et al. Co-infection of chicken layers with Histomonas meleagridis and avian pathogenic Escherichia coli is associated with dysbiosis, cecal colonization and translocation of the bacteria from the gut lumen. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.586437.10.3389/fmicb.2020.586437.
Article
PubMed
PubMed Central
Google Scholar
Wan X, Xu L, Sun X, Li H, Yan F, Han R, et al. Gut microbiota profiles of commercial laying hens infected with tumorigenic viruses. BMC Vet Res. 2020. https://doi.org/10.1186/s12917-020-02430-3.10.1186/s12917-020-02430-3.
Article
PubMed
PubMed Central
Google Scholar
Whary MT, Muthupalani S, Ge Z, Feng Y, Lofgren J, Shi HN, et al. Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect. 2014;16:345–55.
Article
CAS
Google Scholar
Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, et al. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science. 2014;345:578–82.
Article
CAS
Google Scholar
Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, et al. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLOS Pathog. 2017;13: e1006471. https://doi.org/10.1371/journal.ppat.1006471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, He Y, Jin X, Zhou Y, Chen X, Zhao J, et al. The effect of co-infection of food-borne pathogenic bacteria on the progression of Campylobacter jejuni infection in mice. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01977.
Article
PubMed
PubMed Central
Google Scholar
Xu F, Cheng R, Miao S, Zhu Y, Sun Z, Qiu L, et al. Prior Toxoplasma gondii infection ameliorates liver fibrosis induced by Schistosoma japonicum through inhibiting th2 response and improving balance of intestinal flora in mice. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21082711.
Article
PubMed
PubMed Central
Google Scholar
Youmans BP, Ajami NJ, Jiang Z-D, Campbell F, Wadsworth D, Petrosino JF, et al. Characterization of the human gut microbiome during travelers’ diarrhea. Gut Microbes. 2015;6:110–9. https://doi.org/10.1080/19490976.2015.1019693.
Article
PubMed
PubMed Central
Google Scholar
Mathew S, Smatti MK, Al Ansari K, Nasrallah GK, Al Thani AA, Yassine HM. Mixed viral-bacterial infections and their effects on gut microbiota and clinical illnesses in children. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-018-37162-w.
Article
CAS
Google Scholar
Easton AV, Raciny-Aleman M, Liu V, Ruan E, Marier C, Heguy A, et al. Immune response and microbiota profiles during coinfection with Plasmodium vivax and soil-transmitted helminths. MBio. 2020;11:1–17. https://doi.org/10.1128/mBio.01705-20.
Article
Google Scholar
Mejia R, Damania A, Jeun R, Bryan PE, Vargas P, Juarez M, et al. Impact of intestinal parasites on microbiota and cobalamin gene sequences: A pilot study. Parasit Vectors. 2020;13:200. https://doi.org/10.1186/s13071-020-04073-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor BC, Weldon KC, Ellis RJ, Franklin D, Groth T, Gentry EC, et al. Depression in individuals coinfected with HIV and HCV is associated with systematic differences in the gut microbiome and metabolome. mSystems. 2020;5:1–16.
Google Scholar
Sabey KA, Song SJ, Jolles A, Knight R, Ezenwa VO. Coinfection and infection duration shape how pathogens affect the African buffalo gut microbiota. ISME J. 2021;15:1359–71. https://doi.org/10.1038/s41396-020-00855-0.
Article
CAS
PubMed
Google Scholar
Mollentze N, Streicker DG. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc Natl Acad Sci U S A. 2020;117:9423–30. https://doi.org/10.1073/pnas.1919176117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc R Soc B Biol Sci. 2020;287:20192736. https://doi.org/10.1098/rspb.2019.2736.
Article
Google Scholar
Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature. 2020;584:396–402. https://doi.org/10.1038/s41586-020-2562-8.
Article
CAS
Google Scholar
Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci. 2015. https://doi.org/10.1098/rstb.2014.0295.
