Stearns SC. The evolutionary significance of phenotypic plasticity—phenotypic sources of variation among organisms can be described by developmental switches and reaction norms. Bioscience. 1989;39:436–45.
Article
Google Scholar
Klasing KC, Leshchinsky T V. Functions, costs and benefits of the immune system during development and growth. In: Proceeding of 22nd international ornithological congress, vol 69. 1999. p. 2817–35.
Palacios MG, Sparkman AM, Bronikowski AM. Developmental plasticity of immune defence in two life-history ecotypes of the garter snake, Thamnophis elegans—a common-environment experiment. J Anim Ecol. 2011;80:431–7.
Article
PubMed
Google Scholar
Lemke H, Lange H. Is there a maternally induced immunological imprinting phase à la Konrad Lorenz? Scand J Immunol. 1999;50:348–54.
Article
CAS
PubMed
Google Scholar
Grindstaff JL, Hasselquist D, Nilsson JÅ, Sandell M, Smith HG, Stjernman M. Transgenerational priming of immunity: maternal exposure to a bacterial antigen enhances offspring humoral immunity. Proc R Soc B Biol Sci. 2006;273:2551–7.
Article
CAS
Google Scholar
Moreno J, Lobato E, Morales J, Merino S, Martínez-De La Puente J, Tomás G. Pre-laying nutrition mediates maternal effects on offspring immune capacity and growth in the pied flycatcher. Oecologia. 2008;156:727–35.
Article
PubMed
Google Scholar
Arnold SJ. Multivariate inheritance and evolution: a review of concepts. In: Boake CRB, editor, Quantitative genetic studies of behavioral evolution. Chicago: University of Chicago Press; 1994. p. 17–48.
Mousseau TA, Fox CW. The adaptive significance of maternal effects. Trends Ecol Evol. 1998;13:403–7.
Article
CAS
PubMed
Google Scholar
Boulinier T, Staszewski V. Maternal transfer of antibodies: raising immuno-ecology issues. Trends Ecol Evol. 2007;23:282–8.
Article
Google Scholar
Wolf JB, Wade MJ. What are maternal effects (and what are they not)? Philos Trans R Soc B Biol Sci. 2009;364:1107–15.
Article
Google Scholar
Bernardo J. Maternal effects in animal ecology. Am Zool. 1996;36:83–105.
Article
Google Scholar
Moore MP, Whiteman HH, Martin RA. A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett. 2019;22:1620–8.
Article
PubMed
Google Scholar
van Veelen HPJ, Salles JF, Matson KD, van der Velde M, Tieleman BI. Microbial environment shapes immune function and cloacal microbiota dynamics in zebra finches Taeniopygia guttata. Anim Microbiome. 2020;2:21.
Article
PubMed
PubMed Central
Google Scholar
Hasselquist D, Nilsson J-A. Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philos Trans R Soc Lond B Biol Sci. 2009;364:51–60.
Article
PubMed
Google Scholar
Grindstaff JL, Brodie ED, Ketterson ED. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc Biol Sci. 2003;270:2309–19.
Article
PubMed
PubMed Central
Google Scholar
Gasparini J, Boulinier T, Gill VA, Gil D, Hatch SA, Roulin A. Food availability affects the maternal transfer of androgens and antibodies into eggs of a colonial seabird. J Evol Biol. 2007;20:874–80.
Article
CAS
PubMed
Google Scholar
Ho DH, Burggren WW. Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol. 2010;213:3–16.
Article
CAS
PubMed
Google Scholar
Van Dijk JGB, Mateman AC, Klaassen M. Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos). PLoS ONE. 2014;9:1–7.
Google Scholar
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans JK, Buchanan KL, Griffith SC, Klasing KC, Addison BA. Ecoimmunology and microbial ecology: contributions to avian behavior, physiology, and life history. Horm Behav. 2017;88:112–21.
Article
PubMed
Google Scholar
Fadlallah J, Sterlin D, Fieschi C, Parizot C, Dorgham K, El Kafsi H, et al. Synergistic convergence of microbiota-specific systemic IgG and secretory IgA. J Allergy Clin Immunol. 2019;143:1575-1585.e4.
Article
CAS
PubMed
Google Scholar
Saino N, Ferrari R, Romano M, Martinelli R, Møller AP. Experimental manipulation of egg carotenoids affects immunity of barn swallow nestlings. Proc R Soc B Biol Sci. 2003;270:2485–9.
Article
Google Scholar
Jacob S, Parthuisot N, Vallat A, Ramon-Portugal F, Helfenstein F, Heeb P. Microbiome affects egg carotenoid investment, nestling development and adult oxidative costs of reproduction in Great tits. Funct Ecol. 2015;29:1048–58.
