Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 2014;8:1566–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trckova MLA, Hazova K, Zajacova ZS. Prophylaxis of post-weaning diarrhoea in piglets by zinc oxide and sodium humate. Veterinarni Medicina. 2015;60:9.
Google Scholar
Lallès J-P, Boudry G, Favier C, Floc’h NL, Luron I, Montagne L, Oswald IP, Pié S, Piel C, Sève B. Gut function and dysfunction in young pigs: physiology. Anim Res. 2004;53:301–16.
Pluske JR. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J Anim Sci Biotechnol. 2013;4:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blank R, Mosenthin R, Sauer WC, Huang S. Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned pigs. J Anim Sci. 1999;77:2974–84.
Article
CAS
PubMed
Google Scholar
Partanen KH, Mroz Z. Organic acids for performance enhancement in pig diets. Nutr Res Rev. 1999;12:117–45.
Article
CAS
PubMed
Google Scholar
Nousiainen J. Comparative observations on selected probiotics and olaquindox as feed additives for piglets around weaning. J Anim Physiol Anim Nutr. 1991;66:224–30.
Article
Google Scholar
Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018;4:187–96.
Article
PubMed
PubMed Central
Google Scholar
LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8.
Article
CAS
PubMed
Google Scholar
Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.
Article
CAS
PubMed
Google Scholar
Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.
Article
CAS
PubMed
Google Scholar
Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69:52–60.
Article
CAS
PubMed
Google Scholar
Cummings J, MacFarlane GTE, Englyst H. Prebiotic digestion and fermentation. Am J Clin Nutr. 2001;73:415S-420S.
Article
CAS
PubMed
Google Scholar
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14.
Article
PubMed
Google Scholar
Dibner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poultry Res. 2002;11:453–63.
Article
CAS
Google Scholar
Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci Nutr. 2017;57:3987–4002.
Article
CAS
PubMed
Google Scholar
Edwards SA. Perinatal mortality in the pig: environmental or physiological solutions? Livestock Prod Sci. 2002;78:3–12.
Article
Google Scholar
Guevarra RB, Hong SH, Cho JH, Kim B-R, Shin J, Lee JH, Kang BN, Kim YH, Wattanaphansak S, Isaacson RE, et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J Anim Sci Biotechnol. 2018;9:54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trevisi P, Luise D, Won S, Salcedo J, Bertocchi M, Barile D, Bosi P. Variations in porcine colostrum oligosaccharide composition between breeds and in association with sow maternal performance. J Anim Sci Biotechnol. 2020;11:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Difilippo E, Pan F, Logtenberg M, Willems RH, Braber S, Fink-Gremmels J, Schols HA, Gruppen H. Milk oligosaccharide variation in sow milk and milk oligosaccharide fermentation in piglet intestine. J Agric Food Chem. 2016;64:2087–93.
Article
CAS
PubMed
Google Scholar
Tran THT, Everaert N, Bindelle J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J Anim Physiol Anim Nutr. 2018;102:17–32.
Article
CAS
Google Scholar
Willats WG, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 2001;47:9–27.
Article
CAS
PubMed
Google Scholar
Popov SV, Ovodov YS. Polypotency of the immunomodulatory effect of pectins. Biochemistry. 2013;78:823–35.
CAS
PubMed
Google Scholar
Tian L, Bruggeman G, van den Berg M, Borewicz K, Scheurink AJW, Bruininx E, de Vos P, Smidt H, Schols HA, Gruppen H. Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Mol Nutr Food Res. 2017;61:1600186.
Article
CAS
Google Scholar
Kelly P. Sugar beet pulp—a review. Anim Feed Sci Technol. 1983;8:1–18.
Article
Google Scholar
Canh TT, Aarnink AJ, Verstegen MW, Schrama JW. Influence of dietary factors on the pH and ammonia emission of slurry from growing-finishing pigs. J Anim Sci. 1998;76:1123–30.