Article
Google Scholar
Wacharapluesadee S, Duengkae P, Rodpan A, Kaewpom T, Maneeorn P, Kanchanasaka B, et al. Diversity of coronavirus in bats from Eastern Thailand. Virol J. 2015;12:1–7. https://doi.org/10.1186/s12985-015-0289-1.
Article
Google Scholar
Ge XY, Wang N, Zhang W, Hu B, Li B, Zhang YZ, et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol Sin. 2016;31:31–40. https://doi.org/10.1007/s12250-016-3713-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc Natl Acad Sci U S A. 1997;94:338–42. https://doi.org/10.1073/pnas.94.1.338.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9.
Article
CAS
Google Scholar
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.
Article
CAS
Google Scholar
Schmid J, Rasche A, Eibner G, Jeworowski L, Page RA, Corman VM, et al. Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting landscapes with various degrees of human environmental change. Oecologia. 2018;188:289–302. https://doi.org/10.1007/S00442-018-4210-7.
Article
PubMed
Google Scholar
Wasimuddin, Brändel SD, Tschapka M, Page R, Rasche A, Corman VM, et al. Astrovirus infections induce age-dependent dysbiosis in gut microbiomes of bats. ISME J. 2018;12:2883–93. https://doi.org/10.1038/s41396-018-0239-1.
Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 2020;18:461–71. https://doi.org/10.1038/s41579-020-0394-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Yang S, Li B, Li W, Wang J, Chen Z, et al. Alterations of the mice gut microbiome via Schistosoma japonicum ova-induced granuloma. Front Microbiol. 2019;10:352. https://doi.org/10.3389/fmicb.2019.00352.
Article
PubMed
PubMed Central
Google Scholar
Osakunor DNM, Munk P, Mduluza T, Petersen TN, Brinch C, Ivens A, et al. The gut microbiome but not the resistome is associated with urogenital schistosomiasis in preschool-aged children. Commun Biol. 2020;3:1–11. https://doi.org/10.1038/s42003-020-0859-7.
Article
CAS
Google Scholar
Benson A, Pifer R, Behrendt CL, Hooper LV, Yarovinsky F. Gut Commensal bacteria direct a protective immune response against toxoplasma gondii. Cell Host Microbe. 2009;6:187–96. https://doi.org/10.1016/j.chom.2009.06.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue T, Nakayama J, Moriya K, Kawaratani H, Momoda R, Ito K, et al. Gut dysbiosis associated with Hepatitis C virus infection. Clin Infect Dis. 2018;67:869–77. https://doi.org/10.1093/cid/ciy205.
Article
CAS
PubMed
Google Scholar
Liebhart D, Ganas P, Sulejmanovic T, Hess M. Histomonosis in poultry: previous and current strategies for prevention and therapy. Avian Pathol. 2017;46:1–18. https://doi.org/10.1080/03079457.2016.1229458.
Article
CAS
PubMed
Google Scholar
Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF. Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol. 2015;31:149–59.
Article
Google Scholar
Giacomin P, Croese J, Krause L, Loukas A, Cantacessi C. Suppression of inflammation by helminths: a role for the gut microbiota? Philos Trans R Soc B Biol Sci. 2015. https://doi.org/10.1098/RSTB.2014.0296.
Article
Google Scholar
Olivares JL, Fernández R, Fleta J, Ruiz MY, Clavel A. Vitamin B12 and folic acid in children with intestinal parasitic infection. J Am Coll Nutr. 2002;21:109–13. https://doi.org/10.1080/07315724.2002.10719202.
Article
CAS
PubMed
Google Scholar
Loy DE, Plenderleith LJ, Sundararaman SA, Liu W, Gruszczyk J, Chen YJ, et al. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc Natl Acad Sci U S A. 2018;115:E8450–9. https://doi.org/10.1073/pnas.1810053115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zohdy S, Grossman MK, Fried IR, Rasambainarivo FT, Wright PC, Gillespie TR. Diversity and prevalence of diarrhea-associated viruses in the lemur community and associated human population of Ranomafana National Park, Madagascar. Int J Primatol. 2015;36:143–53. https://doi.org/10.1007/s10764-015-9817-5.