Article
Google Scholar
Jacob S, Immer A, Leclaire S, Parthuisot N, Ducamp C, Espinasse G, et al. Uropygial gland size and composition varies according to experimentally modified microbiome in Great tits. BMC Evol Biol. 2014;14:134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horrocks NPC, Matson KD, Tieleman BI. Pathogen pressure puts immune defense into perspective. Integr Comp Biol. 2011;51:563–76.
Article
CAS
PubMed
Google Scholar
Tieleman BI. Understanding immune function as pace-of-life trait requires environmental context. Behav Ecol Sociobiol. 2018;72:55.
Article
PubMed
PubMed Central
Google Scholar
van Veelen HPJ, Salles JF, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156.
Article
PubMed
PubMed Central
Google Scholar
Teyssier A, Lens L, Matthysen E, White J. Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Front Microbiol. 2018;9:1–12.
Article
Google Scholar
Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos. 2000;88:87–98.
Article
Google Scholar
Addison B, Klasing KC, Robinson WD, Austin SH, Ricklefs RE. Ecological and life-history factors influencing the evolution of maternal antibody allocation: a phylogenetic comparison. Proc R Soc B Biol Sci. 2009;276:3979–87.
Article
CAS
Google Scholar
van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME J. 2018;12:1375–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saino N, Ara PD, Martinelli R, Møller AP. Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow. J Evol Biol. 2002;15:735–43.
Article
CAS
Google Scholar
Shawkey MD, Kosciuch KL, Liu M, Rohwer FC, Loos ER, Wang JM, et al. Do birds differentially distribute antimicrobial proteins within clutches of eggs? Behav Ecol. 2008;19:920–7.
Article
Google Scholar
D’Alba L, Shawkey MD, Korsten P, Vedder O, Kingma SA, Komdeur J, et al. Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness. Behav Ecol Sociobiol. 2010;64:1037–45.
Article
PubMed
PubMed Central
Google Scholar
Grizard S, Versteegh MA, Ndithia HK, Salles JF, Tieleman BI. Shifts in bacterial communities of eggshells and antimicrobial activities in eggs during incubation in a ground-nesting passerine. PLoS ONE. 2015;10:2–20.
Article
CAS
Google Scholar
Martínez-García Á, Martín-Vivaldi M, Rodríguez-Ruano SM, Peralta-Sánchez JM, Valdivia E, Soler JJ. Nest bacterial environment affects microbiome of hoopoe eggshells, but not that of the uropygial secretion. PLoS ONE. 2016;11:1–15.
Google Scholar
Grizard S, Dini-Andreote F, Tieleman BI, Salles JF. Dynamics of bacterial and fungal communities associated with eggshells during incubation. Ecol Evol. 2014;4:1140–57.
Article
PubMed
PubMed Central
Google Scholar
Horrocks NPC, Hine K, Hegemann A, Ndithia HK, Shobrak M, Ostrowski S, et al. Are antimicrobial defences in bird eggs related to climatic conditions associated with risk of trans-shell microbial infection? Front Zool. 2014;11:49.
Article
PubMed
PubMed Central
Google Scholar
Horrocks NPC, Tieleman BI, Matson KD. A simple assay for measurement of ovotransferrin—a marker of inflammation and infection in birds. Methods Ecol Evol. 2011;2:518–26.
Article
Google Scholar
Grindstaff JL, Demas GE, Ketterson ED. Diet quality affects egg size and number but does not reduce maternal antibody transmission in Japanese quail Coturnix japonica. J Anim Ecol. 2005;74:1051–8.
Article
Google Scholar
Demas GE, Nelson RJ. Photoperiod and temperature interact to affect immune parameters in adult male deer mice (Peromyscus maniculatus). J Biol Rhythms. 1996;11:94–102.
Article
CAS
PubMed
Google Scholar
Matson KD, Ricklefs RE, Klasing KC. A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol. 2005;29:275–86.
Article
CAS
PubMed
Google Scholar
Matson KD, Horrocks NPC, Versteegh MA, Tieleman BI. Baseline haptoglobin concentrations are repeatable and predictive of certain aspects of a subsequent experimentally-induced inflammatory response. Comp Biochem Physiol A Mol Integr Physiol. 2012;162:7–15.
Article
CAS
PubMed
Google Scholar
Gilbert JA, Meyer F, Jansson J, Gordon J, Pace N, Ley R, et al. The Earth microbiome project: meeting report of the “1st EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6th 2010. Stand Genomic Sci. 2010;3:249–53.