Article
CAS
PubMed
Google Scholar
Martelli G, Parisini P, Scipioni R, Cessi E, Sardi L. The effects of pressed sugar beet pulp silage (PBPS) and dairy whey on heavy pig production. Ital J Anim Sci. 2002;1:25–33.
Article
Google Scholar
Zeuner B, Thomsen TB, Stringer MA, Krogh KBRM, Meyer AS, Holck J. Comparative characterization of Aspergillus pectin lyases by discriminative substrate degradation profiling. Fron Bioeng Biotechnol. 2020;8:873.
Article
Google Scholar
Siew CK, Williams PA. Role of protein and ferulic acid in the emulsification properties of sugar beet pectin. J Agric Food Chem. 2008;56:4164–71.
Article
CAS
PubMed
Google Scholar
Levigne S, Thomas M, Ralet MC, Quemener B, Thibault JF. Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food Hydrocoll. 2002;16:547–50.
Article
CAS
Google Scholar
Buchholt HC, Christensen TMIE, Fallesen B, Ralet M-C, Thibault J-F. Preparation and properties of enzymatically and chemically modified sugar beet pectins. Carb Polym. 2004;58:149–61.
Article
CAS
Google Scholar
Pacheco MT, Villamiel M, Moreno R, Moreno FJ. Structural and rheological properties of pectins extracted from industrial sugar beet by-products. Molecules. 2019;24:392.
Article
PubMed Central
CAS
Google Scholar
Wiese M. The potential of pectin to impact pig nutrition and health: feeding the animal and its microbiome. FEMS Microbiol Lett. 2019;366:fnz09.
Article
CAS
Google Scholar
Wiese M, Khakimov B, Nielsen S, Sørensen H, van den Berg F, Nielsen DS. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes. PeerJ. 2018;6:e4268.
Article
PubMed
PubMed Central
CAS
Google Scholar
Payne AN, Zihler A, Chassard C, Lacroix C. Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol. 2012;30:17–25.
Article
CAS
PubMed
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass, in: Laboratory Analytical Procedure (LAP). National Renewable Energy Lab. 2008.
Zeuner B, Vuillemin M, Holck J, Muschiol J, Meyer AS. Loop engineering of an α-1,3/4-l-fucosidase for improved synthesis of human milk oligosaccharides. Enz Microbial Technol. 2018;115:37–44.
Article
CAS
Google Scholar
Holck J, Djajadi DT, Brask J, Pilgaard B, Krogh KBRM, Meyer AS, Lange L, Wilkens C. Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan degradation. Enz Microbial Technol. 2019;129:109353.
Article
CAS
Google Scholar
Lynegaard JC, Hansen CF, Kristensen AR, Amdi C. Body composition and organ development of intra-uterine growth restricted pigs at weaning. Animal. 2020;14:322–9.
Article
CAS
PubMed
Google Scholar
Ingram DL, Legge KF. Variations in deep body temperature in the young unrestrained pig over the 24 hour period. J Physiol. 1970;210:989–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanner SA, Zihler Berner A, Rigozzi E, Grattepanche F, Chassard C, Lacroix C. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLOS ONE. 2014;9:e94123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pond WG, Mersmann HJ. Biology of the domestic pig. Comstock Pub. Associates, Cornell University Press; 2001.
Google Scholar
Fooks LJ, Gibson GR. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecol. 2002;39:67–75.
Article
CAS
PubMed
Google Scholar
Sanz ML, Gibson GR, Rastall RA. Influence of disaccharide structure on prebiotic selectivity in vitro. J Agric Food Chem. 2005;53:5192–9.
Article
CAS
PubMed
Google Scholar
Sarbini SR, Kolida S, Naeye T, Einerhand AW, Gibson GR, Rastall RA. The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. J Func Foods. 2013;5:1938–46.
Article
CAS
Google Scholar
Krych Ł, Kot W, Bendtsen KMB, Hansen AK, Vogensen FK, Nielsen DS. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. J Microbiol Meth. 2018;144:1–7.
