Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506.
PubMed
PubMed Central
Google Scholar
Wu H-J, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14.
PubMed
PubMed Central
Google Scholar
Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016;14:374–84.
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. PNAS. 2017;114:4775–80.
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Steele MI, Leonard SP, Motta EVS, Moran NA. Honey bees as models for gut microbiota research. Lab Anim. 2018;47:317–25.
Google Scholar
Martinson VG, Moy J, Moran NA. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol. 2012;78:2830–40.
CAS
PubMed
PubMed Central
Google Scholar
Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci. 2017;4:170003.
PubMed
PubMed Central
Google Scholar
Horak RD, Leonard SP, Moran NA. Symbionts shape host innate immunity in honeybees. Proc R Soc B R Soc. 2020;287:20201184.
Google Scholar
Emery O, Schmidt K, Engel P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol Ecol. 2017;26:2576–90.
CAS
PubMed
Google Scholar
Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol. 2009;11:2284–90.
PubMed
Google Scholar
Evans JD, Aronstein K, Chen YP, Hetru C, Imler J-L, Jiang H, et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol. 2006;15:645–56.
CAS
PubMed
PubMed Central
Google Scholar
Casteels P, Ampe C, Riviere L, van Damme J, Elicone C, Fleming M, et al. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem. 1990;187:381–6.
CAS
PubMed
Google Scholar
Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 1989;8:2387–91.
CAS
PubMed
PubMed Central
Google Scholar
Klaudiny J, Albert Š, Bachanová K, Kopernický J, Šimúth J. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol. 2005;35:11–22.
CAS
PubMed
Google Scholar
Casteels P, Ampe C, Jacobs F, Tempst P. Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem. 1993;268:7044–54.
CAS
PubMed
Google Scholar
Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: the same, with differences? Virulence. 2018;9:1625–39.
CAS
PubMed
PubMed Central
Google Scholar
Marmaras VJ, Charalambidis ND, Zervas CG. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch Insect Biochem Physiol. 1996;31:119–33.
CAS
PubMed
Google Scholar
Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017;15:e2001861.
PubMed
PubMed Central
Google Scholar
Li JH, Evans JD, Li WF, Zhao YZ, DeGrandi-Hoffman G, Huang SK, et al. New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PLoS ONE. 2017;12:e0187505.
PubMed
PubMed Central
Google Scholar
Dai P, Yan Z, Ma S, Yang Y, Wang Q, Hou C, et al. The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. J Agric Food Chem. 2018;66:7786–93.
CAS
PubMed
Google Scholar
Motta EVS, Raymann K, Moran NA. Glyphosate perturbs the gut microbiota of honey bees. PNAS. 2018;115:10305–10.
CAS
PubMed
PubMed Central
Google Scholar
Motta EVS, Moran NA. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. mSystems. 2020;5:e00268-e320.
CAS
PubMed
PubMed Central
Google Scholar
Motta EVS, Mak M, De Jong TK, Powell JE, O’Donnell A, Suhr KJ, et al. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl Environ Microbiol. 2020 [cited 2020 Sep 16];86. Available from https://aem.asm.org/content/86/18/e01150-20.
Blot N, Veillat L, Rouzé R, Delatte H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS ONE. 2019;14:e0215466.
CAS
PubMed
PubMed Central
Google Scholar
Dechartress J, Pawluski JL, Gueguen M-M, Jablaoui A, Maguin E, Rhimi M, et al. Glyphosate and glyphosate-based herbicide exposure during the peripartum period affects maternal brain plasticity, maternal behavior and microbiome. J Neuroendocrinol. 2019;31:e12731.
Google Scholar
Aitbali Y, Ba-M’hamed S, Elhidar N, Nafis A, Soraa N, Bennis M. Glyphosate based-herbicide exposure affects gut microbiota, anxiety and depression-like behaviors in mice. Neurotoxicol Teratol. 2018;67:44–9.
CAS
PubMed
Google Scholar
Lozano VL, Defarge N, Rocque L-M, Mesnage R, Hennequin D, Cassier R, et al. Sex-dependent impact of Roundup on the rat gut microbiome. Toxicol Rep. 2018;5:96–107.
CAS
PubMed
Google Scholar
Suppa A, Kvist J, Li X, Dhandapani V, Almulla H, Tian AY, et al. Roundup causes embryonic development failure and alters metabolic pathways and gut microbiota functionality in non-target species. Microbiome. 2020;8:170.