Article
PubMed
PubMed Central
Google Scholar
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al Ghalith GA, et al. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:9490.
Article
CAS
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.
Article
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
PubMed
PubMed Central
Google Scholar
Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73:1576–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing; 2017.
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
CAS
Google Scholar
Kuznetsova A, Brockhoff B, Christensen HB. lmerTest package: Tests in linear mixed effects models. J Stat Soft. 2017;82:1-26.
Fox J. Displays in R for generalised linear models. J Stat Softw. 2003;8:1–27.
Article
Google Scholar
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:133–42.
Article
Google Scholar
Stoffel MA, Nakagawa S. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol. 2017;8:1639–44.
Article
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2018. R package version 2.5-7.
Sanchez G. PLS path modeling with R. Berkeley: Trowchez Editions; 2013.
Google Scholar
Barberán A, Ramirez KS, Leff JW, Bradford MA, Wall DH, Fierer N. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol Lett. 2014;17:794–802.
Article
PubMed
Google Scholar
Ossola A, Aponte C, Hahs AK, Livesley SJ. Contrasting effects of urban habitat complexity on metabolic functional diversity and composition of litter and soil bacterial communities. Urban Ecosyst. 2017;20:595–607.
Article
Google Scholar
Sanchez G, Trinchera L, Russolillo G. plspm: Tools for partial least squares path modeling (PLS-PM). 2015. R package version 0.4.9.
Hargitai R, Prechl J, Török J. Maternal immunoglobulin concentration in Collared Flycatcher (Ficedula albicollis) eggs in relation to parental quality and laying order. Funct Ecol. 2006;20:829–38.
Article
Google Scholar
Svobodová J, Šmídová L, Javůrková V. Different incubation patterns affect selective antimicrobial properties of the egg interior: experimental evidence from eggs of precocial and altricial birds. J Exp Biol. 2019;222:1–11.
Google Scholar
Okuliarova M, Kankova Z, Bertin A, Leterrier C, Mostl E, Zeman M. Maternally derived egg hormones, antibodies and antimicrobial proteins: common and different pathways of maternal effects in Japanese Quail. PLoS ONE. 2014;9:e112817.
Article
PubMed
PubMed Central
CAS
Google Scholar
Al-Natour MQ, Ward LA, Saif YM, Stewart-Brown B, Keck LD. Effect of different levels of maternally derived antibodies on protection against infectious bursal disease virus. Avian Dis. 2004;48:177–82.
Article
CAS
PubMed
Google Scholar
Merrill L, Grindstaff JL. Maternal antibody transfer can lead to suppression of humoral immunity in developing zebra finches (Taeniopygia guttata). Physiol Biochem Zool. 2014;87:740–51.
Article
PubMed
PubMed Central
Google Scholar
Coakley CM, Staszewski V, Herborn KA, Cunningham EJA. Factors affecting the levels of protection transferred from mother to offspring following immune challenge. Front Zool. 2014;11:1–11.
Article
CAS
Google Scholar
Deerenberg C, Arpanius V, Daan S, Bos N. Reproductive effort decreases antibody responsiveness. Proc R Soc B Biol Sci. 1997;264:1021–9.
Article
Google Scholar
Hammouda A, Selmi S, Pearce-Duvet J, Chokri MA, Arnal A, Gauthier-Clerc M, et al. Maternal antibody transmission in relation to mother fluctuating asymmetry in a long-lived colonial seabird: the yellow-legged gull Larus michahellis. PLoS One. 2012;7:e34966.
Ismail A, Jacquin L, Haussy C, Perret S, Gasparini J. Food availability modulates the effects of maternal antibodies on growth and immunity in young feral pigeons. J Avian Biol. 2015;46:489–94.
Article
Google Scholar
Peters A, Delhey K, Nakagawa S, Aulsebrook A, Verhulst S. Immunosenescence in wild animals: meta-analysis and outlook. Ecol Lett. 2019;22:1709–22.
Article
PubMed
Google Scholar
Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J Nat. 2013;7:1493–506.
Article
Google Scholar
Cáliz J, Triadó-Margarit X, Camarero L, Casamayor EO. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc Natl Acad Sci USA. 2018;115:12229–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:1–15.
Article
CAS
Google Scholar
Leclaire S, Czirják GÁ, Hammouda A, Gasparini J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons: evolutionary ecology and behaviour. BMC Evol Biol. 2015;15:60.
Article
PubMed
PubMed Central
Google Scholar
Soler JJ, Peralta-Sánchez JM, Flensted-Jensen E, Martín-Platero AM, Møller AP. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis. Naturwissenschaften. 2011;98:807–13.
Article
CAS
PubMed
Google Scholar