Article
CAS
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory CJ. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
Article
PubMed
PubMed Central
Google Scholar
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
Article
PubMed
PubMed Central
Google Scholar
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70:2782–858.
Article
CAS
PubMed
Google Scholar
McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:27.
Article
PubMed
PubMed Central
Google Scholar
Lagkouvardos I, Fischer S, Kumar N, Clavel T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ. 2017;5:e2836.
Article
PubMed
PubMed Central
Google Scholar
Tan H, Zhai Q, Chen WJFRI. Investigations of Bacteroides spp towards next-generation probiotics. Food Res Int. 2019;116:637–44.
Article
CAS
PubMed
Google Scholar
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell. 2020;30:492–506.
Google Scholar
Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021;70:595.
Article
CAS
PubMed
Google Scholar
Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol. 2005;7:301–13.
Article
CAS
PubMed
Google Scholar
Barbara AJ, Trinh HT, Glock RD, Glenn SJ. Necrotic enteritis-producing strains of Clostridium perfringens displace non-necrotic enteritis strains from the gut of chicks. Vet Microbiol. 2008;126:377–82.
Article
CAS
PubMed
Google Scholar
Songer JG. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev. 1996;9:216–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rehman H, Awad WA, Lindner I, Hess M, Zentek J. Clostridium perfringens alpha toxin affects electrophysiological properties of isolated jejunal mucosa of laying hens. Poult Sci. 2006;85:1298–302.
Article
CAS
PubMed
Google Scholar
Okewole PA, Itodo AE, Oyetunde IL, Chima JC, Irokanulo EA, Ocholi RA. Clostridium perfringens type a enterotoxaemia in pigs: a report of five cases. Brit Vet J. 1991;147:484–5.
Article
CAS
Google Scholar
Klaasen HLBM, Molkenboer MJCH, Bakker J, Miserez R, Häni H, Frey J, Popoff MR, van den Bosch JF. Detection of the β2 toxin gene of Clostridium perfringens in diarrhoeic piglets in the Netherlands and Switzerland. FEMS Immunol Med Microbiol. 1999;24:325–32.
CAS
PubMed
Google Scholar
Breyner NM, Michon C, de Sousa CS, Vilas Boas PB, Chain F, Azevedo VA, Langella P, Chatel JM. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front Microbiol. 2017;8:114.
Article
PubMed
PubMed Central
Google Scholar
Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 2017;8:1765.
Article
PubMed
PubMed Central
Google Scholar
Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017;93:11.
Article
CAS
Google Scholar
Hui Y, Vestergaard GA, Deng L, Kot WP, Thymann T, Brunse A, Nielsen DS. Donor-dependent fecal microbiota transplantation efficacy against necrotizing enterocolitis in preterm Pigs. 2020, preprint on https://www.researchsquare.com/article/rs-117422/v1.
Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol. 2018;9:757–757.
Article
PubMed
PubMed Central
Google Scholar
Wilkowska A, Berlowska J, Nowak A, Motyl I, Antczak-Chrobot A, Wojtczak M, Kunicka-Styczyńska A, Binczarski M, Dziugan P. Combined yeast cultivation and pectin hydrolysis as an effective method of producing prebiotic animal feed from sugar beet pulp. Biomol. 2020;10:724.
Article
CAS
Google Scholar
Uerlings J, Bindelle J, Schroyen M, Richel A, Bruggeman G, Willems E, Everaert N. Fermentation capacities of fructan- and pectin-rich by-products and purified fractions via an in vitro piglet faecal model. J Sci Food Agric. 2019;99:5720–33.
Article
CAS
PubMed
Google Scholar
Larsen N, Bussolo de Souza C, Krych L, Barbosa Cahú T, Wiese M, Kot W, Hansen KM, Blennow A, Venema K, Jespersen L. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Fron Microbiol. 2019;10:223.
Article
Google Scholar