PubMed
PubMed Central
Google Scholar
Ruuskanen S, Rainio MJ, Gómez-Gallego C, Selenius O, Salminen S, Collado MC, et al. Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: a long-term experiment in an avian model. Environ Pollut. 2020;266:115108.
CAS
PubMed
Google Scholar
Newman MM, Hoilett N, Lorenz N, Dick RP, Liles MR, Ramsier C, et al. Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci Total Environ. 2016;543:155–60.
CAS
PubMed
Google Scholar
Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, et al. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. 2018;616–617:255–68.
PubMed
Google Scholar
Vázquez DE, Ilina N, Pagano EA, Zavala JA, Farina WM. Glyphosate affects the larval development of honey bees depending on the susceptibility of colonies. PLoS ONE. 2018;13:e0205074.
PubMed
PubMed Central
Google Scholar
Delkash-Roudsari S, Chicas-Mosier AM, Goldansaz SH, Talebi-Jahromi K, Ashouri A, Abramson CI. Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicol Environ Saf. 2020;204:111108.
CAS
PubMed
Google Scholar
Farina WM, Balbuena MS, Herbert LT, Mengoni Goñalons C, Vázquez DE. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: individual impairments with implications for the hive. Insects. 2019;10:354.
PubMed Central
Google Scholar
Herbert LT, Vázquez DE, Arenas A, Farina WM. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol. 2014;217:3457–64.
PubMed
Google Scholar
Balbuena MS, Tison L, Hahn M-L, Greggers U, Menzel R, Farina WM. Effects of sublethal doses of glyphosate on honeybee navigation. J Exp Biol. 2015;218:2799–805.
PubMed
Google Scholar
Faita MR, Cardozo MM, Amandio DTT, Orth AI, Nodari RO. Glyphosate-based herbicides and Nosema sp. microsporidia reduce honey bee (Apis mellifera L.) survivability under laboratory conditions. J Apic Res. 2020;59:332–42. https://doi.org/10.1080/00218839.2020.1736782.
Article
Google Scholar
Zhao H, Li G, Guo D, Wang Y, Liu Q, Gao Z, et al. Transcriptomic and metabolomic landscape of the molecular effects of glyphosate commercial formulation on Apis mellifera ligustica and Apis cerana cerana. Sci Total Environ. 2020;744:140819.
CAS
PubMed
Google Scholar
Howe CM, Berrill M, Pauli BD, Helbing CC, Werry K, Veldhoen N. Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem. 2004;23:1928–38.
CAS
PubMed
Google Scholar
Gaupp-Berghausen M, Hofer M, Rewald B, Zaller JG. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci Rep. 2015;5:12886.
CAS
PubMed
PubMed Central
Google Scholar
Mao Q, Manservisi F, Panzacchi S, Mandrioli D, Menghetti I, Vornoli A, et al. The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome. Environ Health. 2018 [cited 2019 May 22];17. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972442/.
Nosanchuk JD, Ovalle R, Casadevall A. Glyphosate inhibits melanization of Cryptococcus neoformans and prolongs survival of mice after systemic infection. J Infect Dis. 2001;183:1093–9.
CAS
PubMed
Google Scholar
Smith DFQ, Camacho E, Thakur R, Barron AJ, Dong Y, Dimopoulos G, et al. Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biol. 2021;19:e3001182.
CAS
PubMed
PubMed Central
Google Scholar
Baffoni L, Alberoni D, Gaggìa F, Braglia C, Stanton C, Ross PR, et al. Honeybee exposure to veterinary drugs: how is the gut microbiota affected? Microbiol Spectr. 2021;9:e00176-e221.
CAS
PubMed Central
Google Scholar
Powell JE, Carver Z, Leonard SP, Moran NA. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol Spectr. 2021;9:e00103–21.
CAS
PubMed Central
Google Scholar
Reybroeck W, Daeseleire E, De Brabander HF, Herman L. Antimicrobials in beekeeping. Vet Microbiol. 2012;158:1–11.
CAS
PubMed
Google Scholar
Lohman BK, Weber JN, Bolnick DI. Evaluation of TagSeq, a reliable low-cost alternative for RNAseq. Mol Ecol Resour. 2016;16:1315–21.