Article
Google Scholar
Ragazzo LJ, Zohdy S, Velonabison M, Herrera J, Wright PC, Gillespie TR. Entamoeba histolytica infection in wild lemurs associated with proximity to humans. Vet Parasitol. 2018;249:98–101.
Article
Google Scholar
Kowalewski MM, Salzer JS, Deutsch JC, Raño M, Kuhlenschmidt MS, Gillespie TR. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: Patterns of zoonotic protozoa infection relative to degree of human-primate contact. Am J Primatol. 2011;73:75–83. https://doi.org/10.1002/ajp.20803.
Article
PubMed
Google Scholar
Tan B, Wu LJ, Yang XL, Li B, Zhang W, Lei YS, et al. Isolation and characterization of adenoviruses infecting endangered golden snub-nosed monkeys (Rhinopithecus roxellana). Virol J. 2016;13:1–5. https://doi.org/10.1186/s12985-016-0648-6.
Article
CAS
Google Scholar
Pedersen AB, Altizer S, Poss M, Cunningham AA, Nunn CL. Patterns of host specificity and transmission among parasites of wild primates. Int J Parasitol. 2005;35:647–57.
Article
Google Scholar
Cooper N, Nunn CL. Identifying future zoonotic disease threats: Where are the gaps in our understanding of primate infectious diseases? Evol Med Public Heal. 2013;2013:27–36. https://doi.org/10.1093/emph/eot001.
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2010;5:169–72. https://doi.org/10.1038/ismej.2010.133.
Article
PubMed
PubMed Central
Google Scholar
Ma Z (Sam). Testing the Anna Karenina Principle in Human Microbiome-Associated Diseases. iScience. 2020;23:101007. https://doi.org/10.1016/J.ISCI.2020.101007.
Stevens RB. Cultural practices in disease control. Plant Pathol. 1960; 357–429.
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.
Article
CAS
Google Scholar
Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341:514–9. https://doi.org/10.1126/SCIENCE.1239401/SUPPL_FILE/514.MP3.
Article
CAS
PubMed
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nat 2008 4577228. 2008;457:480–4. https://doi.org/10.1038/nature07540.
Article
CAS
Google Scholar
Fleischer R, Schmid DW, Wasimuddin, Brändel SD, Rasche A, Corman VM, et al. Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Mol Ecol. 2022;31:3342–59. https://doi.org/10.1111/MEC.16491.
Stecher B, Maier L, Hardt WD. “Blooming” in the gut: How dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol. 2013;11:277–84.
Article
CAS
Google Scholar
Wotzka SY, Nguyen BD, Hardt WD. Salmonella typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe. 2017;21:443–54.
Article
CAS
Google Scholar
Thatcher HR, Downs CT, Koyama NF. Using parasitic load to measure the effect of anthropogenic disturbance on Vervet Monkeys. EcoHealth. 2018;15:676–81. https://doi.org/10.1007/s10393-018-1349-y.
Article
PubMed
PubMed Central
Google Scholar
Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci. 2015;112:8667–71.
Article
CAS
Google Scholar
Medina D, Greenspan SE, Carvalho T, Guilherme Becker C, Toledo LF. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol. 2021;97:1–15.
Article
Google Scholar
Jiménez RR, Alvarado G, Sandoval J, Sommer S. Habitat disturbance influences the skin microbiome of a rediscovered neotropical-montane frog. BMC Microbiol. 2020;20:1–14.
Article
Google Scholar
Trinh P, Zaneveld JR, Safranek S, Rabinowitz PM. One Health relationships between human, animal, and environmental microbiomes: A mini-review. Front Public Heal. 2018. https://doi.org/10.3389/fpubh.2018.00235.
Article
Google Scholar