CAS
PubMed
Google Scholar
Steele MI, Motta EVS, Gatu T, Martinez D, Moran NA. The gut microbiota protects bees from invasion by a bacterial pathogen. Microbiol Spectr. 2021 [cited 2021 Jan 26]; Available from http://www.onlinelibrary.wiley.com/doi/abs/10.1002/9781119583417.notes.
Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol. 2011;193:6057–69.
CAS
PubMed
PubMed Central
Google Scholar
Burritt NL, Foss NJ, Neeno-Eckwall EC, Church JO, Hilger AM, Hildebrand JA, et al. Sepsis and hemocyte loss in honey bees (Apis mellifera) infected with Serratia marcescens strain Sicaria. PLoS ONE. 2016;11:e0167752.
PubMed
PubMed Central
Google Scholar
Raymann K, Coon KL, Shaffer Z, Salisbury S, Moran NA. Pathogenicity of Serratia marcescens strains in honey bees. MBio. 2018;9:e01649–18.
PubMed
PubMed Central
Google Scholar
Vázquez DE, Latorre-Estivalis JM, Ons S, Farina WM. Chronic exposure to glyphosate induces transcriptional changes in honey bee larva: a toxicogenomic study. Environ Pollut. 2020;261:114148.
PubMed
Google Scholar
Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. PNAS Natl Acad Sci. 2005;102:7470–5.
CAS
Google Scholar
Aronstein KA, Murray KD, Saldivar E. Transcriptional responses in honey Bee larvae infected with chalkbrood fungus. BMC Genomics. 2010;11:391.
PubMed
PubMed Central
Google Scholar
Cullen TW, Schofield WB, Barry NA, Putnam EE, Rundell EA, Trent MS, et al. Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015;347:170–5.
CAS
PubMed
PubMed Central
Google Scholar
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14:796–810.
CAS
PubMed
PubMed Central
Google Scholar
Diamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009;15:2377–92.
CAS
PubMed
PubMed Central
Google Scholar
Vannette RL, Mohamed A, Johnson BR. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci Rep. 2015;5:16224.
CAS
PubMed
PubMed Central
Google Scholar
Cerenius L, Söderhäll K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004;198:116–26.
CAS
PubMed
Google Scholar
Ramsden CA, Riley PA. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem. 2014;22:2388–95.
CAS
PubMed
Google Scholar
González-Santoyo I, Córdoba-Aguilar A. Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl. 2012;142:1–16.
Google Scholar
Rok J, Buszman E, Delijewski M, Otręba M, Beberok A, Wrześniok D. Effect of tetracycline and UV radiation on melanization and antioxidant status of melanocytes. J Photochem Photobiol B Biol. 2015;148:168–73.
CAS
Google Scholar
Beberok A, Buszman E, Wrześniok D, Otręba M, Trzcionka J. Interaction between ciprofloxacin and melanin: the effect on proliferation and melanization in melanocytes. Eur J Pharmacol. 2011;669:32–7.
CAS
PubMed
Google Scholar
Beberok A, Wrześniok D, Otręba M, Miliński M, Rok J, Buszman E. Effect of norfloxacin and moxifloxacin on melanin synthesis and antioxidant enzymes activity in normal human melanocytes. Mol Cell Biochem. 2015;401:107–14.
CAS
PubMed
Google Scholar
Thompson HM, Levine SL, Doering J, Norman S, Manson P, Sutton P, et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr Environ Assess Manag. 2014;10:463–70.
CAS
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010 [cited 2021 Jan 17]. Available from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); 2014 Mar. Report No.: LBNL-7065E. Available from https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2013. Available from http://www.R-project.org/.
Jeon JH, Moon K, Kim Y, Kim YH. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci Rep. 2020;10:13935.
CAS
PubMed
PubMed Central
Google Scholar
Ahmed M, Kim DR. pcr: an R package for quality assessment, analysis and testing of qPCR data. PeerJ. 2018;6. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5858653/.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
CAS
PubMed
PubMed Central
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–2.
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
CAS
PubMed
PubMed Central
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
PubMed
PubMed Central
Google Scholar
Borsuk G, Ptaszyńska AA, Olszewski K, Domaciuk M, Krutmuang P, Paleolog J. A new method for quick and easy hemolymph collection from Apidae adults. PLoS ONE. 2017;12:e0170487.
PubMed
PubMed Central
Google Scholar